PatentDe  


Dokumentenidentifikation EP0455660 16.09.1993
EP-Veröffentlichungsnummer 0455660
Titel SYSTEM UND VERFAHREN FÜR DIE REGELUNG DER TEMPERATUR DES HEIZDAMPFES BEI ZIRKULIERENDEN WIRBELBETTEN.
Anmelder A. Ahlstrom Corp., Noormarkku, FI
Erfinder GOUNDER, Ponnusami, K., San Diego, CA 92126, US;
KAURANEN, Timo, M., 78 210 Varkaus, SF;
RASKIN, Neil, R., Carlsbad, CA 92009, US
Vertreter Eitle, W., Dipl.-Ing.; Hoffmann, K., Dipl.-Ing. Dr.rer.nat.; Lehn, W., Dipl.-Ing.; Füchsle, K., Dipl.-Ing.; Hansen, B., Dipl.-Chem. Dr.rer.nat.; Brauns, H., Dipl.-Chem. Dr.rer.nat.; Görg, K., Dipl.-Ing.; Kohlmann, K., Dipl.-Ing., 81925 München; Ritter und Edler von Fischern, B., Dipl.-Ing., 8000 München; Kolb, H., Dipl.-Chem. Dr.rer.nat., Pat.-Anwälte, 81925 München; Nette, A., Rechtsanw., 8000 München
DE-Aktenzeichen 69002758
Vertragsstaaten AT, CH, DE, ES, FR, GB, IT, LI, NL, SE
Sprache des Dokument En
EP-Anmeldetag 23.01.1990
EP-Aktenzeichen 909018186
WO-Anmeldetag 23.01.1990
PCT-Aktenzeichen FI9000026
WO-Veröffentlichungsnummer 9008917
WO-Veröffentlichungsdatum 09.08.1990
EP-Offenlegungsdatum 13.11.1991
EP date of grant 11.08.1993
Veröffentlichungstag im Patentblatt 16.09.1993
IPC-Hauptklasse F22D 5/00
IPC-Nebenklasse F22B 31/00   

Beschreibung[en]

The present invention relates to a power plant including a two-stage steam turbine and a steam generator plant having a fluidized bed combustion system that includes a fluidized bed combustor, at least one separator, and a gas flue comprising a reheater and superheater.

The present invention relates also to a method of controlling reheater temperatures in a steam generator having a fluidized bed combustion system that includes a fluidized bed combustor, at least one hot separator, and a reheater in a gas flue.

Several methods are presently known for controlling reheat steam temperatures.

One method of reheater temperature control is the use of a system for gas bypass over the reheater. Two separate flue gas passes are provided in the convection pass of the boiler (one for superheater and one for reheater), with means such as dampers downstream of each to vary the amount of flue gas flow over each section. The outlet steam temperature of the reheater can be controlled by varying the amount of flue gas flow between the convection pass sections. The main disadvantage of this system is that the dampers are located in a higher temperature (260-371°C) dust laden flue gas path making them susceptible to erosion and mechanical failure. Also, the steam temperature control range is limited with this type of system.

Another method of reheater outlet steam temperature control is by the use of external heat exchangers. With this approach, a portion of the recirculated solids within the circulating fluidized bed system is diverted to an externally mounted fluidized bed heat exchanger, i.e. external heater exchanger (EHE), in which a section of or complete reheater is located. By varying the amount of solids flow to the EHE, the quantity of heat transfer to the reheater and the reheater outlet steam temperature is controlled. The main disadvantages of this system are that the solids flow control valve is a high maintenance item and the reheat tube surface within the EHE is subject to erosion. This effects the availability of the unit.

It has also been suggested in US 4,748,940 to arrange first reheater heating surfaces in a flue gas passage of a circulating fluidized bed combustor and to connect to this first reheater a second reheater disposed in an external heat exchanger (EHE). An adjustable by-pass line is connected in parallell to the reheater heating surfaces. The outlet temperature of the reheater is controlled by controlling the solids flow in the external heat exchanger and by controlling the steam slow in the two reheaters by means of the by-pass line.

A further different arrangement of first and final stages of reheaters has been suggested in EP-A- 0 274 637. EP-A-0 274 637 shows a power plant including a two-stage turbine and a steam generator plant having a fluidized bed combustor, particle separators, first and second or final stages of reheaters and a superheater.

The first and final stages of reheaters are according to EP-A- 0 274 637 sequentially disposed. Two stages of reheaters are disposed in separate external heat exchangers for cooling discharged ash. The final stage of reheater is disposed in a gas flue connected to the gas outlet of the fluidized bed combustor. The quantity of heat transferred to the first stages of reheaters and the reheater outlet temperature is controlled by varying the amount of solids flow to the external heat exchangers. This arrangement is not favored due to solids flow control valve maintenance problems as already mentioned earlier.

A further approach to the control of the reheater outlet steam temperature is by the use of spray desuperheater. This approach utilizes spraying water for desuperheating and thereby controlling reheater outlet steam temperature. This is a simple approach, but not gererally accepted because it degrades the cycle efficiency.

Still another approach is by the use of excess air. Excess air supplied to the boiler can be used for reheat steam temperature control. This approach, however, is not favored because of its negative affect on boiler efficiency.

A still further approach is by the use of gas recirculation. By this approach, large quantities of flue gases are recirculated to achieve the rated reheater outlet steam temperature. This approach, however, requires the use of a gas recirculation fan for handling a hot dust laden gas and requires additional power consumption, which makes this approach disadvantageous.

Accordingly, the present invention is directed to an improved method and system for reheat steam temperature control.

SUMMARY AND OBJECTS OF THE INVENTION

It is the primary object of the present invention to provide an improved system and method for controlling the reheater (outlet) steam temperature in circulating fluidized bed boilers.

In accordance with a primary aspect of the present invention, a steam generator is provided having a fluidized bed combustion system that includes a fluidized bed combustor, at least one separator, and a reheater in a flue gas pass and is characterized by

  • a first stage of reheater and a second or final stage of reheater sequentially disposed in a common gas flue,
  • means for dividing cold steam from a turbine into selective first and second portions and directing said first portion through the first stage of reheater, and
  • means for recombining the first and second portions and directing same through the second stage of reheater. Preferably the steam generator includes means for controlling the temperature of the second or final stage of the reheater and comprises means for by-passing a selected portion of cold steam around said first stage reheater directly to said second or final stage reheater.

A method according to the present invention is characterized by

  • dividing the reheater into a first and second or final stage reheater and sequentially disposing the first and second stages of the reheater in a common gas flue,
  • dividing cold steam returning to the reheater into selective first and second portions and directing the first portion through the first stage of reheater and
  • recombining the first portion and the second portion and directing the same through the second or final stage of reheater.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects and advantages of the present invention will become apparent from the following description when read in conjuntion with the accompanying drawings wherein:

  • Fig. 1 is a schematic diagram illustrating a typical circulating fluidized bed boiler system embodying the present invention;
  • Fig. 2 is a schematic diagram illustrating another embodiment of the present invention; and
  • Fig. 3 is a schematic diagram illustrating an arrangement of two typical boilers connected to a single turbine.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Referring to Fig. 1, a power plant embodying a typical circulating fluidized bed boiler with superheater and reheater is illustrated with the system incorporating a preferred embodiment of the present invention. The boiler system, designated generally by the numeral 10, comprises a fluid bed combustor 12 having a combustion chamber 14 into which combustible material, non-combustible material, possibly additives or recirculated material, primary air and secondary air are fed. In the combustion chamber, the bed is maintained in fluidized state by having the correct inventory of bed material and flow of air. The combustion chamber is provided with a bottom 16 having a grid-like construction through which fluidizing air is introduced. The combustion chamber walls are preferably constructed with membrane type tube walls, with or without a refractory covering.

First and second stages of superheaters 18 and 20 are located within the combustion chamber. The combustion chamber materials are carried from the combustion chamber by way of flues 22 to a hot separator 24 wherein the solids are separated from the flue gases for return by way of particle recycling system 26, 28 and 30 to the bottom of the combustion chamber for recirculation. These may be passed through fluidized bed coolers or the like prior to return to the combustion chamber.

The details of circulation circuit for the feed water and the primary superheaters are not illustrated as they do not form an essential part of the present invention.

Flue gases from the hot separator pass along by way of flue 32 to a convection pass 34. A single stage superheater 38 is placed or located in the convection pass with reheaters 40 and 42 located downstream of the superheater 38 and upstream of an economizer surface 44. The reheater is illustrated as two stages with 42 being a first stage and 40 being a second or final stage. The reheater may have more than two stages, with the final stage just down stream from superheater 38 such as 40 is located. These are arranged as counter flow heat exchangers with the gas flow direction down and the reheat steam flow direction up. The placement of the superheater 38 within this pass helps keep the temperature of the gas flow to reheater 40 below the critical temperature. This arrangement together with the bypass feature as will be explained enables a unique and effective control of the temperatures within the reheater sections.

When the steam temperature leaving the particular section (in a counter flow heat exchanger arrangement) is close to the gas temperature entering that section, reducing the steam flow to that section will result in a considerable reduction in heat absorption. As the steam temperature approaches the gas temperature, the effective thermal heat available for heat transfer is reduced. This provides the basis for the principle used for the reheat temperature control system in accordance with the present invention.

The generating system as illustrated in Fig. 1 is supplying steam to a two-stage turbine. In the illustrated arrangement, steam from superheater 38 flows via an outlet header 46 and supply line 48 by way of valve 50 to the inlet side of the high pressure turbine (HPT) 52. Cold steam leaving the turbine 52 returns by way of return line 53 to the reheaters 42 and 40. At the reheater 42, a bypass line 54 joins the return line 53 at 55 and bypasses a portion of the cold steam with the remaining portion of the steam going by way of differential control valve 56 to the inlet header 58 of the first stage reheater 42.

The steam passing through the reheater 42 exits by way of a header 60 and rejoins or combines with the bypass portion of the cold steam at 62. A flow control valve 64 is provided in the bypass line 54 for control of the flow between the inlet manifold of the first stage reheater 42 and the bypass line. The recombined steam at 62 flows into inlet header 66 of the second or final stage reheater 40 where it is further heated and flows by way of outlet header 68, supply line 70 and valve 72 to the second stage or lower stage of the turbine (IPT) 74. The selective proportioning of the cold steam between the bypass line 54 and the first stage of the reheater 42 provides an effective and efficient means of controlling the temperature in the reheater stages.

The location of the first stage reheater 42 along the flue gas path is so chosen that bypassing the required portion of the cold reheat steam directly to the second stage reheater 40 cannot increase the steam temperature leaving the first stage reheater to more than the allowed metal temperature for the reheater tube material. A limit will be set to protect the first stage reheater materials from exceeding their allowable metal temperature. The value of 566°C is a typical limit and may vary depending upon the actual design conditions. The purpose of the system is such that the maximum tube outside surface temperature will not exceed the allowable metal temperature limit for the material selected.

The arrangement of the control valves 56 and 64 is so chosen that controllability is achieved throughout the steam temperature control range and permits all reheater surfaces to be placed in the convection pass of the boiler, eliminating the need for in furnace reheater surfaces. This also makes feasible a simplified start-up scheme when more than one boiler for example is connected to a common turbine system. In this arrangement, the set of valves provide a means for reheat steam flow balancing under various operating conditions.

In the circulating fluidized bed boiler, the combustion takes place in a fluidized bed of inert material. The fluidized bed material leaving the combustor is returned by means of a hot collector (such as a hot cyclone) through suitable sealing device. In operation, air and fuel are delivered to the combustion chamber 14 wherein the bed material is maintained in a fluidized state by having the correct flow of air and bed material. The fluidizing air is introduced through a grid-like grating or construction at 16 in the bottom of the chamber. The flue gas and combustion products, along with the carry over solids, first convey heat to the superheaters 18 and 20 and are conveyed by way of flue 22 into the hot separator 24 wherein the solids are separated and returned to the combustion chamber through the recycling arrangement 26, 28 and 30.

The hot flue gases are then conveyed from the hot separator(s) by way of flue 32 to the convection pass section 34 wherein the final stage superheater 38 and the reheater stages 40 and 42 are located.

Three superheater stages are disposed in the described system, these being 18 and 20 and 38, with 38 being in the flue gas convection pass. Desuperheaters may be positioned between the superheater stages for steam temperature control if necessary. The two stages 40 and 42 of the reheater are positioned in the convection pass 34 and in conjunction with the control valves and interconnecting piping so that precise control of the reheater outlet steam temperature is possible. The piping system is such that cold steam reentering this system at pipe 53 is selectively divided into two streams at the juncture 55 thereof with the bypass line 54. One stream passes to the first stage reheater and is distributed through inlet header 58. The other steam goes to the second stage reheater by way of valve 64 and inlet header 66. The selective division of the stream will be in proportion to the temperature control necessary, which is accomplished by the valves 56 and 64.

The hot steam leaving the first stage reheater from the outlet header 60 is mixed with the cold steam via the bypass line 54 after or down stream of the flow control valve 64 and the blended stream enters the second stage reheater by way of the inlet header 66. The flow through the first stage reheater is controlled by proper manipulation of the two control valves 56 and 64, which in turn control the steam temperature leaving the second stage reheater 40. Hot steam from the second or final stage reheater is directed back to the turbine by way of the hot reheat steam line 70.

A differential pressure responsive control unit 80 controls the setting of valve 56 for controlling the pressure differential available for the control valve 64. The control unit 80 is responsive to the pressure differential between the cold steam return line 53 and the outlet pressure at juncture 62 of the outlet of reheater 42 and the bypass line 54. This is indicated by phantom line 84 in Fig. 1. The control unit 80 is set to control the valve 56 as a function of load on the boiler.

The valve 64 in the bypass line 54 is controlled by temperature responsive control unit 82 which responds to the temperature of the outlet steam from the second or final stage reheater 40. This is indicated by phantom line 86 in Fig. 1. In the illustrated embodiment, as an example the temperature of reheater 40 is maintained within the limit of about 538°C, plus or minus 10 °C. As the temperature of the steam leaving reheater 40 begins to increase above 543°C, the valve 64 is opened to bypass additional cold steam directly to reheater 40. As the temperature begins to fall below 532°C, the valve 64 is closed to reduce the flow of bypass cold steam to the second stage 40.

In Fig. 2, a system identical to Fig. 1, but with superheater 38 located between the reheaters 40 and 42, is disclosed. A single staged superheater 38 is placed in the convection pass, with second stage reheater 40 located upstreams and first stage reheater 42 downstream of the superheater. This is in contrast to what was shown in Fig. 1. An economizer 44 is located downstream of the superheater 38. The placement of the second stage reheater 40 upstream of the superheater 38 allows it to pick up more heat at lower loads. This gives it the potential to extend its steam temperature control range, while having little if any effect on the superheater control range. This potential extension of the reheat steam temperature control range will enhance the coupling of two units to one turbine easier as to temperature matching capabilities.

The present arrangement, with second stage reheater 40 upstream of superheater 38, gives even greater control over the temperature in the reheater stages. As the gas now passes reheater 40 before it passes superheater 38, it may not be below the critical temperature for reheater 40 up to some load of the boiler. Thus, with superheater 38 in the pass behind the reheater 40, the gas temperature will be below the critical temperature for reheater 40 only until after about 25% to 30% load is reached. At this time cold steam is available for control of the temperature in accordance with this invention. If a higher load point is required, the tube metal materials could be upgraded to allow a maximum load of about 35% to 40%. This point of not requiring flow through the reheater until the unit is at 25% to about 40% load is another advantage of this invention.

Referring to Fig. 3, a system identical to Fig. 1, but with a duplicate boiler, is disclosed. In this system, the components of the first and the second boiler arrangements are identified by the same reference numerals as in Fig. 1, with the second boiler arrangement being identified with the same numbers primed. Therefore, in this arrangement, a boiler turbine system is disclosed wherein two boilers are supplying steam to a single turbine. One essential feature required for this type of system is that means be provided for controlling the amount of reheat steam flow to each boiler, so that the steam temperature at reheat outlet is within limits at all possible operating conditions. In the illustrated system, duplicate controls and piping are provided for the two boilers.

The control valves 56 and 64 for the reheat steam temperature control can be used for flow balancing and maintaining the reheater outlet temperature within limits under both normal and abnormal operating conditions. In this arrangement, pressure reducing valves 80 and 82, along with desuperheaters 76 and 78, provide for flexibility during cold start-up, hot start-up and also when starting the second unit while the first one is on line. This simple system eliminates the need for a sophisticated steam blending system. It provides a simple and effective system and method for reheat outlet steam temperature control under varying load conditions.

In operation, from a cold start, combustion is initiated in the combustion chamber 14 with the introduction of fuel and combustion air. As heat is generated as a result of the combustion, the hot gases of combustion move upward in the combustion chamber transferring heat to the water in the combustion chamber walls and to superheaters 18 and 20. The hot gas, combustion products, and solids pass from the combustion chamber along flue 22 into the hot separator 24 where the solids are separated for return to the combustion chamber. The hot flue gas passes along flue 32 into the convection pass 34 where the heat is transferred in sequence to the superheater 38, the second or final stage reheater 40, and the first stage reheater 42. The flow of hot gas through the system begins before the flow of cold steam. The boiler is fired and fuel burns for a period of time providing hot gas before steam is generated and starts the turbine. Cold reheat steam does not start flowing until after the turbine starts.

As the hot gas give up their heat to the water and steam in the water walls, in superheaters and reheaters, the temperature drops so that it is less at each successive stage. It should be noted that the gas temperature leaving the combustion chamber outlet at full load will be in the range of 843 to 927°C. The greater the temperature differential between the gas and the water, the greater the heat transfer will be, and the cooler the gas will be as it passes from the respective heater.

Therefore, as the gas passes superheater 38, it will be below the critical temperature for reheater 40 up to some load of the boiler. Thus, with superheater 38 in the gas pass ahead of the reheater 40, the gas temperature will be below the critical temperature for reheater 40 until after about 40% to 50% load is reached. At this time cold steam is available for control of the temperature in accordance with this invention. This point of not requiring flow through the reheater until the unit is at 50% load is another advantage of this invention. Most standard systems require flow through the reheater during the earlier stages of start-up (hot or cold), to protect some from burn out. Thus, an expensive by-pass system must be utilized. However, with this system's physical layout, a bypass is not required and system start-up periods can be shortened.


Anspruch[de]
  1. Kraftwerk bestehend aus einer zweistufigen Dampfturbine und einer Dampferzeugungsanlage mit einer Wirbelschicht-Verbrennungssystem, das eine Wirbelschichtfeuerung (12), mindestens einen Abscheider (24), mindestens eine erste und eine zweite oder Endstufe des Zwischenüberhitzers, die hintereinander angeordnet sind, und einen Überhitzer (38) aufweist, gekennzeichnet durch
    • Anordnung der ersten Stufe des Zwischenüberhitzers (42) und der zweiten oder Endstufe des Zwischenüberhitzers (40) hintereinander in einem gemeinsamen Gaskanal (34),
    • Organe (54, 64) zur Aufteilung des Kaltdampfes von einer Turbine (52) in einen selektiven ersten und zweiten Teil und Leitung besagten ersten Teils durch die erste Stufe des Zwischenüberhitzers (42), und
    • Organe (62) zur Wiedervereinigung des ersten und zweiten Teils und Leitung derselben durch die zweite Stufe des Zwischenüberhitzers (40).
  2. Kraftwerk gemäß Anspruch 1, dadurch gekennzeichnet, daß der Überhitzer (38) stromabwärts von der genannten zweiten Stufe des Zwischenüberhitzers (40) angeordnet ist.
  3. Kraftwerk gemäß Anspruch 1, dadurch gekennzeichnet, daß die Organe (54, 64) zur Aufteilung des Kaltdampfes eine Bypaßleitung (54) mit mindestens einem Stromregelventil (64) zur Umleitung eines selektierten Teils des Kaltdampfes aus einer Turbine an der ersten Stufe des Zwischenüberhitzers (42) vorbei direkt in die zweite oder Endstufe des Zwischenüberhitzers (40) aufweisen.
  4. Kraftwerk gemäß Anspruch 1, gekennzeichnet durch mindestens ein Druckregelventil (56) am Eintritt zur ersten Stufe des Zwischenüberhitzers (42), welches Ventil auf die Differenz zwischen Rücklaufdampfdruck und Austrittsdampfdruck der ersten Stufe des Zwischenüberhitzers anspricht.
  5. Kraftwerk gemäß Anspruch 1, dadurch gekennzeichnet, daß die Organe (64) zur Aufteilung des Kaltdampfes auf die Austrittstemperatur der zweiten Stufe des Zwischenüberhitzers (40) ansprechen.
  6. Verfahren zur Regelung von Zwischenüberhitzer-Temperaturen in einem Dampferzeuger mit einem Wirbelschicht-Verbrennungssystem, das eine Wirbelschichtfeuerung, mindestens einen Heißabscheider und einen Zwischenüberhitzer aufweist, dadurch gekennzeichnet, daß
    • der Zwischenüberhitzer in eine erste und eine zweite oder Endstufe des Zwischenüberhitzers aufgeteilt ist und die erste und zweite Stufe des Zwischenüberhitzers in einem gemeinsamen Gaskanal hintereinander angeordnet sind,
    • der zum Zwischenüberhitzer zurückfließende Kaltdampf in einen selektiven ersten und zweiten Teil aufgeteilt wird und der erste Teil durch die erste Stufe des Zwischenüberhitzers geleitet wird, und
    • der erste Teil und der zweite Teil wiedervereinigt und durch die zweite oder Endstufe des Zwischenüberhitzers geleitet werden.
  7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß die Temperatur der zweiten Stufe des Zwischenüberhitzers auf etwa 538 °C, plus minus 10 °C gehalten wird.
  8. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß der zweite Teil des geteilten Kaltdampfes durch eine Bypaßleitung geleitet wird, die sich zwischen einem Eintritt und einem Austritt der ersten Stufe des Zwischenüberhitzers erstreckt.
  9. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß die Dampftemperatur der zweiten oder Endstufe des Zwischenüberhitzers zur Aufteilung des Kaltdampfes in einen ersten und einen zweiten Teil geregelt wird.
  10. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß die Druckdifferenz zwischen dem Rücklaufdampfdruck und dem Austrittsdampfdruck der ersten Stufe des Zwischenüberhitzers zur Aufteilung des Kaltdampfes in einen ersten und einen zweiten Teil geregelt wird.
Anspruch[en]
  1. A power plant including a two-stage steam turbine and a steam generator plant having a fluidized bed combustion system that includes a fluidized bed combustor (12), at least one separator (24), at least a first and a second or final stage of reheater sequentially disposed and a superheater (38),

    characterized by
    • the first stage of reheater (42) and the second or final stage of reheater (40) being sequentially disposed in a common gas flue (34),
    • means (54,64) for dividing cold steam from a turbine (52) into selective first and second portions and directing said first portion through the first stage of reheater (42), and
    • means (62) for recombining the first and second portions and directing same through the second stage of reheater (40).
  2. A power plant according to claim 1,

    characterized by

    - the superheater (38) being arranged downstream of said second stage of reheater (40).
  3. A power plant according to claim 1,

    characterized by

    the means (54,64) for dividing the cold steam comprising a by-pass line (54) with at least one flow control valve (64), for by-passing a selected portion of cold steam from a turbine around the first stage of reheater (42) directly to the second or final stage of reheater (40).
  4. A power plant according to claim 1,

    characterized by

    at least one pressure control valve (56) at the inlet to the first stage of reheater (42), the valve being responsive to the difference between the return steam pressure and the outlet steam pressure of the first stage of reheater.
  5. A power plant according to claim 1,

    characterized by

    the means (64) for dividing the cold steam being responsive to outlet temperature of the second stage of reheater (40).
  6. A method of controlling reheater temperatures in a steam generator having a fluidized bed combustion system that includes a fluidized bed combustor, at least one hot separator, and a reheater,

    characterized by
    • dividing the reheater into a first and second or final stage reheater and sequentially disposing the first and second stages of the reheater in a common gas flue,
    • dividing cold steam returning to the reheater into selective first and second portions and directing the first portion through the first stage of reheater and
    • recombining the first portion and the second portion and directing the same through the second or final stage of reheater.
  7. A method according to claim 6,

    characterized by

    maintaining the temperature of the second stage of reheater at about 538°C, plus or minus 10 °C.
  8. A method according to claim 6,

    characterized by

    - the second portion of the divided cold steam being directed through a by-pass !ine extending between an inlet and an outlet of the first stage of the reheater.
  9. A method according to claim 6,

    characterized by

    - controlling the steam temperature of the second or final stage of reheater, for dividing the cold steam temperature-responsively into a first and a second portion.
  10. A method according to claim 6,

    characterized by

    - controlling the pressure difference between the return steam pressure and the outlet steam pressure of the first stage reheater, for dividing the cold steam into a first and a second portion.
Anspruch[fr]
  1. Centrale électrique incluant une turbine à vapeur à deux étages et une installation de production de vapeur ayant un système de combustion à lit fluidisé gui inclut un brûleur à lit fluidisé (12), au moins un séparateur (24), au moins un premier étage et un second étage ou étage final d'un réchauffeur disposés à la suite et un surchauffeur (38),

    caractérisé par
    • le premier étage du réchauffeur (42) et le second étage ou étage final du réchauffeur (40) disposés à la suite dans une conduite d'évacuation de gaz commune (34),
    • des moyens (54, 56) pour diviser la vapeur froide issue d'une turbine (52) en une première et une seconde partie sélective et pour diriger ladite première partie à travers le premier étage du réchauffeur (42), et
    • un moyen (62) pour recombiner les première et seconde parties et diriger celle-ci à travers le second étage du réchauffeur (40).
  2. Centrale électrique selon la revendication 1,

    caractérisée en ce que

       - le surchauffeur (38) est disposé en aval dudit second étage du réchauffeur (40).
  3. Centrale électrique selon la revendication 1,

    caractérisée par

       des moyens (54, 56) pour diviser la vapeur froide comprenant une conduite de dérivation (54) avec au moins une vanne de commande d'écoulement (64), pour dériver une partie choisie de vapeur froide issue d'une turbine autour du premier étage du réchauffeur (42) directement vers le second étage ou étage final du réchauffeur (40).
  4. Centrale électrique selon la revendication 1,

    caractérisée par

       au moins une vanne de commande de pression (56) au niveau de l'orifice d'entrée du premier étage du réchauffeur (42), la vanne étant sensible à la différence entre la pression de la vapeur de retour et la pression de la vapeur de l'orifice de sortie du premier étage du réchauffeur.
  5. Centrale électrique selon la revendication 1,

    caractérisée en ce que

       le moyen (64) pour diviser la vapeur froide est sensible à la température de l'orifice de sortie du second étage du réchauffeur (40).
  6. Procédé de commande des températures d'un réchauffeur dans un générateur de vapeur ayant un système de combustion à lit fluidisé qui inclut un brûleur à lit fluidisé, au moins un séparateur chaud, et un réchauffeur,

    caractérisé par le fait de
    • diviser le réchauffeur en un réchauffeur ayant un premier et un second étage ou étage final et disposer à la suite les premier et second étages du réchauffeur dans une conduite d'évacuation commune de gaz,
    • diviser la vapeur froide revenant vers le réchauffeur en une première et une seconde partie choisie et diriger la première partie à travers le premier étage du réchauffeur et
    • recombiner la première et la seconde partie et diriger celles-ci à travers le second étage ou étage final du réchauffeur.
  7. Procédé selon la revendication 6,

    caractérisé par le fait de

       maintenir la température du second étage du réchauffeur à environ 538°C, plus ou moins 10°C.
  8. Procédé selon la revendication 6,

    caractérisé par le fait que :

       - la seconde partie de la vapeur froide divisée est dirigée au travers d'une conduite de dérivation s'étendant entre un orifice d'entrée et un orifice de sortie du premier étage du réchauffeur.
  9. Procédé selon la revendication 6,

    caractérisé par le fait de :

       - commander la température de la vapeur du second étage ou étape final du réchauffeur, pour diviser la température de la vapeur froide à la demande en une première et une seconde portion.
  10. Procédé selon la revendication 6,

    caractérisé par le fait :

       - de commander la différence de pression entre la pression de vapeur de retour et la pression de vapeur de l'orifice de sortie du premier étage du réchauffeur pour diviser la vapeur froide en une première et une seconde portion.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com