PatentDe  


Dokumentenidentifikation EP0178811 19.05.1993
EP-Veröffentlichungsnummer 0178811
Titel Leistungsschalteranordnung für einen Verkaufsautomat.
Anmelder Mars Inc., McLean, Va., US
Erfinder Cowles, John C., Bensalem Pennsylvania 19020, US
Vertreter Strehl, P., Dipl.-Ing. Dipl.-Wirtsch.-Ing.; Schübel-Hopf, U., Dipl.-Chem. Dr.rer.nat.; Groening, H., Dipl.-Ing., Pat.-Anwälte, 8000 München
DE-Aktenzeichen 3587263
Vertragsstaaten AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE
Sprache des Dokument En
EP-Anmeldetag 27.09.1985
EP-Aktenzeichen 853069318
EP-Offenlegungsdatum 23.04.1986
EP date of grant 14.04.1993
Veröffentlichungstag im Patentblatt 19.05.1993
IPC-Hauptklasse H01H 9/54
IPC-Nebenklasse G07F 5/18   

Beschreibung[en]
BACKGROUND OF THE INVENTION 1. Field of Invention

This invention relates to an improved vending machine power switching apparatus, and particularly to vending machines and coin mechanisms having a plurality of relays for selecting which of a plurality of loads is to be energized.

2. Description of the Prior Art

Vending machines include a wide variety of coin operated machines such as cigarette, coffee, soda, candy and ticket dispensing machines, as well as, juke boxes, pinball machines and the like. Typically, vending machines employ relays for a wide variety of switching functions.

A relay is a commonly known electrical component which may be broadly defined as an electrically controlled device that opens and closes electrical contacts to effect the operation of other devices in the same or another electrical circuit. Typically, a relay incorporates an electromagnet, to which a controlling current is applied, which moves electrical contacts to switch the controlled current. As with any electrical component, the designer or manufacturer who employs relays in a system is faced with the task of minimizing the cost of the components used while still achieving the desired reliability and durability in the system.

Although alternative switching devices, especially semiconductor devices, are available and have been successfully used in vending machines, electromechanical relays are still preferred for many applications because the use of an electromagnet provides electrical isolation between the controlling and controlled currents, and because a single controlling current and electromagnet can control a plurality of circuits with a plurality of switching contacts. In the case of the common power-controlling semiconductor devices (such as SCR's, triacs and power transistors,) a separate isolation device (such as an opto-isolator) would be required and each power controlling device can open and close only one circuit. A further advantage of relays is that they are not subject to random turn-on due to random noise spikes.

One of the basic problems in designing vending systems with relays is the problem of contact deterioration or degradation due to arcing, fine metal transfer, and microscopic point welding which occurs when the relay contacts open or close a circuit in which current is flowing. For a general discussion of arcing and like phenomenon, see Frank S. Oliver, Practical Relay Circuits, Ch. 2 (1971). Thus, the principal rating of relays is current switching capacity.

The contact degradation problem is exacerbated where a relay is used to switch power to an inductive load. In conventional vending machines, relays are frequently used for switching current to inductive loads such as motors, solenoids and other relays. Some of the many functions of vending machines where power is switched to an inductive load are illustrated by the following U.S. Patents assigned to the assignee of the present invention: US-A-3,792,766 (solenoid used in magnetic coin eliminator), US-A-3,797,307 (solenoid retracts arrest pin), US-A-3,814,115 & US-A-4,367,760 (actuator operates slide plate for dispensing coins to be returned as change), US-A-4,106,610 (actuators activate gates for directing coins through coin mechanism) and US-A-4,234,070 & US-A-4,458,187 (actuators dispense customer selected products).

Relay manufacturers have devoted extensive work over the years to produce contacts which, for a given size, are less prone to deterioration from switching current. Vending machine designers, concerned with long term reliability, have incorporated special protective circuitry to supress contact arcing. This response to the problem is not fully satisfactory where large numbers of relays are required because the provision of protective circuits for each relay and the cost for the relays used becomes quite expensive.

SUMMARY OF THE INVENTION

According to a first aspect of the present invention there is provided a vending machine power switching apparatus comprising:

   a vending machine power switching apparatus (20,40,200) comprising:

   a plurality of loads;

   a corresponding plurality of relays for selecting which of said loads is to be energized, the switching contacts of said relays being connected on a one-to-one basis in series with respective loads to define respective load circuits; and

   control means arranged for controlling the switching of said relays;

   characterised in that:

   said apparatus further comprises a power switching means controllable by said control means and having contacts connected in series with the switching contacts of each of said relays;

   said control means is arranged for effecting said switching of said relays only when the power switching means is in a de-actuated condition; and

   each relay is rated to handle the approximate steady state current drawn by its corresponding load, but is rated to handle less than the current which would be drawn in switching current to that load

According to a second aspect of the present invention there is provided a method for energization and de-energization of loads in a vending machine load circuit that comprises a plurality of individually selectable inductive loads and a plurality of actuatable relays corresponding in number to said plurality of loads; the method comprising the steps of:

  • (a) connecting in series each of said relays with a corresponding one of said loads on a one-to-one basis; and
  • (b) controlling the actuating and de-actuating of one or more of said relays;
   characterised in that:

   the vending machine load circuit further comprises an actuable power switching means connected in series with each of said relays;

   the relays and the power switching means are interlocked such that the relays are actuated and de-actuated only when said power switching means is in a de-actuated state; and

   each relay is rated to handle the approximate steady state current drawn by its corresponding load, but is rated to handle less than the current which would be drawn in switching current to that load.

The present invention therefore provides an improved relay switching arrangement which is useful where two or more relays are used to selectively switch power to two or more loads.

According to a preferred embodiment of the present invention, a single heavy duty power switching device (such as a relay, SCR, triac or power transistor) together with arc suppession circuitry or other transient control circuitry, if appropriate, is used in series with the switching contacts of a plurality of relays which are not required to be operated simultaneously. These relays are of smaller capacity and less expensive than the relays which would normally be used. Each of the smaller relays is associated with its own load or loads, such as a dispensing motor or a solenoid for operating a coin directing gate, for example, and is used to select its load. These relays are not used to start and stop the flow of current. Power switching to the load or loads selected by the relays is controlled by the power switching device. As a result, significant cost savings and improved relay lifetime are achieved.

Thus, only one power switching device is required for each group of nonconcurrently operated loads, of which there are many in vending machines. For example, only one product is dispensed in each machine cycle from the typical snack, candy or cigarette vending machine; therefore, a single power switching means can control the power switching for all of the product dispensing actuators. A single switching means can also be employed for a plurality of operations which occur in sequence, for example in a drink vending machine, the same switching means can be used with separate relays to actuate dispensing a cup, dispensing ice and dispensing the product. Where concurrent operations are required, such as concurrent dispensing of soda water and soft drink syrup, two switching means can be employed to control separate groups of relays. Of course, when two operations are simultaneous, always starting and stopping at the same time, only a single switching means and a single relay is required.

BRIEF DESCRIPTION OF THE DRAWINGS

  • Fig. 1 is a block diagram of a simplified prior art relay switching arrangement found in vending machines;
  • Fig. 2 is a block diagram showing the principle of an improved vending machine power switching apparatus for purposes of illustrating the present invention;
  • Fig. 3 is a graph illustrating the proper order of switching of the vending machine power switching apparatus of Fig. 2 according to the present invention;
  • Fig. 4 is a schematic diagram of a first embodiment of vending machine power switching apparatus according to the present invention; and
  • Fig. 5 is a schematic diagram of a second embodiment in which the present invention is employed in a vending control means.

DESCRIPTION OF THE INVENTION

In the simplified prior art arrangement 10 shown in Fig. 1, a power source 11 is connected to a plurality of relays 12, 13, and 14 having normally open contacts a,b. The relays 12-14 are controlled by a control means 15, such as a microprocessor control circuit. Each of the relays 12-14 is also connected to a respective load 16-18. When control means 15 causes a relay, for example, relay 13, to close its contacts a,b, current flows through the contacts a,b of relay 13 from power source 11 to its associated load 17. The other relays 12 and 14 operate similarly in conjunction with loads 16 and 18, respectively. Each of the relays 12-14 serves both a load selection function and a power switching function. Each of the relays 12-14 must be designed to withstand the transient conditions occurring during the making and breaking (i.e., the opening and closing) of the relay contacts. Such transient conditions are particularly severe where the loads 16-18 are inductive loads such as the solenoids or dispensing motors commonly found in vending machines. Such an arrangement is shown in Figure 1 of the above-mentioned U.S. patent 4,234,070 (Heiman).

Fig. 2 shows a block diagram of an improved vending machine power switching apparatus 20 which, in conjunction with the graph of Fig. 3, illustrates the principle of the present invention. In Fig. 2, a power source 21 is shown connected to a power switching device 29, shown here as a relay. The power switching device 29 is connected to a plurality of relays 22-24 which are in turn connected to a plurality of loads 26-28 (Although three relays and three loads are shown it should be clear that a greater number of relays can be employed without departing from the invention). All of the relays 22-24 are shown with their contacts a,b normally open and are controlled by a control means 25, such as a microprocessor control circuit. The control means 25 controls the switching of the various relays 22-24 and the power switching device 29 so that relays 22-24 provide a selection function, but do not do power switching, and the power switching device 29 switches the power on or off at the appropriate times. In other words, in this arrangement, the power switching and the load selection functions have been separated.

If it is desired to switch power to the load 17, according to the arrangement of Fig. 1, it is only necessary to close a single relay 13 to energize its associated load. To apply power to a load, for example, load 27 in the apparatus of Fig. 2 according to the present invention, relay 23 and power switching device 29 must be switched to their closed positions by the relay control means 25 in the order shown in Fig. 3. Line S&sub2;&sub3; shows the switching times for relay 23 and line S&sub2;&sub9; shows the switching times for power switching device 29. First, relay 23 is closed at time t&sub0; when power switching device 29 is still open. Then, power switching device 29 is closed at time t&sub1;, connecting the selected load 27 to the power source 21. At a time t&sub2;, when it is desired to disconnect load 27 from power source 21, power switching device 29 is opened first, and then, at a later time t&sub3;, relay 23 is opened. The other relays 22 and 24 are switched in the same manner as relay 23. As a consequence of this switching arrangement, the relays 22-24 need only be rated to pass the maximum voltage and current delivered to the load, and only the single power switching device 29 has to be rated to handle switching transients as a result of the making and breaking of contacts during power switching and has to have any necessary associated suppression circuitry. Thus, significant cost savings in conjunction with substantially improved relay lifetime are achieved by following the principles of the present invention. Mechanical failure rather than contact failure becomes the major determinant of the lifetime of relays 22-24.

Fig. 4 shows a schematic diagram of a first embodiment of the present invention. The present invention concerns power switching apparatus for use in vending control means and vending machines whose functions are controlled by logic control means, such as TTL, LSI, microprocessor or other types of control circuit, and which have a plurality of relays for selecting among a plurality of loads, such as solenoids or dispensing motors, to be energized. The design of microprocessor control circuits and other types of controls for the wide variety of functions normally found in vending control means and vending machines is well within the capabilities of one skilled in the art. See, for example, U.S. Patents US-A-4,225,056, US-A-4,231,105, US-A-4,328,539, US-A-4,354,613, US-A-4,372,464 and US-A-4,463,446. The invention is not limited to any particular type of control circuit or any particular function of an inductive load to which power is switched in a vending machine.

In the vending machine power switching apparatus 40 of Fig. 4, a 117 VAC power supply 41 is connected to a power switching means 49, which includes a triac 74 and an optical coupler 75. Other switching devices such as SCRs, relays, and any other power switching devices or circuits suitable for the particular application at hand are contemplated by the term power switching means. The power switching means 49 is connected by line 76 to one contact of each of a plurality of relays 42-44 which are shown in their normally open positions. Each of the relays 42-44 is connected to its respective load 46-48. Any load equivalent to those commonly found in vending machines is contemplated. A switching control means 45 is also connected to the power switching means 49 and to the relays 42-44 through a plurality of buffer/drivers 91-95 (each of the buffer/drivers may be one of the buffer/drivers from a Fairchild 7407 hex buffer/driver chip). The switching control means 45 includes a microprocessor 81, such as the Intel 8031. In a typical vending machine, a microprocessor, such as microprocessor 81, has a plurality of inputs and outputs other than those shown in Fig. 4 for monitoring and controlling the entire operation of the vending machine. Such details are not part of the present invention and are omitted to avoid obscuring the invention. Microprocessor 81, subject to its program control and its inputs (not shown), produces output signals which control the switching of the power switching means 49 and the relays 42-44. These output signals are connected through eight data bus lines collectively referred to as bus 82, and the lines 83 and 84, to a plurality of flip-flops designated collectively as 85 and 86 (which may suitably be National Semiconductor 74C374 octal three-state, non-inverting D-type flip-flop chips).

The output from one of the plurality of flip-flops 86 controls the power switching device 49 via the buffer/driver 91. The power switching device 49 includes an opto-isolator 75 and a triac 74. It is used, as described in connection with Figs. 2 and 3, to turn on and off the power to the switching contacts of relays 42-44.

The outputs of three of the plurality of flip-flops 85 control the relays 42-44 via buffer/drivers 92-94. The "a" contacts of the relays 42-44 are each connected in series with the output of the power switching device 49 via line 76, and the "b" contacts are connected to the respective loads 46-48. When one of the relays 42-44 is switched from its normally open position, it selects which of the loads 46-48 power is applied to. As described in the illustrative embodiment of Figs. 2 and 3, for each switching event, the load to receive power is first selected by one of the relays 42-44 before power is applied by the switching device 49 and the power is turned off by the switching device 49 before the contacts of the selected relay 42-44 are opened again.

When an input signal is applied to one of the inputs of the buffer/drivers 92-94, current flows through the coil C of one of the relays 42-44 and the particular buffer/driver. The current through the coil C causes the contacts a,b to move from their normally open position to their closed position.

After the load is selected, the appropriate input signal is applied to buffer/driver 91, its output goes low, current flows through the light emitting diode portion 71 of optical coupler 75, and current is allowed to flow through the photo-receptor portion 72 of optical coupler 75. As a result, triac 74 conducts and 117 VAC from the power supply 41 appears on line 56 and is applied, via the closed contacts of the previously selected relay to the selected load. When the power is to be removed from the selected load, the procedure is reversed, first deactivating the triac 74 to turn off the power and then deenergizing the relay to terminate the selection.

The switching control means 45 provides sequential output signals which switch the relays 42-44 in the appropriate order, as discussed in conjunction with Fig. 3. For example, where the loads 46-48 are dispensing motors for delivery of a product selected by the customer, once appropriate credit is established and a selection is made, the appropriate relay of the relays 42-44 is switched on to select a dispensing motor. Then, the power switching means 49 is turned on so that power is connected to the dispensing motor and a product is delivered. Next, after product delivery is actually sensed or after a sufficient time has elapsed for delivery to occur, power switching means 49 is turned off and power is disconnected from the motor. Finally, the appropriate selecting relay of the relays 42-44 is turned off.

While the embodiment above described has been discussed in terms of a preferred arrangement in which a single switching control means 45 controls both the power switching means 49 and the load selecting relays 42-44, separate control means could be used so long as the proper switching order is maintained.

Fig. 5 shows a second embodiment of the present invention, a price control apparatus 200 for inclusion within a vending control means or a coin mechanism. The price control apparatus 200 shown in Fig. 5 has a four price capacity; however, the same principles are applicable to various other numbers of prices. The price control apparatus 200 is shown in Fig. 5 as connected to a vending apparatus 300 by price selection lines 315-318. The vending apparatus 300 does not form a part of the present embodiment; therefore, only illustrative components are shown for the purpose of explaining the operation of the price control apparatus 200. Various vending apparatus employing a price selection line interface can be employed without departing from the present invention.

Each of the selection lines 315-318 in the price control apparatus 200 is connected to the input of an associated one of the optical coupler circuits 245-248. As shown in the case of optical coupler circuit 245, each of optical coupler circuits 245-248 typically includes a Motorola or equivalent type MCT6 optical isolator incorporating a light emitting diode (LED) 241 connected to the input and a photo-responsive device 242, optically coupled to the LED, at the output. The optical coupler circuit also includes an RC time constant circuit at its output comprising capacitor 243 and resistor 244.

The illustrative vending apparatus 300 includes a plurality of dispensing actuators, such as motors or solenoids, shown here as dispensing motors M&sub1;-Mn, each with an associated selection switch SS&sub1;-SSn, and an associated holding switch HS&sub1;-HSn which are connected and used in conventional fashion. Each of the motors M&sub1;-Mn may be connected by means of a plugboard 314 and moveable jumper wires J&sub1;-Jn to any one of the selection wires 315-318, depending on the price to be associated with the product dispensed by the motor. As shown in the case of motors M&sub1;-M&sub2;, more than one motor can be connected to a single selection line 316, in conventional fashion. When a selection switch, such as switch SSn, is closed, current flows from a signal current source 277, comprising a voltage divider of resistors connected to the power line, through LED 241 of the optical coupler circuit 245, via the selection line 315 and jumper Jn, through motor Mn and the closed selection switch SSn to the neutral power line. The current supplied by the signal power source 277 is insufficient to actuate the motors M&sub1;-Mn.

When the signalling current flows in this fashion, the optical coupler circuit 245 associated with the selection line 315 produces a signal output which is transmitted to one input of an associated AND gate 235 of the AND gates 235-238. The other input of each of the AND gates 235-238 is connected to one of the outputs of a counter-decoder 239, typically a CMOS type 4017 device. The counter-decoder 239 sequentially transmits a pulse to each of the AND gates 235-238. If the other input of one of the AND gates, such as AND gate 235 in this example, is concurrently receiving a true signal, the pulse is passed by the AND gate and transmitted to the corresponding one of the price matrices 215-218, price matrix 215 in this case. The outputs of each of the AND gates 235-238 are also connected via diodes to the enable input of the counter-decoder 239 and an RC circuit comprising resistor 261 and capacitor 262 connected in parallel to ground. When one of the AND gates 235-238 produces an output, the capacitor 262 is charged. This charge inhibits the operation of the counter-decoder 239, causing it to send its output repeatedly to the same AND gate, thus locking that AND gate on and preventing the recognition of the other AND gates during the selection of one of the selection wires 315-318 or a resulting active vend cycle. The output of the selected AND gate, gate 235 in this case, is also connected to the associated one of the buffer-drivers 291-294, buffer-driver 291 in this case. A signal from the AND gate 235 through the buffer-driver 291 causes current to flow through the coil of the associated relay K&sub1;, causing its previously open contacts a,b to close. This condition will continue so long as the selection switch SSn remains closed or a vend cycle is initiated and in progress. The closing of any one of the selection switches SS&sub1;-SSn causes the closing of the one of the relays K&sub1;-K&sub4; which is associated with the one of the selection lines 315-318 to which the actuated selection switch is connected, in the same manner as described for switch SSn.

The optical coupler circuits 245-248, the RC time constant circuits, the AND gates 235-238 and the counter 239 comprise selection logic means 240 having a plurality of outputs, here four outputs are shown.

Each of the price matrices 215-218 has a single input and, in this embodiment, seven outputs. As shown in the case of price matrix 215, the input of each of the price matrices 215-218 is connected to a plurality of diodes. The other side of each of the diodes is connected to one of seven switches comprising a DIP switch S&sub1;. The outputs of the switches of each of the price matrices 215-218 are connected to the coin mechanism's microprocessor 281 via bus 287. The closing of various combinations of the switches S&sub1; connects the input of the price matrix to selected outputs, and conveys the price set by advance setting of the switches in binary form to the microprocessor 281 when the price matrix in question receives an input signal. Typically, the binary units correspond to five cents (5¢) and the values indicated to the microprocessor 281 by closing the various switches are as shown in connection with price matrix 215 in Fig. 5. For example, as shown in Fig. 5, to indicate 25¢, the first (5¢) and third (20¢) switches are closed. Thus, if these switches were closed in price matrix 215 when selection switch SSn was closed, the microprocessor 281 would be informed that a 25¢ selection had been made.

When the microprocessor 281 is informed of the price selection, it compares the price with the customer's credit in conventional fashion. If there is enough credit and all other conditions programmed into the microprocessor 281 have been satisfied, the microprocessor 281 produces a VEND signal which is transmitted by a buffer-driver 291, via wire 289 to the power switching means 249, which may have the same circuit as the power switching means 49 of Fig. 4. When actuated, power switching means 249 connects the hot side of the 117 volt power line to the contacts "a" of each of the relays K&sub1;-K&sub4;, which--when closed to the corresponding contact "b"--apply power to the selected motor. This both starts the motor and maintains the light-emitting diode in the corresponding optical coupler circuit "on" during the vend cycle. In the arrangement shown in Fig. 5, after one of the motors M&sub1;-Mn is started, a cam on the motor shaft maintains the associated one of the holding switches HS&sub1;-HSn closed until the motor has completed its cycle.

As long as one of the series connected holding switches HS&sub1;-HSn is connecting power to one of the motors M&sub1;-Mn, the connection from the hot side of the power line to the blocker line 320 of the vending machine 300 is open, and no power is applied to the blocker line. The opening of the holding switch from the motor contact by the motor cam at the conclusion of the motor's cycle completes the circuit connecting power to the blocker line 320, transmitting a signal to the microprocessor 281 via an isolation device 288, such as a relay or an opto-isolator circuit. This blocker signal informs the microprocessor 281 that the vend cycle is completed and the microprocessor 281 signals the power switching device 249 via the buffer-driver 291 to deactivate. This removes power from the contacts a of the relays K&sub1;-K&sub4; and consequently deactivates the previously activated optical coupler. The output of each of the optical coupler circuits includes an RC circuit such as the capacitor 243 and resistor 244 shown in connection with optical coupler circuits 245. In one embodiment, these RC circuits have a time constant of about 30 msec. The capacitor 243 of the RC circuit shown maintains the output of its optical coupler circuit 245 for the period of the time constant before terminating the activation of the associated one of the AND gates 235, which turns off the selected relay and turns off the signal which had been inhibiting the sequential distribution of pulses to the AND gates 235-238 by the counter-decoder 239. Once this has occurred, the price control apparatus 200 is ready for another cycle.


Anspruch[de]
  1. Leistungsschalteranordnung für einen Verkaufsautomat (20, 40, 200) mit:

       einer Vielzahl von Verbrauchern (26-28, 46-48, M&sub1;-Mn);

       einer entsprechenden Anzahl von Relais (22-24, 42-44, K&sub1;-K&sub4;) zum Auswählen, welcher der genannten Verbraucher (26-28, 46-48, M&sub1;-Mn) erregt werden soll, wobei die Schaltkontakte (a, b) der genannten Relais (22-24, 42-44, K&sub1;-K&sub4;) auf einer Eins-zu-Eins-Basis in Reihe mit den jeweiligen Verbrauchern (26-28, 46-48, M&sub1;-Mn) angeschlossen sind, um jeweils Verbraucherschaltungen festzulegen; und

       einer Steuereinrichtung (25, 45, 281), die zum Steuern des Schaltens der genannten Relais (22-24, 42-44, K&sub1;-K&sub4;) angeordnet ist,

    dadurch gekennzeichnet, daß:

       die genannte Anordnung ferner eine Leistungsschaltvorrichtung (29, 49, 249) aufweist, die von der genannten Steuereinrichtung (25, 45, 281) steuerbar ist und Kontakte aufweist, die mit den Schaltkontakten (a, b) eines jeden der genannten Relais (22-24, 42-44, K&sub1;-K&sub4;) in Reihe geschaltet sind;

       die genannte Steuereinrichtung (25, 45, 281) so angeordnet ist, daß sie das Schalten der genannten Relais (22-24, 42-44, K&sub1;-K&sub4;) nur dann bewirkt, wenn die Leistungsschaltvorrichtung (29, 49, 249) sich in einem deaktivierten Zustand befindet;

       jedes Relais (22-24, 42-44, K&sub1;-K&sub4;) so ausgelegt ist, daß den näherungsweisen, im stabilen Betriebszustand vorliegenden Strom handhabt, der von seinem entsprechenden Verbraucher (26-28, 46-48, M&sub1;-Mn) aufgenommen wird, aber so ausgelegt ist, daß es weniger als den Strom handhabt, der beim Schalten des Stromes zu diesem Verbraucher (26-28, 46-48, M&sub1;-Mn) hin aufgenommen würde.
  2. Leistungsschalteranordnung für einen Verkaufsautomaten nach Anspruch 1, worin die Steuereinrichtung (25, 45, 281) so eingerichtet ist, daß sie die Leistungsschaltvorrichtung (29, 49, 249) so steuert, daß Strom an die Schaltkontakte (a, b) eines jeden der Vielzahl von Relais (22-24, 42-44, K&sub1;-K&sub4;) angeschlossen wird, nachdem jedes der Relais angeschaltet wurde, um im Gebrauch einen zugeordneten Verbraucher (26-28, 46-48, M&sub1;-Mn) auszuwählen, und der Strom vom Anschluß mit den genannten Schaltkontakten getrennt wird, bevor irgendeines der Vielzahl von Relais abgeschaltet wird.
  3. Leistungsschalteranordnung für einen Verkaufsautomaten nach Anspruch 1 oder Anspruch 2, worin die genannten Verbraucherschaltungen parallel zueinander angeordnet sind, so daß sie eine belastende Schaltung zur Reihenschaltung mit der genannten Leistungsschaltvorrichtung (29, 49, 249) bilden.
  4. Leistungsschalteranordnung für einen Verkaufsautomaten nach Anspruch 3, worin die Verbraucher (26-28, 46-48, M&sub1;-Mn) induktive Verbraucher sind.
  5. Leistungsschalteranordnung für einen Verkaufsautomaten nach jedem genannten Anspruch, worin die genannte Vielzahl von Verbrauchern (26-28, 46-48, M&sub1;-Mn) eine Verkaufs-Ausgabeeinrichtung umfassen, um einen Verkaufs-Ausgabevorgang durchzuführen, wenn ihnen ausreichend Strom zugeführt wird.
  6. Leistungsschalteranordnung für einen Verkaufsautomaten nach Anspruch 5, wenn abhängig vom Anspruch 2, worin die genannte Steuereinrichtung (281) dazu eingerichtet ist, die Deaktivierung der genannten Leistungsschaltvorrichtung eine hinlänglich lange Zeit zu verzögern, gefolgt von der Deaktivierung eines oder mehrerer der genannten Relais (K&sub1;-K&sub4;), um es der Verkaufs-Ausgabeeinrichtung, an die Strom angelegt ist, zu gestatten, einen Verkaufsausgabevorgang durchzuführen.
  7. Leistungsschalteranordnung für einen Verkaufsautomaten nach Anspruch 5 oder Anspruch 6, wenn abhängig von Anspruch 2, worin die genannte Steuereinrichtung (281) dazu eingerichtet ist, die Leistungsschaltvorrichtung (249) zu deaktivieren, gefolgt von der Deaktivierung eines oder mehrerer der genannten Relais (K&sub1;-K&sub4;), und zwar nur nach der Bestätigung der Durchführung eines Verkaufs-Ausgabevorgangs.
  8. Leistungsschalteranordnung für einen Verkaufsautomaten nach jedem vorangehenden Anspruch, worin die genannte Steuereinrichtung (25, 45, 281) eine elektronische Schaltsteuereinrichtung aufweist, die eine Ausgabe zum Erzeugen elektrischer Steuersignale aufweist, die angeschlossen ist an die Spule (c) eines jeden der Vielzahl von Relais (22-24, 42-44, K&sub1;-K&sub4;), um den Schaltvorgang der Relais zu steuern.
  9. Leistungsschalteranordnung für einen Verkaufsautomaten nach jedem vorangehenden Anspruch, worin die Steuereinrichtung (45) eine progammierte Mikroprozessor-Steuerschaltung (81) aufweist.
  10. Leistungsschalteranordnung für einen Verkaufsautomaten nach jedem vorangehenden Anspruch, worin die Leistungsschaltvorrichtung (29, 49, 249) eine Einrichtung zum Unterdrücken von Einschaltstößen aufweist.
  11. Leistungsschalteranordnung für einen Verkaufsautomaten nach jedem vorangehenden Anspruch, worin die Leistungsschaltvorrichtung (49) eine Halbleiter-Schaltereinrichtung (74) aufweist.
  12. Leistungsschalteranordnung für einen Verkaufsautomaten nach Anspruch 11, worin die Leistungsschaltvorrichtung (49) einen Triac (74) aufweist.
  13. Leistungsschalteranordnung für einen Verkaufsautomaten nach jedem vorangehenden Anspruch, ferner mit

       einer Vielzahl von Wählleitungen (315-318);

       einer logischen Wähleinrichtung (240), die an die Vielzahl der Wählleitungen angeschlossen ist und mehrere Ausgänge aufweist, bei denen geeignete elektrische Steuersignale erzeugt werden, wobei jeder der Vielzahl von Ausgängen einer entsprechenden der Vielzahl von Wählleitungen entspricht;

       einer Vielzahl von Preis-Festsetzeinrichtungen (215-218), wobei jede der Vielzahl von Preis-Festsetzeinrichtungen an einen jeweiligen der Vielzahl von Ausgängen der logischen Wähleinrichtung angeschlossen ist und die genannte Preis-Festsetzeinrichtung an ihren Ausgängen Ausgangspreisdaten erzeugt;

       worin die genannte Steuereinrichtung (281) an die Ausgänge der Preis-Festsetzeinrichtung angeschlossen ist, um ein Verkaufssteuersignal zu erzeugen, wenn Verkaufsbedingungen genügt ist, wobei die genannte Steuereinrichtung in Abhängigkeit von einem Verkaufs-Steuersignal betreibbar ist, um die genannte Betätigung und Deaktivierung der genannten Relais zu bewirken.
  14. Leistungsschalteranordnung für einen Verkaufsautomaten nach Anspruch 13, worin die logische Auswähleinrihtung (240) ferner folgendes Merkmal aufweist:

       für jede Wählleitung (315-318) ist eine Zeitverzögerungsschaltung (245-248) so angeschlossen, daß sie ein Signal empfängt, das eine Aussage über den Aktivierungszustand der Wählleitung liefert, und ist angeschlossen, um die Aktivierung des Relais (K&sub1;-K&sub4;) zu steuern, das der genannten Wählleitung zugeordnet ist, wobei die Zeitverzögerungsschaltung die Deaktivierung des zugeordneten Relais für einen Zeitraum nach der Deaktivierung seiner zugeordneten Wählleitung verzögert.
  15. Leistungsschalteranordnung für einen Verkaufsautomaten nach jedem vorangehenden Anspruch und so eingerichtet, daß in der Verwendung, wenn die Leistungsschaltvorrichtung (29, 49, 249) Strom an die Schaltkontakte (a, b) der Relais (22-24, 42-44, K&sub1;-K&sub4;) anschließt, Strom nur durch einen Satz von Schaltkontakten hindurchströmt.
  16. Verfahren, um Verbraucher in einer Verkaufsmaschinen-Verbraucherschaltung in und außer Erregung zu versetzen, die eine Vielzahl von individuell wählbaren, induktiven Verbrauchern (26-28, 46-48, M&sub1;-Mn) sowie eine Vielzahl betätigbarer Relais (22-24, 42-44, K&sub1;-K&sub4;) aufweist, die in der Zahl der genannten Vielzahl von Verbrauchern (26-28, 46-48, M&sub1;-Mn) entsprechen, wobei das Verfahren die folgenden Schritte aufweist:
    • (a) Schalten eines jeden der genannten Relais (22-24, 42-44, K&sub1;-K&sub4;) in Reihe mit einem entsprechenden der genannten Verbraucher (26-28, 46-48, M&sub1;-Mn) auf Eins-zu-Eins-Basis; und
    • (b) Steuern der Betätigung und Deaktivierung eines oder mehrerer der genannten Relais (22-24, 42-44, K&sub1;-K&sub4;);
    dadurch gekennzeichnet, daß:

       die Verkaufsmaschinenschaltung ferner eine betätigbare Leistungsschaltvorrichtung (29, 49, 249) aufweist, die mit jedem der genannten Relais (22-24, 42-44, K&sub1;-K&sub4;) in Reihe geschaltet ist,

       die Relais und die Leistungsschaltvorrichtung (29, 49, 249) so miteinander verknüpft sind, daß die Relais (22-24, 42-44, K&sub1;-K&sub4;) nur dann betätigt und deaktiviert werden, wenn sich die genannte Leistungsschaltvorrichtung in einem deaktivierten Zustand befindet; und

       jedes Relais so ausgelegt ist, daß es den ungefähren, im stabilen Betriebszutand vorliegenden Strom handhabt, der von seinem entsprechenden Verbraucher aufgenommen wird, aber so ausgelegt ist, daß es weniger als den Strom handhabt, der beim Strom-Schaltvorgang zu diesem Verbraucher hin entnommen würde.
Anspruch[en]
  1. A vending machine power switching apparatus (20,40,200) comprising:

       a plurality of loads (26-28,46-48,M&sub1;-Mn);

       a corresponding plurality of relays (22-24,42-44,K&sub1;-K&sub4;) for selecting which of said loads (26-28,46-48,M&sub1;-Mn) is to be energized, the switching contacts (a,b) of said relays (22-24,42-44,K&sub1;-K&sub4;) being connected on a one-to-one basis in series with respective loads (26-28,46-48,M&sub1;-Mn) to define respective load circuits; and

       control means (25,45,281) arranged for controlling the switching of said relays (22-24,42-44,K&sub1;-K&sub4;);

       characterised in that:

       said apparatus further comprises a power switching means (29,49,249) controllable by said control means (25,45,281) and having contacts connected in series with the switching contacts (a,b) of each of said relays (22-24,42-44,K&sub1;-K&sub4;);

       said control means (25,45,281) is arranged for effecting said switching of said relays (22-24,42-44,K&sub1;-K&sub4;) only when the power switching means (29,49,249) is in a de-actuated condition; and

       each relay (22-24,42-44,K&sub1;-K&sub4;) is rated to handle the approximate steady state current drawn by its corresponding load (26-28,46-48,M&sub1;-Mn), but is rated to handle less than the current which would be drawn in switching current to that load (26-28,46-48,M&sub1;-Mn).
  2. A vending machine power switching apparatus as claimed in claim 1, wherein the control means (25,45,281) is arranged to control the power switching means (29,49,249) so that power is connected to the switching contacts (a,b) of each of the plurality of relays (22-24,42-44,K&sub1;-K&sub4;) after any one of the relays is switched on so as, in use, to select an associated load (26-28,46-48,M&sub1;-Mn), and power is disconnected from said switching contacts prior to any one of the plurality of relays being switched off.
  3. A vending machine power switching apparatus as claimed in claim 1 or claim 2, wherein said load circuits are connected in parallel with each other to define a loading circuit for connection in series with said power switching means (29,49,249).
  4. A vending machine power switching apparatus as claimed in claim 3, wherein the loads (26-28,46-48,M&sub1;-Mn) are inductive.
  5. A vending machine power switching apparatus as claimed in any preceding claim, wherein said plurality of loads (26-28,46-48,M&sub1;-Mn) comprise vend delivery means for performing a vend delivery operation when sufficient power is applied thereto.
  6. A vending machine power switching apparatus as claimed in claim 5, when dependent on claim 2, wherein said control means (281) is adapted for delaying the de-actuation of said power switching means for a sufficiently long time, following de-actuation of one or more of said relays (K&sub1;-K&sub4;) to permit the vend delivery means to which power is applied to perform a vend delivery operation.
  7. A vending machine power switching apparatus as claimed in claim 5 or claim 6, when dependent on claim 2, wherein said control means (281) is adapted to de-actuate said power switching means (249), following de-actuation of one or more of said relays (K&sub1;-K&sub4;), only after verifying the performance of a vend delivery operation.
  8. A vending machine power switching apparatus as claimed in any preceding claim, wherein said control means (25,45,281) comprises an electronic switching control means having an output for producing electrical control signals connected to the coil (c) of each of the plurality of relays (22-24,42-44,K&sub1;-K&sub4;) for controlling the switching of the relays.
  9. A vending machine power switching apparatus as claimed in any preceding claim, wherein the control means (45) comprises a programmed microprocessor control circuit (81).
  10. A vending machine power switching apparatus as claimed in any preceding claim, wherein the power switching means (29,49,249) comprises means for suppressing transients.
  11. A vending machine power switching apparatus as claimed in any preceding claim, wherein the power switching means (49) comprises a semiconductor switching means (74).
  12. A vending machine power switching apparatus as claimed in claim 11, wherein the power switching means (49) comprises a triac (74).
  13. A vending machine power switching apparatus as claimed in any preceding claim, further comprising:

       a plurality of selection lines (315-318);

       a selection logic means (240) connected to the plurality of selection lines and having a plurality of outputs at which appropriate electrical control signals are produced, each of the plurality of outputs corresponding to a respective one of the plurality of selection lines;

       a plurality of price setting means (215-218), each of the plurality of price setting means being connected to a respective one of the plurality of outputs of the selection logic means, said price setting means producing output price data on their outputs;

       wherein said control means (281) is connected to the outputs of the price setting means for producing a vend control signal when vending conditions are satisfied, said control means being operable in response to the vend control signal to effect said actuation and de-actuation of said relays.
  14. A vending machine power switching apparatus as claimed in claim 13, wherein the selection logic means (240) further comprises:

       for each selection line (315-318), a time delay circuit (245-248) connected to receive a signal indicative of the activation state of the selection line and connected to control the activation of the relay (K&sub1;-K&sub4;) associated with said selection line, whereby the time delay circuit delays the deactivation of the associated relay for a period after the deactivation of its associated selection line.
  15. A vending machine power switching apparatus as claimed in any preceding claim and arranged such that, in use, when the power switching means (29,49,249) connects power to the switching contacts (a,b) of the relays (22-24,42-44,K&sub1;-K&sub4;), power flows through only one set of switching contacts.
  16. A method for energization and de-energization of loads in a vending machine load circuit that comprises a plurality of individually selectable inductive loads (26-28,46-48,M&sub1;-Mn) and a plurality of actuatable relays (22-24,42-44,K&sub1;-K&sub4;) corresponding in number to said plurality of loads (26-28,46-48,M&sub1;-Mn); the method comprising the steps of:
    • (a) connecting in series each of said relays (22-24,42-44,K&sub1;-K&sub4;) with a corresponding one of said loads (26-28,46-48,M&sub1;-Mn) on a one-to-one basis; and
    • (b) controlling the actuating and de-actuating of one or more of said relays (22-24,42-44,K&sub1;-K&sub4;);
       characterised in that:

       the vending machine load circuit further comprises an actuable power switching means (29,49,249) connected in series with each of said relays (22-24,42-44,K&sub1;-K&sub4;);

       the relays and the power switching means (29,49,249) are interlocked such that the relays (22-24,42-44,K&sub1;-K&sub4;) are actuated and de-actuated only when said power switching means is in a de-actuated state; and

       each relay is rated to handle the approximate steady state current drawn by its corresponding load, but is rated to handle less than the current which would be drawn in switching current to that load.
Anspruch[fr]
  1. Dispositif de commutation marche-arrêt pour distributeur automatique (20, 40, 200) comprenant :

       une pluralité de charges (26-28, 46-48, M&sub1;-Mn) ;

       une pluralité correspondante de relais (22-24, 42-44, K&sub1;-K&sub4;) pour sélectionner laquelle desdites charges (26-28, 46-48, M&sub1;-Mn) peut être alimentée, les contacts de commutation (a, b) desdits relais (22-24, 42-44, K&sub1;-K&sub4;) étant connectés en série selon une bijection avec des charges respectives (26-28, 46-48, M&sub1;-Mn) afin de définir des circuits de charge respectifs ; et

       un moyen de commande (25, 45, 281) agencé pour commander la commutation desdits relais (22-24, 42-44, K&sub1;-K&sub4;) ;

       caractérisé en ce que :

       ledit dispositif comprend en outre un moyen de commutation marche-arrêt (29, 49, 249) qui peut être commandé par ledit moyen de commande (25, 45, 281) et qui comporte des contacts connectés en série avec les contacts de commutation (a, b) de chacun desdits relais (22-24, 42-44, K&sub1;-K&sub4;) ;

       ledit moyen de commande (25, 45, 281) est agencé pour réaliser ladite commutation desdits relais (22-24, 42-44, K&sub1;-K&sub4;) seulement lorsque le moyen de commutation marche-arrêt (29, 49, 249) est dans une condition désactivée ; et

       chaque relais (22-24, 42-44, K&sub1;-K&sub4;) est conçu nominalement de manière à supporter le courant de régime permanent approché demandé par sa charge correspondante (26-28, 46-48, M&sub1;-Mn) mais est conçu nominalement de manière à supporter moins que le courant qui est demandé en tant que courant de commutation de cette charge (26-28, 46-48, M&sub1;-Mn).
  2. Dispositif de commutation marche-arrêt pour distributeur automatique selon la revendication 1, dans lequel le moyen de commande (25, 45, 281) est agencé pour commander le moyen de commutation marche-arrêt (29, 49, 249) de telle sorte que l'énergie soit connectée aux contacts de commutation (a, b) de chacun de la pluralité de relais (22-24, 42-44, K&sub1;-K&sub4;) après que l'un quelconque des relais est commuté en fonctionnement de manière à sélectionner une charge associée (26-28, 46-48, M&sub1;-Mn), et que l'énergie soit déconnectée desdits contacts de commutation avant que l'un quelconque de la pluralité de relais ne soit déconnecté.
  3. Dispositif de commutation marche-arrêt pour distributeur automatique selon la revendication 1 ou 2, dans lequel lesdits circuits de charge sont connectés en parallèle les uns aux autres afin de définir un circuit de chargement en vue d'une connexion en série avec ledit moyen de commutation marche-arrêt (29, 49, 249).
  4. Dispositif de commutation marche-arrêt pour distributeur automatique selon la revendication 3, dans lequel les charges (26-28, 46-48, M&sub1;-Mn) sont inductives.
  5. Dispositif de commutation marche-arrêt pour distributeur automatique selon l'une quelconque des revendications précédentes, dans lequel ladite pluralité de charges (26-28, 46-48, M&sub1;-Mn) comprend un moyen de distribution automatique pour réaliser une opération de distribution automatique lorsque suffisamment d'énergie lui est appliquée.
  6. Dispositif de commutation marche-arrêt pour distributeur automatique selon la revendication 5 lorsqu'elle dépend de la revendication 2, dans lequel ledit moyen de commande (281) est conçu pour retarder le désactionnement dudit moyen de commutation marche-arrêt pendant un temps suffisamment long, suite au désactionnement d'un ou de plusieurs desdits relais (K&sub1;-K&sub4;) afin de permettre au moyen de distribution automatique auquel l'énergie est appliquée de réaliser une opération de distribution automatique.
  7. Dispositif de commutation marche-arrêt pour distributeur automatique selon la revendication 5 ou 6 lorsqu'elle dépend de la revendication 2, dans lequel ledit moyen de commande (281) est conçu pour désactionner ledit moyen de commutation marche-arrêt (249) suite au désactionnement d'un ou de plusieurs desdits relais (K&sub1;-K&sub4;) seulement après vérification de l'exécution d'une opération de distribution automatique.
  8. Dispositif de commutation marche-arrêt pour distributeur automatique selon l'une quelconque des revendications précédentes, dans lequel ledit moyen de commande (25, 45, 281) comprend un moyen de commande de commutation électronique comprenant une sortie pour produire des signaux de commande électriques connectés à la bobine (c) de chacun de la pluralité de relais (22-24, 42-44, K&sub1;-K&sub4;) pour commander la commutation des relais.
  9. Dispositif de commutation marche-arrêt pour distributeur automatique selon l'une quelconque des revendications précédentes, dans lequel le moyen de commande (45) comprend un circuit de commande à microprocesseur programmé (81).
  10. Dispositif de commutation marche-arrêt pour distributeur automatique selon l'une quelconque des revendications précédentes, dans lequel le moyen de commutation marche-arrêt (29, 49, 249) comprend un moyen pour supprimer les phénomènes transitoires.
  11. Dispositif de commutation marche-arrêt pour distributeur automatique selon l'une quelconque des revendications précédentes, dans lequel le moyen de commutation marche-arrêt (49) comprend un moyen de commutation à semiconducteur (74).
  12. Dispositif de commutation marche-arrêt pour distributeur automatique selon la revendication 11, dans lequel le moyen de commutation marche-arrêt (49) comprend un triac (74).
  13. Dispositif de commutation marche-arrêt pour distributeur automatique selon l'une quelconque des revendications précédentes, comprenant en outre :

       une pluralité de lignes de sélection (315-318) ;

       un moyen logique de sélection (240) connecté à la pluralité de lignes de sélection et comportant une pluralité de sorties au niveau desquelles des signaux de commande électriques appropriés sont produits, chacune de la pluralité de sorties correspondant à l'une respective de la pluralité de lignes de sélection ;

       une pluralité de moyens d'établissement de prix (215-218), chacun de la pluralité de moyens d'établissement de prix étant connecté à l'une respective de la pluralité de sorties du moyen logique de sélection, lesdits moyens d'établissement de prix produisant des données de prix de sortie sur leurs sorties ;

       dans lequel ledit moyen de commande (281) est connecté aux sorties des moyens d'établissement de prix pour produire un signal de commande de distribution lorsque des conditions de vente sont satisfaites, ledit moyen de commande pouvant être actionné en réponse au signal de commande de distribution afin de réaliser ledit actionnement et ledit désactionnement desdits relais.
  14. Dispositif de commutation marche-arrêt pour distributeur automatique selon la revendication 13, dans lequel le moyen logique de sélection (240) comprend en outre :

       pour chaque ligne de sélection (315-318), un circuit de retard temporel (245-248) connecté pour recevoir un signal indicatif de l'état d'activation de la ligne de sélection et connecté pour commander l'activation du relais (K&sub1;-K&sub4;) associé à ladite ligne de sélection d'où il résulte que le circuit de retard temporel retarde la désactivation du relais associé pendant une période qui se situe après la désactivation de sa ligne de sélection associée.
  15. Dispositif de commutation marche-arrêt pour distributeur automatique selon l'une quelconque des revendications précédentes, agencé de telle sorte que, en fonctionnement, lorsque le moyen de commutation marche-arrêt (29, 49, 249) connecte de l'énergie aux contacts de commutation (a, b) des relais (22-24, 42-44, K&sub1;-K&sub4;), de l'énergie circule au travers de seulement un jeu de contacts de commutation.
  16. Procédé d'alimentation et de désalimentation de charges situées dans un circuit de charge de distributeur automatique qui comprend une pluralité de charges inductives pouvant être sélectionnées individuellement (26-28, 46-48, M&sub1;-Mn) et une pluralité de relais actionnables (22-24, 42-44, K&sub1;-K&sub4;) correspondant en nombre à ladite pluralité de charges (26-28, 46-48, M&sub1;-Mn) ; le procédé comprenant les étapes de :
    • (a) connexion en série de chacun desdits relais (22-24, 42-44, K&sub1;-K&sub4;) à l'une correspondante desdites charges (26-28, 46-48, M&sub1;-Mn) selon une relation bijective ; et
    • (b) commande de l'actionnement et du désactionnement de l'un ou de plusieurs desdits relais (22-24, 42-44, K&sub1;-K&sub4;) ;
       caractérisé en ce que :

       le circuit de charge de distributeur automatique comprend en outre un moyen de commutation marche-arrêt actionnable (29, 49, 249) connecté en série à chacun desdits relais (22-24, 42-44, K&sub1;-K&sub4;) ;

       les relais et les moyens de commutation marche-arrêt (29, 49, 249) sont rendus interdépendants de telle sorte que les relais (22-24, 42-44, K&sub1;-K&sub4;) soient actionnés et désactionnés seulement lorsque ledit moyen de commutation marche-arrêt est dans un état désactionné ; et

       chaque relais est conçu nominalement pour supporter le courant de régime permanent approché demandé par sa charge correspondante, mais est conçu nominalement pour supporter moins que le courant qui est demandé en tant que courant de commutation de cette charge.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com