PatentDe  


Dokumentenidentifikation DE4238399C1 24.03.1994
Titel Mobiles Massenspektrometer mit einer Probenahmevorrichtung mit drehbarem Spürrad mit Metallfelge
Anmelder Bruker - Franzen Analytik GmbH, 28359 Bremen, DE
Erfinder Koch, Dieter, 2803 Weyhe, DE;
Menne, Gerd, 2800 Bremen, DE;
Weiß, Gerhard, 2803 Weyhe, DE;
Spudich, Rainer, 2807 Achim, DE;
Kraffert, Alfred, 2803 Weyhe, DE
Vertreter Kohler, R., Dipl.-Phys.; Schmid, B., Dipl.-Ing.; Holzmüller, R., Dipl.-Ing. Dr.-Ing.; Rüdel, D., Dipl.-Ing. Dipl.-Wirtsch.-Ing.; Bähring, A., Dipl.-Phys. Univ. Dr.rer.nat., Pat.-Anwälte, 70565 Stuttgart
DE-Anmeldedatum 13.11.1992
DE-Aktenzeichen 4238399
Veröffentlichungstag der Patenterteilung 24.03.1994
Veröffentlichungstag im Patentblatt 24.03.1994
IPC-Hauptklasse G01N 1/02
IPC-Nebenklasse G01N 27/62   B60B 3/00   B60B 21/02   G01N 1/04   
Zusammenfassung Bei einer Probenahmevorrichtung für ein mobiles Analysegerät, insbesondere ein Massenspektrometer (13), zum Aufspüren chemischer Substanzen, mit mindestens einem um eine Achse drehbar gelagerten Spürrad (1, 1c, 1d), bestehend aus einem Silikonreifen (5) zur Aufnahme von Molekülen der aufzuspürenden Substanzen und einer den Silikonreifen (5) tragenden Radfelge (6) besteht die Radfelge (6) aus Metall, beispielsweise Edelstahl oder Aluminium. Dadurch wird einerseits bei Langzeitlagerung von Spürrädern (1, 1c, 1d) in luftdicht geschlossenen Vorratsbehältern eine Kontamination des Silikonreifens (5) durch aus der Radfelge (6) ausdünstende Substanzen vermieden, andererseits wird ein vorteilhafter Aufbau der Radfelge (6) aus zwei dünnwandigen Felgenhälften (9) mit Nietlöchern ermöglicht.

Beschreibung[de]

Die Erfindung betrifft ein mobiles Massenspektrometer mit einer Probenahmevorrichtung zum Aufspüren chemischer Substanzen, mit mindestens einem um eine Achse drehbar gelagerten Spürrad bestehend aus einem Silikonreifen mit einer hohen Akzeptanz für die Aufnahme von im Massenspektrometer nachzuweisenden Molekülen der aufzuspürenden Substanzen und einer den Silikonreifen tragenden Radfelge.

Ein solches mobiles Massenspektrometer ist beispielsweise bekannt aus der Zeitschrift "Jane&min;s NBC Protection Equipment 1992-3", herausgegeben von Terry J. Gander, Seiten 131,177-179, 181, aus dem Sonderdruck aus "Kampftruppen/Kampfunterstützungstruppen", Heft 2/1985, Verlag E.S. Mittler & Sohn, Seiten 76-79, aus der DE 84 24 372 U1 oder aus der DE 91 00 367 U1.

Ein wichtiges Einsatzgebiet für die Probenahmevorrichtung ist die Untersuchung von mit chemischen Substanzen, insbesondere Giften, Kampfstoffen und dergleichen kontaminierten Böden. Dazu wird in einem nach außen abgekapselten Fahrzeug ein Analysegerät, beispielsweise ein Massenspektrometer eingebaut. Über die Probenahmevorrichtung werden dem Analysegerät Proben chemischer Substanzen von außerhalb des Fahrzeugs so zugeführt, daß eine Kontamination im Inneren des Fahrzeugs ausgeschlossen ist. Insbesondere für die chemischen Proben der Bodenoberfläche, über die sich das Fahrzeug bewegt, weist die Probenahmevorrichtung ein oder mehrere Spürräder auf, die im wesentlichen aus einer um eine Achse drehbaren Radfelge und einem darauf aufgezogenen Silikonreifen bestehen, und die mit Hilfe von jeweils einem Spürradarm, an dem sie drehbar befestigt sind, auf die Bodenoberfläche abgesenkt oder in verschiedene andere Betriebspositionen, insbesondere in eine Stellung vor einem aus dem Fahrzeug herausragenden Sondenkopf einer Spürsonde angehoben werden können.

Um eine kontinuierliche Messung von Bodenproben der während des Einsatzes des Fahrzeugs durchfahrenen Strecke vornehmen zu können, werden in der Regel mindestens zwei Spürräder mit Spürradarmen im Tandembetrieb eingesetzt, wobei jeweils eines der Spürräder über den Boden rollt und dabei die zu analysierenden Substanzen mit Hilfe seines Silikonreifens aufnimmt, während jeweils das andere Spürrad sich in einer angehobenen Spürstellung vor dem Sondenkopf einer Spürsonde befindet, die einen Großteil der im Silikonreifen aufgesammelten Probesubstanzen an das im Inneren des Fahrzeugs befindliche Analysegerät weiterleitet.

Da im Laufe des Einsatzes die Silikonreifen der Spürräder teilweise erheblich kontaminiert werden können, ist ein relativ häufiges Auswechseln der Spürräder erforderlich. Zu diesem Zweck werden im Einsatzfahrzeug in der Regel mehrere Ersatz- Spürräder mitgeführt, die sich meist in einem abgeschlossenen zylinderförmigen Behälter befinden. Ähnliche Vorratsbehälter für Spürräder werden zur Langzeitlagerung der Spürräder außerhalb des Fahrzeugs verwendet.

Ein erheblicher Nachteil der bisher bekannten Spürräder besteht darin, daß für die Herstellung der Radfelge bislang immer ein Kunststoffmaterial verwendet wird. Radfelgen aus anderen Materialen, beispielsweise aus Holz oder aus Metall, sind zwar in anderem technischen Zusammenhang an sich bekannt, jedoch nicht bei Spürrädern für mobile Massenspektrometer. So sind beispielsweise in der DE 26 48 906 A1 und in der DE 38 24 840 A1 Einrichtungen zur Feststellung von Glatteisgefahr auf Straßen offenbart, bei denen mit Hilfe eines Laufrades auf der Straßenoberfläche befindliche wäßrige Streusalzlösung in eine Aufnahmevorrichtung gefördert wird, mit der der Salzgehalt der Lösung festgestellt wird. Dabei handelt es sich aber um keine Einrichtung, die mit einem mobilen Massenspektrometer zum Aufspüren chemischer Substanzen vergleichbar wäre. Insbesondere dringt das nachzuweisende Salzwasser nicht in die Oberfläche des Laufrades ein, sondern wird von diesem lediglich durch zeitweilige Adhäsion mitgerissen.

Die herkömmlichen Plastikfelgen, die bei Spürrädern für mobile Massenspektrometer eingesetzt werden, dampfen über längere Zeit in dem gasdichten Vorratsbehälter, meist eine 10er-Pack- Dose, Monomere und Oligomere des verwendeten Kunststoffs aus der Plastikfelge ab. Die Ausdünstungen reichern sich während der normalerweise jahrelangen Lagerzeit in dem Vorratsbehälter, der typischerweise ein Gasvolumen von etwa 3-4 Litern aufweist, bis zu Konzentrationen von zirka 30 ppm an.

Die Silikonreifen der Spürräder wiederum, die ja gerade eine hohe Akzeptanz für chemische Stoffe aufweisen müssen, nehmen die Ausdünstungen aus den Plastikfelgen in hohem Maße auf, so daß die Spürräder bereits vor ihrem eigentlichen Einsatz erhebliche Kontamination aufweisen. Dies führt aufgrund der von den Plastikfelgen ausgeschiedenen chemischen Stoffe im Meßsignal zu einem hohen störenden Untergrund, was eine starke Herabsetzung der Empfindlichkeit des Analysegerätes im Hinblick auf die aufzuspürenden Substanzen im Einsatzfall zur Folge hat.

Aufgabe der vorliegenden Erfindung ist es daher, ein mobiles Massenspektrometer mit einem Spürrad der oben beschriebenen Art anzugeben, bei dem eine derartige Kontamination des Silikonreifens während der Langzeitlagerung in einem Vorratsbehälter ausgeschlossen ist, wobei aber das Spürrad als Massenprodukt einfach und billig herstellbar sein soll und den Belastungen im Einsatzfall, wo es Laufgeschwindigkeiten von bis zu 100 km/h aushalten muß, standhält.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Radfelge des Spürrades aus Metall, Edelstahl, Blech oder Aluminium besteht. Im Gegensatz zu Plastikfelgen werden bei den Metallfelgen auch bei längerer Lagerung der Spürräder in einem abgeschlossenen Vorratsbehälter keine schädlichen Ausdünstungen beobachtet, die die Silikonreifen der Spürräder kontaminieren können. Dabei kann die Radfelge aus Metallblech bestehen, um das Gewicht des Spürrades bei gleicher Belastbarkeit gering zu halten.

Bei einer vorteilhaften Ausführungsform ist die Radfelge aus zwei dünnwandigen zusammenpreßbaren Felgenscheiben aufgebaut. Dadurch kann das Rad insgesamt hohl gestaltet werden, was zu einer weiteren Gewichtsverringerung bei hoher Belastbarkeit beiträgt.

Bei einer bevorzugten Weiterbildung weist jede Felgenscheibe Befestigungslöcher in Form von Nietlöchern mit in axialer Richtung von der Felgenscheibe abstehenden Randwülsten und einfachen Rundlöcher auf. Bei der Montage zweier Felgenscheiben zu einer Radfelge werden dann die beiden Felgenscheiben so zueinander positioniert, daß die Randwülste der Nietlöcher einer Felgenscheibe jeweils auf die andere Felgenscheibe zeigen, wobei die Nietlöcher der einen Felgenscheibe sich jeweils gerade gegenüber den Rundlöchern der anderen Felgenscheibe befinden. Die beiden Felgenscheiben werden dann einfach zusammengepreßt und vernietet, ohne daß bewegliche zusätzliche Nietteile erforderlich sind.

Günstig ist eine Ausführungsform, bei der eine geradzahlige Anzahl von Befestigungslöchern, insbesondere sechs Befestigungslöcher pro Felgenscheibe vorgesehen ist. Auf diese Weise kann zu jedem Nietloch auf der einen Felgenscheibe ein zugehöriges Rundloch auf der anderen Felgenscheibe vorgesehen werden.

Besonders einfach lassen sich die Felgenscheiben herstellen, wenn die Befestigungslöcher auf einem Kreis um die Achse gleichmäßig verteilt angeordnet sind. Eine solche symmetrische Anordnung der Befestigungslöcher vereinfacht auch die Montage der beiden Felgenhälften zu einer Radfelge.

Bevorzugt ist eine Ausführungsform, bei der die beiden Felgenscheiben identisch sind. Auf diese Weise muß nur eine einzige Sorte von Felgenscheiben hergestellt werden, was den Preis der gesamten Radfelge verbilligt und die Lagerhaltung der Felgenscheiben vereinfacht.

Um bei der Langzeitlagerung Ausdünstungen aus der Oberfläche der Metallfelge völlig auszuschließen ist bei einer besonders bevorzugten Ausführungsform die Oberfläche der Radfelge zusätzlich vergütet.

Bei einer Ausführungsform ist die Oberfläche der Radfelge poliert, wodurch eine Reduktion der aktiven Oberfläche der Felge, auf der eventuell Partikel adhäsiv gebunden und im Lauf der Zeit wieder abgedampft werden könnten, bewirkt wird.

Eine weitere Möglichkeit der Oberflächenbehandlung der Felge ist die Verzinkung der Radfelge. Beide Oberflächenbehandlungen führen jedoch zu mehr oder weniger spiegelnden Oberflächen der Radfelge, was insbesondere bei einem militärischen Einsatz der Probenahmenvorrichtung unerwünscht ist, da sich das Spurrad im Einsatzfall außerhalb des Fahrzeuges befindet und durch die spiegelnde Oberfläche Beobachter auf das Fahrzeug aufmerksam gemacht werden könnten.

Aus diesem Grund ist bei einer besonders bevorzugten Ausführungsform die Oberfläche der Radfelge passiviert, vorzugsweise eloxiert. Dadurch wird einerseits eine Oberflächenvergütung erreicht, andererseits aber Reflexionen an der Radfelgenoberfläche verhindert.

In den Rahmen der vorliegenden Erfindung fällt auch die Verwendung eines Spürrades mit einer Achse, einem mit der Achse drehbar gelagerten Silikonreifen mit einer hohen Akzeptanz für die Aufnahme von in einem Massenspektrometer nachzuweisenden Molekülen und einer den Silikonreifen tragenden Radfelge, die aus Metall, Edelstahl, Blech oder Aluminium besteht, für eine Probenahmevorrichtung eines mobilen Massenspektrometers.

Die Erfindung wird im folgenden anhand der Zeichnung erläutert. Es zeigt

Fig. 1 eine schematische Heckansicht eines Spürfahrzeuges mit beweglichem Analysegerät und Probenahmevorrichtung;

Fig. 2 eine teilweise durchsichtige Ansicht eines Spürfahrzeuges von schräg oben und vorn mit schematischer Darstellung von Teilen des Analysegerätes und der Probenahmevorrichtung;

Fig. 3 eine plastische Darstellung zweier Spürräder mit Spürradarmen und zugehöriger Antriebsvorrichtung sowie einem Vorratsbehälter für Spürräder;

Fig. 4 schematische Seitenansicht von verschiedenen Betriebspositionen eines Spürrades;

Fig. 5 schematische Seitenansicht eines Spürrades mit eingezeichneten Teilkreispositionen der Befestigungslöcher in der Radfelge;

Fig. 6a teilweise frontale Schnittansicht eines Spürrades bestehend aus zwei zusammenmontierten Felgenscheiben sowie einem Silikonreifen; und

Fig. 6b Detailschnitt durch ein verbördeltes Nietloch.

Das in Fig. 1 gezeigte Fahrzeug 20, beim militärischen Einsatz ein sogenannter "Spürpanzer", ist in seinem Heckteil mit einer Analysevorrichtung für chemische Substanzen ausgerüstet. Das Massenspektrometer 13 mit der zugehörigen elektronischen Auswerte- und Anzeigeeinheit 14 ist dabei von außen sichtbar gezeichnet. Auf der von dem Fahrzeug 20 durchfahrenen Strecke wird mit Hilfe eines auf den Erdboden abgesenkten Spürrades 1, das an einem Spürradarm 2 befestigt ist, Probensubstanz vom Boden auf einen Silikonreifen 5 übernommen, die sobald das Spürrad 1c in Meßposition vor einem aus dem Heckteil des Fahrzeugs 20 ragenden Sondenkopf 10 gebracht ist, mit Hilfe einer Spürsonde 11 und einer Zuführung 12 dem Massenspektrometer 13 zugeführt. Dadurch, daß zwei Spürräder 1, 1c mit entsprechenden Spürradarmen 2 vorgesehen sind, kann im Tandembetrieb jeweils eines der Spürräder 1 auf dem Erdboden rollen, um Proben zu entnehmen, während das jeweils andere Spürrad 1c in Meßposition die entnommene Probensubstanz an das Massenspektrometer zur entsprechenden Massenanalyse weitergibt. Auf diese Weise wird ein kontinuierlicher Spürbetrieb während der gesamten Fahrt des Fahrzeugs 20 ermöglicht.

Bei dem in Fig. 2 durchsichtig dargestellten Fahrzeug 20 erkennt man im Heckteil wiederum das Massenspektrometer 13 mit der zugehörigen elektronischen Auswerte- und Anzeigeeinheit, sowie die Zuführung 12 von der hier nicht dargestellten Spürsonde 11. Weiterhin ist ein Hand- und Armschutz 21 angedeutet, mit Hilfe dessen eine Bedienungsperson im Fahrzeug 20 kontaminationsfrei aus dem Vorratsbehälter 4 frische Spürräder 1 entnehmen und an einem der Spürradarme 2 montieren kann.

In Fig. 3 sind wiederum 2 Spürräder 1 für den Tandemspürbetrieb gezeigt, deren Spürradarme 2 über eine schematisch angedeutete Antriebseinrichtung 3 gehoben und gesenkt werden können. Außerdem ist in Fig. 3 der Aufbau der Spürräder 1 aus einer Radfelge 6 und einem darauf aufgezogenen Silikonreifen 5 verdeutlicht. Schließlich zeigt Fig. 3 den Vorratsbehälter 4 für Spürräder 1, der mit einem Deckel versehen ist, so daß während der Fahrt des Fahrzeuges 20 ein kontaminiertes Spürrad 1 gegen ein frisches ausgetauscht werden kann.

Fig. 4 verdeutlicht die verschiedenen Betriebspositionen durch Spürräder 1, 1c, 1d. In der Position a bewegt sich das Spürrad 1 mit Kontakt über die Erdoberfläche 30 und nimmt dabei aufzuspürende Substanzen mit Hilfe seines Silikonreifens 5 auf. Position b zeigt das Spürrad 1 in einer von der Erdoberfläche 30 abgehobenen Lage.

In Position c befindet sich das Spürrad 1c in Meßposition vor dem Sondenkopf 10 der Spürsonde 11, die aus der Fahrzeug-Heckwand 22 des Fahrzeuges 20 ragt.

Wenn weder Proben von der Erdoberfläche 30 entnommen noch entnommene Probensubstanz dem Sondenkopf 10 zugeführt werden soll, wird das Spürrad 1d in die Position d, die sogenannte Transportposition angehoben. In dieser Position ist die Spürsonde 11 durch die Fahrzeug-Heckwand 22 ins Fahrzeuginnere eingezogen und nach außen mit Hilfe einer Sondenabdeckung 15 abgedeckt. Die Antriebseinheit 3, mit der die Spürräder 1f 1c, 1d, die in Fig. 4 gezeigten Positionen gehoben bzw. gesenkt werden können, ist schematisch in Fig. 3 dargestellt. Das Gehäuse des Antriebs ist in Kastenform ausgeführt. Seitlich ist ein Halterahmen zum Befestigen des Vorratsbehälters 4 für die Spürräder 1 sowie für Ersatzmembranen für den Sondenkopf 10 angeschraubt. Im Gehäuse ist der Mechanismus zum Heben und Senken der beiden Spürradarme 2 montiert.

Die Spürradarme 2 bestehen im wesentlichen aus abgewinkelten Stäben, an deren Enden die Spürräder 1 über Achsträger 19 drehbar befestigt sind. In der Regel werden die Spürradarme aus Federstahl ausgeführt sein, der an einem Ende mit einem Gewinde zur Befestigung des Achsträgers 19, am anderen Ende mit einer nicht näher dargestellten Gewindehülse zur Verschraubung mit dem Antrieb 3 für die Spürradarme 2 ausgestattet ist.

Eine Seitenansicht eines Spürrades 1 mit Silikonreifen 5 und Radfelge 6 ist in Fig. 5 gezeigt. In der Radfelge 6 befinden sich Rundlöcher 7 und Nietlöcher 8, die zur Verbindung zweier Felgenscheiben 9 dienen, aus denen die Radfelge 6 aufgebaut ist. Außerdem enthalten die Felgenscheiben 9 Greiflöcher 23, die so groß sein müssen, daß man mit dem Hand- und Armschutz 21 hineingreifen kann, um das Spürrad 1 vom Fahrzeuginneren aus auswechseln zu können. Die Greiflöcher 23 müssen in jedem Fall vollständig entgratet sein, um eine Beschädigung des Hand- und Armschutzes 21 bei Manipulationen am Spürrad 1 auszuschließen.

In Fig. 6a ist eine teilweise längs der Linie A-B aus Fig. 5 aufgeschnittene Frontalansicht des Spürrades 1 gezeigt. Es wird deutlich, daß die beiden Felgenscheiben 9 zum Aufbau der Radfelge 6 zusammengepreßt und durch Verbördelung der Fig. 6b vergrößert dargestellten Randwülste 18 der Nietlöcher 8, die durch die jeweils auf der anderen Felgenscheibe 9 gegenüberliegenden Rundlöcher 7 gesteckt sind, befestigt werden. In Fig. 6b ist der Randwulst 18 sowohl in unverbördelter Form (gestrichtelt) als auch in verbördelter Form dargestellt.

Diese Befestigungsweise hat den großen Vorteil, daß keine beweglichen Nieten gebraucht werden, sondern daß die mit den Felgenscheiben 9 fest verbundenen Randwülste 18 der Nietlöcher 8 die Funktion von Nieten übernehmen.

Falls eine geradzahlige Anzahl von Befestigungslöchern vorgesehen ist (bei dem in Fig. 5 dargestellten Beispiel sind es sechs Befestigungslöcher 7, 8) können die Rundlöcher 7 und die Nietlöcher 8 auf einer Felgenscheibe 9 jeweils alternierend angeordnet sein, so daß bei der Montage zweier Felgenscheiben 9 zu einer Radfelge 6 bei entsprechender Verdrehung der jeweils gegenüberliegenden Felgenscheibe 9 um die gemeinsame Achse ein Nietloch 8 auf der einen Felgenscheibe 9 gerade einem Rundloch 7 auf der anderen Felgenscheibe 9 gegenüberliegt, durch dessen Öffnung der Randwulst 18 des jeweiligen Nietloches 8 durchgesteckt und danach verbördelt werden kann.

Da die Befestigungslöcher 7, 8, wie in Fig. 5 gezeigt, symmetrisch auf einem Teilkreis um die Achse verteilt angeordnet sind, ist es möglich, zwei identische Felgenscheiben 9 zu einer Radfelge 6 zusammenzumontieren. In diesem Falle gibt es keine linke und rechte Seite der Radfelge 6, sondern es muß lediglich eine Sorte von Felgenscheiben 9 hergestellt und auf Lager gehalten werden.

Zur Aufnahme eines Drehlagers, in der Regel eines Teflonlagers, werden in die Achsbohrung der Radfelge 6 von beiden Seiten Bundbuchsen 17 eingesteckt und verschraubt oder anderweitig befestigt.

Die Radbuchsen 17 lassen im eingebauten Zustand (in Fig. 6a gestrichelt gezeichnet) ein Spaltvolumen 16 in der Achsenmitte frei, in welchem sich Schmutzpartikel ansammeln können, so daß die Lauffläche des Achslagers beim Spürrad 1 geschont wird.

Der Achsdurchmesser beträgt im gezeigten Beispiel 14,9 mm, während die Laufbuchsen einen Innendurchmesser von 15,1 mm aufweisen, so daß ein Spiel von 0,2 mm bleibt. Beim Freilauf des Spürrades 1 in einer vom Erdboden abgehobenen Position wird dadurch eine Schlingerbewegung des Rades hervorgerufen, die dazu dient um die möglicherweise sehr hohe Drehgeschwindigkeit des Spürrades 1 (das Spürfahrzeug fährt bis zu 100 km/h schnell) vor dem Andrücken des Silikonreifens 5 an den Sondenkopf 10 der Spürsonde 11 selbsttätig abzubremsen.

Die oben beschriebene Herstellung einer Radfelge 6 aus zwei vorzugsweise identischen Felgenscheiben 9 kann selbstverständlich auch für andere Einsatzfälle als dem Spürrad 1, insbesondere bei militärischen Fahrzeugen von Vorteil sein.

Entscheidend ist, daß die Radfelge 6 statt wie bisher üblich aus Kunststoff nunmehr aus Metall gefertigt ist. Dadurch wird einerseits eine Kontamination der empfindlichen Silikonreifen 5 bei Langzeitlagerung der Spürräder 1 in einem luftdicht abgeschlossenen Vorratsbehälter durch Ausdünstungen aus der Radfelge 6 vermieden. Andererseits wird aber durch die Ausführung der Radfelge 6 aus Metall auch die oben beschriebene vorteilhafte Montagemöglichkeit aus zwei identischen Felgenscheiben 9 ermöglicht, in die bereits die notwendigen Nieten in Form der Randwülste der Nietlöcher integriert sind.

Die Eichung des Massenspektrometers 13 des mobilen Analysegerätes für die Substanzen Äthanol, Toluol, Xylol und Acetophenon erfolgt laut Herstellervorschrift jeweils mit drei Messungen mit den Konzentrationen 0,1 ppm 1,0 ppm und 10 ppm. Daraus wird deutlich, daß eine Konzentration von 30 ppm von Störsubstanz, wie sie nach Langzeitlagerung von Spürrädern 1 in den Vorratsbehältern beobachtet wurde, wenn Radfelgen aus Kunststoff verwendet wurden, zu einer unakzeptabel hohen Kontamination der empfindlichen Silikonreifen 5 geführt hat.

Um jegliche Abdampfung aus der Radfelge 6 zu vermeiden, kann die Oberfläche auch noch zusätzlich vergütet sein. Denkbar ist ein Polieren oder Verzinken der Radfelgenoberfläche, was jedoch dazu führt, daß das Spürrad 1 Licht erhöht reflektiert. Dieser Verspiegelungseffekt kann bei militärischen Anwendungen unerwünscht sein, so daß eine Passivierung der Radfelgenoberfläche, vorzugsweise eine Eloxierung in der Regel eine bessere Lösung darstellt.


Anspruch[de]
  1. 1. Mobiles Massenspektrometer mit einer Probenahmevorrichtung zum Aufspüren chemischer Substanzen, mit mindestens einem um eine Achse drehbar gelagerten Spürrad bestehend aus einem Silikonreifen mit einer hohen Akzeptanz für die Aufnahme von im Massenspektrometer nachzuweisenden Molekülen der aufzuspürenden Substanzen und einer den Silikonreifen tragenden Radfelge, dadurch gekennzeichnet, daß die Radfelge (6) aus Metall, Edelstahl, Blech oder Aluminium besteht.
  2. 2. Mobiles Massenspektrometer nach Anspruch 1, dadurch gekennzeichnet, daß die Radfelge (6) aus zwei dünnwandigen zusammenpreßbaren Felgenscheiben (9) aufgebaut ist.
  3. 3. Mobiles Massenspektrometer nach Anspruch 2, dadurch gekennzeichnet, daß jede Felgenscheibe (9) Befestigungslöcher in Form von Nietlöchern (8) mit in axialer Richtung von der Felgenscheibe (9) abstehenden Randwülsten (18) und einfachen Rundlöchern (7) aufweist.
  4. 4. Mobiles Massenspektrometer nach Anspruch 3, dadurch gekennzeichnet, daß eine geradzahlige Anzahl von Befestigungslöchern (7, 8), pro Felgenscheibe (9) vorhanden ist und daß die Befestigungslöcher (7, 8) auf einem Kreis um die Achse gleichmäßig verteilt angeordnet sind.
  5. 5. Mobiles Massenspektrometer nach Anspruch 4, dadurch gekennzeichnet, daß die beiden Felgenscheiben (9) eines Spürrades identisch sind.
  6. 6. Mobiles Massenspektrometer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Oberfläche der Radfelge (6) vergütet, poliert, verzinkt oder eloxiert ist.
  7. 7. Verwendung eines Spürrades mit einer Achse, einem mit der Achse drehbar gelagerten Silikonreifen mit einer hohen Akzeptanz für die Aufnahme von in einem Massenspektrometer nachzuweisenden Molekülen und einer den Silikonreifen tragenden Radfelge, die aus Metall, Edelstahl, Blech oder Aluminium besteht, für eine Probenahmevorrichtung eines mobilen Massenspektrometers.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com