PatentDe  


Dokumentenidentifikation EP0284175 27.04.1995
EP-Veröffentlichungsnummer 0284175
Titel Filterkoeffizientenberechnung für ein digitales Filter.
Anmelder Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka, JP
Erfinder Ishikawa, Seiichi, Hirakata-shi Osaka, JP;
Matsumoto, Masaharu, Hirakata-shi Osaka, JP;
Satoh, Katsuaki, Osaka-shi Osaka, JP;
Kawamura, Akihisa, Hirakata-shi Osaka, JP
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 3853372
Vertragsstaaten DE, FR, GB
Sprache des Dokument En
EP-Anmeldetag 15.01.1988
EP-Aktenzeichen 883003246
EP-Offenlegungsdatum 28.09.1988
EP date of grant 22.03.1995
Veröffentlichungstag im Patentblatt 27.04.1995
IPC-Hauptklasse H03H 17/02
IPC-Nebenklasse H03H 17/06   

Beschreibung[en]

The present invention relates generally to a transversal filter, or finite impulse response filter, (which will be referred to as FIR filter) for realizing a desirable frequency property (characteristic) by convolution integration of a finite number of factors (which will be referred to as FIR factor) and delayed signals, and more particularly to method and apparatus for obtaining (designing) the FIR factor so as to realize the desirable frequency property.

FIR filters have been employed for various systems such as tone controller for the purpose of arbitrarily obtaining a frequency characteristic. The desirable frequency characteristic obtained thereby is generally expressed by an amplitude-frequency characteristic (power spectrum), which does not contain phase information. Thus, the FIR factor is a time function and cannot be obtained directly by means of the inverse (reverse)-Fourier transformation thereof. One known method for obtaining the phase information from a power spectrum is to use the Hilbert transformation, thereby obtaining a FIR factor for realizing a desirable amplitude frequency property as disclosed in a document (EA85-44) published by Acoustic Academic Society and Electric-Acoustic Society, 1985, for example. This method will be briefly described hereinbelow with reference to Fig. 1. The Hilbert transformation is a method for conversion of a real variable function or imaginary variable function into a complex variable function, as known from "Foundation of Digital Signal Processing" published by Ohm-Sha, for example. That is, when an amplitude frequency property is as indicated by a solid line 11 in (a) of Fig. 1, assuming the amplitude frequency property as a real variable function, the Hilbert transformation of the real variable function 11 is effected and results in a real variable function as indicated by a solid line 12 in (b) of Fig. 1 wherein a dotted line 13 represents an imaginary variable function. Here, on the contrary, an amplitude frequency property is derived from the complex variable function obtained by the above Hilbert transformation as indicated by a solid line 14 in (c) of Fig. 1. As seen from (c) of Fig. 1, this obtained amplitude frequency property 14 is different from the desirable frequency property indicated by a dotted line 11 in (c) of Fig. 1. Therefore, in order to reduce the difference therebetween, the desirable frequency property is controlled by a percentage of the difference with respect to the respective frequencies and again Hilbert-transformed to obtain an amplitude frequency property which is in turn compared with the desirable ammplitude frequency characteristic. The successive comparison therebetween results in obtaining a complex variable function for a desirable amplitude frequency property usable in practice. A FIR factor can be obtained by the inverse-Fourier transformation of the obtained complex variable function. According to the above-mentioned documents, when the Hilbert transformation is considered as a discrete-time system, the transformation equations are expessed as follows.

where H(k) represents a complex variable function to be obtained and P(m) is a real variable function.

In the Hilbert transformation, the value obtained from the equation (2) can be obtained in advance and stored as a data table.

However, because P(m) in the above equation (1) is varied, operation of sum of products is required for realization of the equation (1), and for performing the Hilbert transformation at the point N, the operation of sum of products is performed at least N² times. The N²-time operation of sum of products determine the transforming time of the Hilbert transformation and the scale of the transformation-arithemetic unit. Since the transforming time thereof and the unit scale are dependent upon the frequency band and frequency resolution, difficulty is encountered to achieve the reduction thereof.

Furthermore, the second-mentioned document discloses a method for obtaining phase information from the power spectrum wherein a transfromation is effected in terms of linear phase to obtain a FIR factor for realizing a desirable frequency property. That is, when the linear phase transformation is considered in a discrete-time system, the transformation equations are expressed as follows. Hr(k) = A(k) &peseta; cos{-(N - 1)/N &peseta; πk} Hi(k) = A(k) &peseta; sin{-(N - 1)/N &peseta; πk}

where Hr(k) is a real variable function obtained, Hi(k) is an imaginary variable function also obtained, and A(k) represents an amplitude frequency property.

However, in the equations (3) and (4), even if cos{-(N - 1)/N &peseta; πk} and sin{-(N - 1)/N &peseta; πk} can be obtained in advance, multiplication must be made at least N&peseta;2 times in the case of performing the linear phase transformation at the point N. The N&peseta;2-time multiplication determines the transforming time of the linear phase transformation. The linear-phase transformation time depends upon the frequency band and frequency resolution determined, resulting in difficulty of the reduction thereof.

The present invention has been developed in order to remove the above-mentioned drawbacks inherent to the conventional techniques.

It is therefore an object of the present invention is to provide new and improved method and apparatus for calculating a filter factor which are capable of reducing the calculation time, the filter-factor calculating apparatus being made with a simple structure.

In accordance with the present invention, there is provided a filter-factor calculating apparatus for a transversal filter, comprising: inputting means for inputting a desirable frequency characteristic; division means coupled to said inputting means for dividing the inputted frequency characteristic into a plurality of frequency bands; and calculating means coupled to said division means for obtainina filter factors for realizing the divided inputted frequency characteristic in the respective divided frequency bands.

In order that the invention may be more readily understood the following description is given, by way of example only, with reference to the accompanying drawings in which:

  • Fig. 1 is a graphic diagram showing a frequency property based on the Hilbert transformation of an inputted desirable frequency characteristic;
  • Fig. 2 is a block diagram showing a Filter-factor calculating apparatus according to a first embodiment of the present invention;
  • Fig. 3 is an illustration for describing the division of a desirable frequency property;
  • Fig. 4 is a graphic diagram showing the sampling frequency transformation by the zero point insertion and band-filter;
  • Fig. 5 is an illustration of properties of filters of Fig. 2;
  • Fig. 6 is an illustration for decribing the addition of the outputs of the filters of Fig. 2;
  • Fig. 7 is a block diagram showing an arrangement of a FIR filter for which the first embodiment may be employed;
  • Fig. 8 is a block diagram showing a filter-factor calculating apparatus according to a second embodiment of the present invention;
  • Fig. 9 is a block diagram showing one example of FIR filters in which the second embodiment of the invention may be employed;
  • Fig. 10 is a block diagram showing a filter-factor calculating apparatus according to a third embodiment of the present invention;
  • Fig. 11 is an illustration for describing a filter-factor calculating apparatus according to a fourth embodiment of the present invention;
  • Fig. 12 is an illustration for describing a filter-factor calculating apparatus according to a fifth embodiment of the present invention;
  • Fig. 13 is an illustration of a modification of the Fig. 12 embodiment;
  • Fig. 14 is a block diagram showing an arrangement of a filter-factor calculating apparatus according to a sixth embodiment of the present invention;
  • Fig. 15 is an illustration of sampling points of amplitude frequency properties;
  • Fig. 16 is an illustration of amplitude frequency properties and sampling points for obtaining a transfer function in the sixth embodiment;
  • Fig. 17 is a flow chart showing operations of filter-factor calculation;
  • Fig. 18 is a block diagram for describing a filter-factor calculating apparatus according to a seventh embodiment of the present invention;
  • Fig. 19 shows the input frequency property and divided frequency property in the seventh embodiment;
  • Fig. 20 shows the other input frequency property;
  • Fig. 21 is a graphic diagram for describing a correction of the division frequency property;
  • Fig. 22 is a graphic diagram showing an input frequency property and a division frequency property in a eighth embodiment of the present invention;
  • Fig. 23 is a block diagram showing a ninth embodiment of the present invention;
  • Fig. 24 is an illustration of the display portion of the ninth embodiment;
  • Fig. 25 is a perspective view of the input portion of the ninth embodiment;

Referring now to Fig. 2, there is illustrated an arrangement of a FIR-factor calculating unit according to a first embodiment of the present invention which is employed for FIR filters. The FIR-factor calculating unit may be arranged to partially include a microcomputer comprising a central processing unit (CPU), memories and so on. In Fig. 2, illustrated at the reference numeral 1 is an input unit for inputting a desirable frequency property (characteristic) to be realized by the FIR filter. The input unit 2 is connected to a division-and-thinning unit for dividing the inputted frequency property into a plurality of bands (in this case, three bands) and thinning the input point to express the properties of the divided bands with less points. Here, as shown in (a) in Fig. 3, the desirable frequency characteristic is discretely and curvedly indicated by a plurality of points and the interval of the frequencies is determined in accordance with the frequency resolution of the low region of the desirable frequency property. Fig. 3(b) to Fig. 3(d) respectively shows three bands divided by the division-and-thinning unit 2. In Fig. 3(a) to Fig. 3(d), the reference characters fN1, fN2 and fN are respectively the highest frequencies of the divided bands, i.e., so-called Nyquist frequencies in digital signal theory, whose values are 1/2 of the sampling frequencies.

Returning back to Fig. 2, the division-and-thinning unit 2 is coupled to three Hilbert transformation units, illustrated at numeral 3, each of which performs the Hilbert transformation of each of the bands shown in Fig. 3(b) to Fig. 3(d). Each of the three Hilbert transformation means 3 is coupled to each of frequency-property evaluation-and-correction means 4 for checking whether the frequency property after the Hilbert transformation is substantially coincident with the desirable frequency property and, if not substantially coincident therewith, for performing a correction thereof and again returning the corrected result to each of the Hilbert transformation means 3. These means 3 and 4 correspond to the technique disclosed in the first-mentioned document. Each of the frequency-property evaluation-and-correction means 4 is connected to each of inverse-Fourier transformation means 5 wherein the reverse-Fourier transformation is performed using a real variable function and an imaginary variable function obtained by each of the frequency-property evaluation-and-correction means 4. Numeral 6 represents each of interpolation means for performing the interpolation between the sampled points. Fig. 4 is a graphic diagram illustrating one example of the interpolation. As shown in (a) of Fig. 4, zero values are put between the values (o-marks) obtained with the inverse-Fourier transformation at the time points indicated by x-marks. The FIR factors from the respective interpolation means 6 are independently supplied to a low-pass filter 701, an intermediate-pass filter 702 and a high-pass filter 703. In this case, the sampling frequency becomes three times. The characteristics of the respective filters 701, 702 and 703 are respectively illustrated in (a) to (c) of Fig. 5.

The respective filters 701 to 703 are respectively coupled to a FIR-factor addition unit 8 for summing up the FIR factors obtained with respect to the respective bands. (a) to (c) of Fig. 6 illustrate the FIR factors for realizing the desirable frequency properties at the respective bands which are obtained by the transmission of the results of the sampling frequency transformation into the respective filters 701 to 703. The addition of these FIR factors, as shown in (d) of Fig. 6, causes obtaining the FIR factor for realizing the desirable frequency property with respect to the overall band. The obtained FIR factor for the overall band is transferred by a FIR-factor transferring unit 9 to the FIR filter.

Fig. 7 shows one example of FIR filters into which this embodiment is incorporated. In Fig. 7, numeral 10 is an input unit for inputting a digital signal, numeral 11 represents a digital-signal storage-and-delay unit for performing the storage and delay of the input signal for realizing the FIR filter, numeral 12 designates a holding uit for holding the FIR factor transferred through a factor transferring line 121 from this embodiment, numeral 13 is a unit for performing the sum of products which includes a multiplying means 131 and an addition means 132, and nemeral 14 represents a digital signal outputting unit for outputting a digital signal processed by the FIR filter.

Fig. 8 is an illustration of a second embodiment of the present invention in which parts corresponding to those in Fig. 2 are marked with the same numerals and the description thereof will be omitted for brevity. A feature of this second embodiment is to directly transfer the FIR factors obtained with respect to the respective bands. Fig. 9 shows one example of FIR filters into which the second embodiment may be incorporated. In the FIR filter of Fig. 9, a digital signal inputted by an input unit 10 is supplied into low-pass filter 151, intermediate-pass filter 152 and high-pass filter 153 for respectively transmitting predetermined bands and processed so that the sampled points are thinned by thinning units 161 and 162 so as to assume sampling frequencies wherein the limit of each of the respective bands becomes a Nyquist frequency and then treated to perform the sum of products as shown in Fig. 7. Here, each of the FIR-factor holding units 12 receive each of the FIR factors of the respective bands which are transferred from the respective transferring units 9 in Fig. 8. Therefore, sampling-point interpolation is effected by means of interpolation units 171 and 172 for the signals of the low band and intermediate band in the same manner as in the first embodiment. After transmission into filters 151&min; to 153&min; corresponding to the respective band filters 151 to 153, the digital signals reach a digital signal addition unit 18. The sum of the digital signals is outputted from a digital signal outputting unit 14.

As understood from the above description, because an excessive number of data are not required according to the present invention, it is possible to perform operation of sum of products for a shorter time period and to simplify the arrangement of the apparatus.

Figs. 10 to 13 are illustrations of filter factor calculating units according to third to fifth embodiments of the present invention in which parts corresponding to those in Fig. 2 are marked with the same numerals and the description will be omitted for brevity. A feature of the third embodiment is to obtain a desirable filter factor in accordance with the linear phase transformation. In Fig. 10, numeral 20 represents three linear-phase transformation means for performing the linear-phase transformation of the respective bands shown in (b) to (d) of Fig. 3 to obtain a real variable function and an imaginary variable function. Thereafter, in order to obtain a FIR factor for realizing the desirable frequency characteristic, the inverse-Fourier transformation is performed in each of inverse-Fourier transformation means 5 using the real variable function and the imaginary variable function obtained in each of the linear-phase transformation means 20. After a sampling interpolation is performed in each of interpolation means 6 and then a delay process is made in each of delay means 21 in order to match the centers of the linear-phase factors at the respective bands. This third embodiment may be employed for the FIR filters shown in Fig. 2 or Fig. 7. The fourth embodiment of Fig. 11 is arranged so as to obtain the FIR factors of the respective bands and directly transfer them to the FIR filter. The fourth embodiment may be employed for the FIR filter shown in Fig. 9. A fifth embodiment of Fig. 12 is arranged to obtain a desirable filter factor in accordance with the Hilbert transformation. A difference of this fifth embodiment from the third embodiment is to use, instead of the linear-phase transformation means, arithemetic means 22 for obtaining transfer functions from the respective bands shown in (b) to (d) of Fig. 3 in accordance with the relation to the Hilbert transformation. The transfer functions obtained therein are inverse-Fourier-transformed in reverse-Fourier transformation means 5 to obtain a FIR factor for realizing the desirable frequency property. In this case, as shown in Fig. 13, the FIR factors of the respective bands may be directly transferred to a FIR filter.

Furthermore, a sixth embodiment of the present invention will be described hereinbelow with reference to Fig. 14. In Fig. 14, illustrated at numeral 26 is an input circuit for inputting a desirable amplitude frequency property at every second kind sampling frequency, which is coupled to a transfer-function calculating circuit 27 for obtaining a transfer function using first kind sampling frequency under the condition of linear phase on the basis of the inputted amplitude frequency property. The first and second kind sampling frequencies are respectively defined in the above-mentioned second document, pages 187 to 188, (will be understood from Fig. 15). The transfer-function calculating circuit 27 is connected to a reverse-Fourier transformation circuit 28 for performing the reverse-Fourier transformation of the obtained transfer function with the first kind sampling frequency. The inverse-Fourier transformation thereof results in obtaining an impulse response whose real number portion is set as a filter factor in a setting circuit 29 which is in turn coupled to a FIR filter for realizing a set amplitude frequency property. In the input circuit 26, a desriable amplitude frequency property |H(ω)| is set at every second kind sampling frequency (see Fig. 15), and in the transfer-function calculating circuit 27, the following operations are effected to obtain a transfer function H(ω). H(ω) = HR(ω) + jHI(ω) HR(ω) = |H(ω)| &peseta; cos(a&peseta;2&peseta;π/N&peseta;k) HI(ω) = - |H(ω)| &peseta; sin(a&peseta;2&peseta;π/N&peseta;k)

where k = 0 to N - 1 and N is the number of the sampling points and a = (N-1)/2. Here, ω of the inputted amplitude frequency property |H(ω)| represents a second kind sampling frequency which is expressed by ω = 2π/N&peseta;{k+(1/2)} (8), and ω in the equations (6) and (7) represents a first kind sampling frequency which is expressed by ω = 2π/N&peseta;k (9).

In this case, when the number N of sampling points is even number, until k = N/2, H(ω) is obtained using the equations (6) and (7) as it is. On the other hand, from k = N/2+1, k in cos and sin portions assumes k+1. However, this is not required when N is great because the result is same. (a) of Fig. 16 shows amplitude frequency properties which is set with second kind sampling frequency and (b) of Fig. 16 is an illustration of first kind sampling frequency in cos, sin of the equations (6) and (7) on the unit circle of complex plane, where arrows show the corresponding relationship of values for performing multification.

From the transfer function H(ω) thus obtained, in the inverse-Fourier calculating circuit 28, the inverse-Fourier transformation of the following equation (10) is performed using the first kind sampling frequency to obtain an impulse response corresponding to H(ω).

where 0≦n≦N-1, and H(ω) is a value obtained in accordance with the above-mentioned equations (5), (6) and (7). Here, ω in the complex function ejwn is a value which is the result of the first sampling expressed by the equation (9).

Thereafter, only the real number portion of the impulse response h(n) obtained in the setting circuit 29 is taken out and set as a filter factor to the FIR filter 30. As a result, without using a window function, the desirable amplitude frequency property inputted here can be realized accurately without occurrence of ripple. Fig. 17 shows a flow chart for a better understanding of the above-described filter factor calculation.

Fig. 18 is a block diagram showing a seventh embodiment of the present invention. In Fig. 18, illustrated at numeral 51 is an input circuit for inputting a desirable amplitude frequency property with it being separated into frequency bands corresponding to two sampling frequencies. The input circuit 51 is coupled to a division circuit 52 for dividing the inputted amplitude frequency property into frequency bands corresponding to two different sampling frequencies, which is in turn coupled to a calculating circuit 53 for obtaining the filter factors of the FIR filter corresponding to the respective frequency bands of the respective sampling frequencies. Numerals 54 and 55 are respectively FIR filters whose sampling frequencies are different from each other and whose filter factors are same in number.

Operation of this embodiment will be described hereinbelow. In the input circuit 51, a desirable amplitude frequency property is divided into frequency bands corresponding to two sampling frequencies, and the overlapping portions of the frequency bands is inputted with a low frequency resolution and the non-overlapping portions thereof is inputted with a high frequency resolution. Fig. 19 shows the amplitude frequency property inputted by the input circuit 51. In (a) of Fig. 19, circle marks represent set amplitude values, characters f1 and f2 designate two different sampling frequencies. Here, the value of f2 is two times of the value of f1. The frequency resolution of the amplitude frequency property which can be inputted by the input circuit 51 is divided with f1/2 into two. At this time, the frequency resolution of the amplitude frequency property which can be inputted in the frequency band until f1/2 is f1/N where N is the number of the filter factors of the FIR filter 54 corresponding to its frequency band. On the other hand, the frequency resolution of the amplitude frequency property which can be inputted in the frequency band from f1/2 to f2/2 assumes f2/N. Here, in the case that the frequency in the vicinity of the cut-off frequency of a low-pass filter of the FIR filter 54 which acutally processes the signal with the sampling frequency f1 is f3, the frequency resolution of the amplitude frequency property which can be set between f3 and f1/2 is f2/N as shown in Fig. 20. In this embodiment, such an input method will be employed. Here, f3 is a frequency which is coincident with or near the cut-off frequency of the low-pass filter when the frequency point is determined with the resolution of frequencies from 0 to f2/N.

The amplitude frequency property inputted thus is supplied to the division circuit 52 where it is divided into frequency properties (b and c in Fig. 21) corresponding to two sampling frequencies and the numbers of the filter factors of the FIR filters 54 and 55. In (b) and (c) in Fig. 21 , x-marks and Δ-marks respectively amplitude values. A division method of the amplitude frequency property in the division circuit 52 will be described hereinbelow.

First, in the band of 0 to f1/2 corresponding to the sampling frequency f1, the amplitude frequency property of 0 to f3 is inputted by the input circuit 51 with the frequency resolution f1/N and therefore this value is used as it is. The band of f3 to f1/2 of the frequency bands corresponding to the sampling frequency f1 provides a problem. Since in this band the amplitude frequency property is inputted with the frequency resolution of f2/N, it is required that a new amplitude frequency point with the f1/N frequency resolution is obtained from the value of this amplitude frequency property. Although there are various methods for obtaining this new amplitude frequency point, here, a description will be made in terms of a method using the linear interpolation. That is, when, of the amplitude and frequency values for f3 to f1/2, the value for f3 is A and the next value is B, the value C between A and B for the sampling frequency f1 can be obtained as follows because the sampling frequency f2 is twice the sampling frequency f1. C = (B - A) &peseta; (1/2) + A

The other values until f1/2 can be obtained similarly. Here, although the amplitude frequency property of the frequency band corresponding to the sampling frequency f1 is obtained by means of the linear interpolation, it is also appropriate that other methods such as multi-order function method is employed instead thereof.

On the other hand, with respect to the frequencies from f4 (>f3) to f1/2, a correction is made so that the value of the amplitude frequency property of f1/2 becomes zero, and a method using this value may be employed as shown in Fig. 21. f4 is a value whereby the signal control level of the above-mentioned low-pass filter assumes a sufficient value (for example, the frequency droped by 10dB from the pass-band level). When the amplitude value inputted by the input circuit 51 at the frequency f4 is D, the value E at a new sampling frequency f1 can be obtained as follows and other values can be obtained similarly. E = - D/(f1/2 - f4) &peseta; f1/N + E

It is possible to further restrict the signals of the restricted bands of the previously mentioned low-pass filter. The condition that the amplitude frequency property at f1/2 is zero is also required when the filter factor is obtained under the condition of linear phase in the calculating circuit 53. Similarly, with respect to the band of the sampling frequency f2, the similar correction is made on the basis of a frequency f5 which does not affect a signal to be processed, resulting in the similar effect.

A further description will be made in terms of the amplitude frequency property at the frequency band of 0 to f2/2 corresponding to the sampling frequency f2.

Since values at frequencies between f3 and f2/2 is inputted with the frequency resolution f2/N in the input circuit 51, the value can be used as it is. With respect to values at the frequencies from 0 to f3, because of being different in frequency resolution, the inputted amplitude frequency property cannot be used as it is and therefore the values at the band would be obtained in accordance with calculation. Various calculation methods are considered. Here, described is a method for thinning the inputted amplitude frequency property. That is, since f2 is two times of f1, the sampling frequency f2 between 0 to f3 and the amplitude frequency property of the filter factor N can be obtained by thinning one for two amplitude frequency properties inputted with the frequency resolution f1/N (see c of Fig. 19). Thinning allows the amplitude frequency property of the frequency band corresponding to the sampling frequency f2 to being obtained from the amplitude frequency property inputted with the frequency resolution f1/N by the input circuit 51. Although in the above case the amplitude frequency property of the frequency band corresponding to the sampling frequency f2 is obtained by means of thinning, it is also appropriate to use other methods such as method wherein the amplitude frequency property of 0 to f6 (<f3) is zero or 0 dB (= 1.0).

Subsequently, in the calculating circuit 53, the filter factors of the FIR filters 54 and 55 are obtained using the two frequency properties obtained in the division circuit 52. Here, the calculation is performed, for example, such that the amplitude frequency properties of returning-down of the respective frequency bands (f1/2 to f1, f2/2 to f2) are obtained and the reverse-Fourier transformation is effected to obtain a filter factor under the conditions that, in linear phase, the amplitude frequency property is set as a real number item and the imaginary number item is zero. It is also appropriate to use a method in which the imaginary number item is not set to zero but the reverse-Fourier transformation is made with provision of an imaginary number item representing a phase frequency property or group delay property. It is further appropriate to employ a filter factor calculation method in which the minimum phase transition is effected in accordance with the relation of the Hilbert transformation. By processing thus, with respect to the frequency bands corresponding to the respective sampling frequencies, filter factors can be obtained so as to realize the inputted amplitude frequency property (or amplitude frequency property and phase frequency property or group delay property). The filter factors are inputted to the FIR filters 54 and 55 corresponding to the respective frequency bands, thereby realizing the actually inputted amplitude and frequency property.

Although in this embodiment, in the input circuit 51, the amplitude frequency property is first-kind-sampled (the frequency point is set every f1/N from the frequency 0 and every f2/N from f3), even if it is second-kind-sampled (the frequency point is set every f1/N from f1/N &peseta; 1/2 and every f2/N from f3), the frequency division can be performed to obtain filter factors corresponding to the respective frequency bands. In this case, the slippage of the frequency points occurs due to difference of the frequency bands. However, this is removed by means of linear interpolation, multi-order function approximation or the like. Furthermore, although in this embodiment an amplitude frequency property is inputted, it is also appropriate to input other frequency property such as phase frequency property or group delay frequency property.

Fig. 22 is a graphic diagram showing an input method of an amplitude frequency property in an input circuit and a method of frequency division in a division circuit which are according to an eighth embodiment of the present invention. An arrangement of the eighth embodiment is similar to that of the seventh embodiment of Fig. 18 and the difference of this eighth embodiment to the sixth embodiment is the input method and division method.

The amplitude frequency property (a of Fig. 22) which can be inputted by an input circuit 51 is set with a frequency resolution different from the sampling frequencies f1, f2 which allow process over the entire band (in this case, f1/2N). In a division circuit 52, for obtaing a frequency point possible to process the actual signal, with respect to the frequency band corresponding to the sampling frequency of f1, operation is made so as to thin one of two frequency points inputted (see b of Fig. 22), and with respect to the frequency band corresponding to the sampling frequency of f2, operation is made so as to thin one of four frequency points inputted (see c of Fig. 22), whereby the inputted amplitude frequency property can be divided. The other operations are similar to the oeprations in the tenth embodiment. Even in the case that, as in the eleventh embodiment, the frequency property is set with a frequency resolution different from the frequency resolution which allows the process, the execution of an appropriate operation in the division circuit 52 results in obtaining a frequency property which can be processed, thus allowing obtaining the filter factors of FIR filters 54 and 55. Although in this embodiment the first kind sampling is performed, it is also considered to perform the second kind sampling. Furthermore, in the case that in the tenth and eleventh embodiments the first kind sampling is performed, generally, it is required to process the filter factors, obtained in a calculating circuit 3, with a window. However, it is not required to process it with the window in the case of the second kind sampling.

A ninth embodiment of the present invention will be described hereinbelow with reference to Fig. 23 which is a block diagram showing a filter-factor calculating unit for a FIR filter.

In Fig. 23, numeral 50 is an input portion for selecting a frequency value and an amplitude value by movements upwardly, downwardly and in the left and right directions, numeral 56 is a setting switch for determining the frequency value and the amplitude value, numeral 57 represents a display portion for indicating an amplitude frequency property, the present frequency value and amplitude value with a +-mark, and the frequency value and the amplitude value with numerals, numeral 58 designates a calculating circuit for obtaining a filter factor on the basis of the set amplitude frequency property, and numeral 59 depicts a transferring circuit for transferring the filter factor to an external FIR filter. The display portion of the filter-factor calculating unit according to this embodiment is illustrated in Fig. 24. In Fig. 24, numeral 60 is a graph whose horizontal axis represents frequencies and whose vertical axis represents amplitudes, numeral 61 is an amplitude and frequency property set and indicated, numeral 62 is a +-mark arranged to be moved in accordance with movement of the input portion 50, and numeral 63 is a numeral indicating the frequency value and amplitude value corresponding to the position of the +-mark 62. The frequency value and amplitude value is set and displayed at a position of the +-mark 62 indicated by a character A. The unit of the horizontal axis is logarithm and the unit of the vertical axis is dB.

Fig. 25 shows an arrangement of the input portion 50 of the filter-factor calculating unit. In Fig. 25, numeral 64 is a main portion thereof, numeral 65 represents a ball, and numerals 66 and 67 are rollers, respectively. In Fig. 25, with the main portion 64 being positioned up or down, the ball 65 is rotated, or the ball 65 is rotated by movement of the main portion 64. The rotation of the ball 65 is transmitted to the rollers 66 and 67 whose rotations are converted electrically or mechanically. This conversion corresponds to the movement of the +-mark 62 of the display portion 57.

When the input portion 50 is moved, the +-mark 62 of the display portion 57 is moved in correspondance to the movement thereof and the frequency value and amplitude value corresponding to the point A which is the center (circle-mark indicated with flashing) of the +-mark 62 are displayed with numerals. The +-mark 62 is moved to the position corresponding to a frequency value and amplitude value to be set and the setting switch 56 is depressed, whereby the desirable frequency value and amplitude value corresponding to the position of the +-mark 62 are set acutally. In the display portion 57, the previous frequency value and amplitude value are stored and thses values and newly set values are connected with a straight line or a curved line, and when a line is indicated for the same value, the line is eliminated and a new line is indicated to set its value. The amplitude frequency property set thus is set to the calculating circuit 58. Here, a complex variable function including phase information is calculated in accordance with a method based on the Hilbert transformation or linear phase. The reverse-Fourier transformation thereof results in obtaining a filter factor of a FIR filter. The obtained filter factor is transferred by the transferring circuit 59 to the external FIR filter so that it is set thereto. Although in this embodiment the filter is a FIR filter, it is allowed that the filter is a parametric type filter. In this case, the filter factor obtained in the calculating circuit is used as a parameter (frequency, Q, gain) of each of the filters. it is appropriate that the A-point is indicated by a +-mark.


Anspruch[de]
  1. Filterkoeffizienten- Berechnungsgerät für ein Transversalfilter, mit:

       einem Eingabemittel zur Eingabe eines gewünschten Frequenzgangs, dadurch gekennzeichnet, daß das Gerät des weiteren ausgestattet ist mit:

       einem an das Eingabemittel angekoppelten Dividiermittel, das den eingegebenen Frequenzgang in eine Vielzahl von Frequenzbändern aufteilt, und mit

       einem an das Dividiermittel angekoppelten Berechnungsmittel, das für die aufgeteilten Frequenzbänder eigene Filterkoeffizienten erzeugt, um den geteilten eingegebenen Frequenzgang in dem betreffenden Frequenzband zu realisieren.
  2. Filterkoeffizienten- Berechnungsgerät nach Anspruch 1, dessen gewünschter Frequenzgang einen Amplituden- Frequenzgang, einen Phasen- Frequenzgang einen Gruppenlaufzeit- Frequenzgang oder einen Frequenzgang der Gruppenlaufverzerrung umfaßt.
  3. Filterkoeffizienten- Berechnungsgerät nach Anspruch 1 oder 2, dessen Eingabemittel den Frequenzgang mit einer der Anzahl der Filterkoeffizienten zugeordneten Frequenzauflösung eingibt.
  4. Filterkoeffizienten- Berechnungsgerät nach Anspruch 1 oder 2, dessen Eingabemittel in Hinsicht auf die Überlappungsabschnitte der Frequenzbander, die der Vielzahl verschiedener Abtastfrequenzen zugeordnet sind, den Frequenzgang entsprechend der Anzahl der Filterkoeffizienten für die jeweiligen Frequenzbänder mit einer niedrigeren Frequenzauflösung eingeben, und dessen Dividiermittel bei sich überlappenden Bändern einen Frequenzgang mit höherer Frequenzauflösung aus dem Frequenzgang mit der niedrigeren Frequenzauflösung erzeugt, um die Aufteilung des Frequenzgangs zu erreichen.
  5. Filterkoeffizienten- Berechnungsgerät nach Anspruch 1 oder 2, dessen Eingabemittel den Frequenzgang in der Nähe der Grenze der Überlappungsabschnitte der Frequenzbänder, die der Vielzahl verschiedener Abtastfrequenzen zugeordnet sind, entsprechend der Anzahl der Filterkoeffizienten für die jeweiligen Frequenzbänder mit höherer Frequenzauflösung eingibt, und dessen Dividiermittel aus dem Frequenzgang mit der niedrigeren Frequenzauflösung einen Frequenzgang in der Nähe der Grenze des Überlappungsabschnitts zum anderen Frequenzband auf der Grundlage des eingegebenen Frequenzgangs mit der höheren Frequenzauflösung zur Aufteilung des Frequenzgangs erzeugt.
  6. Filterkoeffizienten- Berechnungsgerät nach Anspruch 1 oder 2, dessen Eingabemittel den Frequenzgang mit einer von der Anzahl der Filterkoeffizienten unabhängigen Frequenzauflösung eingibt und eine Berechnung ausführt, so daß der eingegebene Frequenzgang einen Wert auf der Grundlage einer Frequenzauflösung entsprechend der Anzahl der Filterkoeffizienten annimmt.
  7. Filterkoeffizienten- Berechnungsgerät nach einem der vorstehenden Ansprüche, dessen Eingabemittel eine Abtastung erster Art ausführt, bei der Abtastpunkte bei jeder Frequenzauflösung ab der Frequenz von Null genommen werden, wobei die Frequenzauflösungen auf der Grundlage der Abtastfrequenzen und der Filterkoeffizienten bestimmt werden.
  8. Filterkoeffizienten- Berechnungsgerät nach einem der Ansprüche 1 bis 6, dessen Eingabemittel eine Abtastung zweiter Art ausführt, bei der Frequenzabtastpunkte bei jeder Frequenzauflösung ab einer Frequenz genommen werden, die der halben Frequenzauflösung auf der Grundlage der Abtastfrequenz und der Filterkoeffizienten entspricht.
  9. Filterkoeffizienten- Berechnungsgerät nach einem der Ansprüche 1 bis 6, dessen Eingabemittel den Frequenzgang in keinerlei Verbindung mit der Abtastung erster Art und der Abtastung zweiter Art eingibt, und dessen Dividiermittel die Abtastpunkte in der ersten oder der zweiten Art auf der Grundlage des von dem Eingabemittel eingegebenen Frequenzgangs erzeugt.
  10. Filterkoeffizienten- Berechnungsgerät nach einem der Ansprüche 1 bis 7, dessen Eingabemittel einen Filterkoeffizienten durch Multiplizieren des durch die Berechnungsmittel erzeugten Filterkoeffizienten mit einer Fensterfunktion erzeugt, wenn der durch das Dividiermittel eingestellte Frequenzgang mit der Abtastung der ersten Art übereinstimmt.
  11. Filterkoeffizienten- Berechnungsgerät nach einem der vorstehenden Ansprüche, dessen Dividiermittel eine Korrektur für eine Aufteilung durchführt, so daß der Frequenzgang ab einer Frequenz über der oberen Grenzfrequenz eines Bandpaßfilters zu Null wird, um die Frequenzaufteilung eines von dem Transversalfilter bei der Nyquist- Frequenz des Frequenzbandes entsprechend dem Transversalfilter einzugeben, wobei die Nyquist-Frequenz die halbe Abtastfrequenz ist.
  12. Filterkoeffizienten- Berechnungsgerät nach einem der vorstehenden Ansprüche, dessen Dividiermittel eine Aufteilungskorrektur durchführt, so daß der Frequenzgang bei Annäherung an die Nyquist- Frequenz des Frequenzbandes, dem aus der Vielzahl verschiedener Abtastfrequenzen eine zugeordnet ist, zu Null wird, wobei die Nyquist- Frequenz die halbe Abtastfrequenz ist.
  13. Filterkoeffizienten- Berechnungsgerät nach einem der vorstehenden Ansprüche, dessen Berechnungsmittel über ein erstes Transformationsmittel zur Ausführung einer Hilbert-Transformation oder einer phasenlinearen Transformation in Hinsicht auf den jeweiligen vom Dividiermittel aufgeteilten Frequenzgang verfügt.
  14. Filterkoeffizienten- Berechnungsgerät nach Anspruch 13, dessen Berechnungsmittel über ein Umkehr- Fourrier-Transformationsmittel zur Ausführung der Umkehr- Fourrier-Transformation des vom ersten Transformationsmittel gewonnenen Frequenzgangs verfügt.
  15. Filterkoeffizienten- Berechnungsgerät nach einem der vorstehenden Ansprüche, das des weiteren ausgestattet ist mit:

       einem Eingabemittel zur Eingabe eines gewünschten Amplituden- Frequenzgangs;

       einem Bandteilmittel zur Aufteilung des Bandes des eingegebenen Amplituden- Frequenzgangs in eine Vielzahl von Bändern und zur Ausdünnung der Abtastpunkte;

       einem ersten Transformationsmittel zur Ausführung einer Hilbert- Transformation oder einer phasenlinearen Transformation in Hinsicht auf die Amplitudenfrequenz eines jeden durch von dem Bandteilmittel aufgeteilten Bandes;

       einem zweiten Transformationsmittel zur Ausführung einer Umkehr- Fourrier- Transformation in Hinsicht auf die von dem ersten Transformationsmittel transformierte Kennlinie; und mit

       Übertragungsmitteln zur direkten oder indirekten Übertragung der von den zweiten Transformationsmitteln erzeugten Filterkoeffizienten.
  16. Filterkoeffizienten- Berechnungsgerät nach Anspruch 15, das des weiteren ausgestattet ist mit:

       Abtastfrequenz- Transformationsmitteln zur derartigen Verarbeitung, daß die Abtastfrequenzen von durch die Umkehr-Fourrier- Transformationsmittel gewonnenen Filterkoeffizienten in Hinsicht auf jedes der aufgeteilten Frequenzbänder untereinander übereinstimmen;

       Bandpaß- Filtermitteln zur Eingabe nur eines Signals des Bandes von jedem Ausgangssignal aus den Abtastfrequenz-Transformationsmitteln; und mit

       Addiermitteln zur Addition des hinsichtlich eines jeden Bandes gewonnenen Filterkoeffizienten,

       wobei die addierten Filterkoeffizienten von den Übertragungsmitteln übertragen werden.
Anspruch[en]
  1. A filter-factor calculating apparatus for a transversal filter, comprising

       inputting means for inputting a desirable frequency characteristic; and characterised in that it further comprises:

       division means coupled to said inputting means for dividing the inputted frequency characteristic into a plurality of frequency bands; and

       calculating means coupled to said division means for obtaining for the divided frequency bands respective filter factors for realising the divided inputted frequency characteristic in the respective divided frequency band.
  2. A filter-factor calculating apparatus as claimed in claim 1, wherein the desirable frequency characteristic is one of an amplitude frequency characteristic, a phase frequency characteristic a group delay frequency characteristic and a group delay distortion frequency characteristic.
  3. A filter-factor calculating apparatus as claimed in claim 1 or 2 wherein said inputting means inputs the frequency characteristic with a frequency resolution corresponding to the number of said filter factors.
  4. A filter-factor calculating apparatus as claimed in claim 1 or 2 wherein said inputting means, with respect to overlapping portions of the frequency bands corresponding to a plurality of different sampling frequencies, inputs the frequency characteristic with a smaller one of the frequency resolutions corresponding to the numbers of the filter factors for the respective frequency bands, and said division means, when the frequency bands are overlapped, obtains a frequency characteristic of the greater frequency resolution from the frequency characteristic with the smaller frequency resolution for achieving the division of the frequency characteristic.
  5. A filter-factor calculating apparatus as claimed in claim 1 or 2 wherein, in the vicinity of the boundary of overlapping portions of the frequency bands corresponding to a plurality of different sampling frequencies, said inputting means inputs the frequency characteristics with greater frequency resolutions corresponding to the numbers of the filter factors for the respective frequency bands, and said division means obtains, of the frequency characteristics with the smaller frequency resolutions, a frequency characteristic in the vicinity of the boundary of an overlapping portion to the other frequency band on the basis of the inputted frequency characteristic with the greater frequency resolution for performing of the division of the frequency characteristic.
  6. A filter-factor calculating apparatus as claimed in claim 1 or 2 wherein said inputting means inputs the frequency characteristic with a frequency resolution irrespective of the number of the filter factors and performs a calculation so that the inputted frequency characteristic assumes a value based on a frequency resolution corresponding to the number of the filter factors.
  7. A filter-factor calculating apparatus as claimed in any preceding claim, wherein said inputting means performs a first kind sampling in which sampling points are taken at every frequency resolution from the frequency of 0, the frequency resolutions being determined on the basis of the sampling frequencies and the filter factors.
  8. A filter-factor calculating apparatus as claimed in any one of claims 1 to 6, wherein said inputting means performs a second kind sampling in which frequency sampling points are taken every frequency resolution from a frequency which is half a frequency resolution based upon the sampling frequency and the filter factor.
  9. A filter-factor calculating apparatus as claimed in any one of claims 1 to 6, wherein said inputting means inputs the frequency characteristic in no connection with a first kind sampling and a second kind sampling and said division means obtains the first or second kind sampling points on the basis of the frequency characteristic inputted by said inputting means.
  10. A filter-factor calculating apparatus as claimed in any one of claims 1 to 7, wherein said inputting means, when the frequency characteristic set by said division means is in accordance with the first kind sampling, obtains a filter factor by multiplying the filter factor obtained by said calculating means by a window function.
  11. A filter-factor calculating apparatus as claimed in any preceding claim, wherein said division means performs a correction for a division so that the frequency characteristic becomes zero from a frequency over the high cut-off frequency of a band-pass filter for effecting the frequency division of a signal inputted to the transversal filter toward the Nyquist frequency of the frequency band corresponding to the transversal filter, the Nyquist frequency being 1/2 of the sampling frequency.
  12. A filter-factor calculating apparatus as claimed in any preceding claim, wherein said division means, for a division, performs a correction so that the frequency characteristic becomes zero with respect to Nyquist frequency of the frequency band corresponding to one of a plurality of different sampling frequencies, the Nyquist frequency being half the sampling frequency.
  13. A filter-factor calculating apparatus as claimed in any preceding claim, wherein said calculating means has a first transformation means for performing a Hilbert transformation or a linear phase transformation with respect to the respective frequency characteristics divided by said division means.
  14. A filter-factor calculating apparatus as claimed in claim 13, wherein said calculating means has a inverse-Fourier transformation means for performing the reverse-Fourier transformation of the characteristic obtained by said first transformation means.
  15. A filter-factor calculating apparatus as claimed in any preceding claim, further comprising:

       inputting means for inputting a desirable amplitude frequency characteristic;

       band-division means for dividing the band of the inputted amplitude frequency characteristic into a plurality of bands and for thinning sampling points;

       first transformation means for performs a Hilbert transformation or a linear phase transformation with respect to the amplitude frequency of each of the bands divided by said band-division means;

       second transformation means for performing a reverse-Fourier transformation with respect to the characteristic transformed by said first transformation means; and

       transferring means for directly or indirectly transferring the filter factor obtained by said second transformation means.
  16. A filter-factor calculating apparatus as claimed in claim 15, further comprising:

       sampling frequency transformation means for performing a process such that sampling frequencies of filter factors obtained by said reverse-Fourier transformation means with respect to each of the divided frequency bands are coincident with each other;

       band-pass filter means for outputting only a signal of the band from each of the outputs of said sampling frequency transformation means; and

       addition means for performing the addition of the filter factor obtained with respect to each of the bands,

       wherein the added filter factors are transferred by said transferring means.
Anspruch[fr]
  1. Appareil de calcul des facteurs de filtrage pour un filtre transversal, qui comprend un moyen d'entrée destiné à entrer une courbe de réponse de fréquence souhaitable et qui est caractérisé en ce qu'il comprend en outre :
    • un moyen diviseur couplé audit moyen d'entrée pour diviser la courbe de réponse de fréquence entrée en une pluralité de bandes de fréquences, et
    • un moyen de calcul couplé audit moyen diviseur afin de déterminer, pour les bandes de fréquences divisées, des facteurs de filtrages respectifs permettant d'obtenir la courbe de réponse de fréquence d'entrée divisée dans les bandes de fréquence divisées respectives.
  2. Appareil de calcul des facteurs de filtrage selon la revendication 1, dans lequel la courbe de réponse de fréquence souhaitable est une courbe de réponse choisie parmi une caractéristique fréquence -amplitude, une caractéristique fréquence-phase, une caractéristique fréquence-délai de groupe et une caractéristique fréquence-distortion du délai de groupe.
  3. Appareil de calcul des facteurs de filtrage selon la revendication 1 ou 2, dans lequel ledit moyen d'entrée entre la courbe de réponse de fréquence avec une résolution en fréquence qui correspond au nombre desdits facteurs de filtrage.
  4. Appareil de calcul des facteurs de filtrage selon la revendication 1 ou 2, dans lequel, pour les parties des bandes de fréquence qui se chevauchent et correspondent à une pluralité de fréquences d'échantillonnage différentes, ledit moyen d'entrée entre la courbe de réponse de fréquence avec la plus petite des résolutions en fréquence correspondant aux nombres des facteurs de filtrage pour les bandes de fréquence respectives, et ledit moyen diviseur détermine, quand les bandes de fréquence se chevauchent, une courbe de réponse de fréquence avec la plus grande résolution en fréquence à partir de la courbe de réponse de fréquence ayant la plus petite résolution en fréquence afin de réaliser la division de la courbe de réponse de fréquence.
  5. Appareil de calcul des facteurs de filtrage selon la revendication 1 ou 2 dans lequel, au voisinage de la frontière des parties des bandes de fréquence qui se chevauchent et correspondent à une pluralité de fréquences d'échantillonnage différentes, ledit moyen d'entrée entre les courbes de réponse de fréquence ayant les plus grandes résolutions en fréquence qui correspondent aux nombres des facteurs de filtrage pour les bandes de fréquence respectives, et ledit moyen diviseur détermine, à partir des courbes de réponse de fréquence ayant les plus petites résolutions en fréquence, une courbe de réponse de fréquence au voisinage de la frontière d'une partie qui chevauche une autre bande de fréquence en se basant sur la courbe de réponse de fréquence entrée avec la plus grande résolution en fréquence afin de réaliser la division de la courbe de réponse de fréquence.
  6. Appareil de calcul des facteurs de filtrage selon la revendication 1 ou 2, dans lequel ledit moyen d'entrée entre la courbe de réponse de fréquence avec une certaine résolution en fréquence quelque soit le nombre des facteurs de filtrage et effectue un calcul pour que la courbe de réponse de fréquence entrée prenne une valeur basée sur une résolution en fréquence qui correspond au nombre des facteurs de filtrage.
  7. Appareil de calcul des facteurs de filtrage selon l'une quelconque des précédentes revendications, dans lequel ledit moyen d'entrée effectue un premier type d'échantillonnage dans lequel des points d'échantillonnage sont pris à chaque définition de fréquence depuis la fréquence 0, les définitions de fréquence étant déterminées sur la base des fréquences d'échantillonnage et des facteurs de filtrage.
  8. Appareil de calcul des facteurs de filtrage selon l'une quelconque des revendications 1 à 6, dans lequel ledit moyen d'entrée effectue un second type d'échantillonnage dans lequel des points d'échantillonnage sont pris à chaque définition de fréquence depuis une fréquence qui est la moitié d'une définition de fréquence basée sur la fréquence d'échantillonnage et le facteur de filtrage.
  9. Appareil de calcul des facteurs de filtrage selon l'une quelconque des revendications 1 à 6, dans lequel ledit moyen d'entrée entre la courbe de réponse de fréquence sans lien avec le premier type d'échantillonnage ni le second type d'échantillonnage et ledit moyen diviseur détermine les points d'échantillonnage du premier ou du second type sur la base de la courbe de réponse de fréquence entrée par ledit moyen d'entrée.
  10. Appareil de calcul des facteurs de filtrage selon l'une quelconque des revendications 1 à 7, dans lequel ledit moyen d'entrée, lorsque la courbe de réponse de fréquence établie par ledit moyen diviseur est en accord avec le premier type d'échantillonnage, détermine un facteur de filtrage en multipliant par une fonction fenêtre le facteur de filtrage obtenu par ledit moyen de calcul.
  11. Appareil de calcul des facteurs de filtrage selon l'une quelconque des précédentes revendications, dans lequel ledit moyen diviseur réalise une correction de la division de telle sorte que la courbe de réponse de fréquence devienne nulle à partir d'une fréquence supérieure à la fréquence de coupure haute d'un filtre passe-bande, afin d'effectuer la division en fréquence d'un signal entré dans le filtre transversal vers la fréquence de Nyquist de la bande de fréquences qui correspond au filtre transversal, la fréquence de Nyquist étant la moitié de la fréquence d'échantillonnage.
  12. Appareil de calcul des facteurs de filtrage selon l'une quelconque des précédentes revendications, dans lequel ledit moyen diviseur réalise une correction de la division de telle sorte que la courbe de réponse de fréquence devienne nulle pour la fréquence de Nyquist de la bande de fréquences qui correspond à une fréquence parmi plusieurs fréquences d'échantillonnage différentes, la fréquence de Nyquist étant la moitié de la fréquence d'échantillonnage.
  13. Appareil de calcul des facteurs de filtrage selon l'une quelconque des précédentes revendications, dans lequel ledit moyen de calcul comprend un premier moyen de transformation servant à effectuer une transformation de Hilbert ou une transformation linéaire de phase pour les courbes de réponse de fréquence respectives divisées par ledit moyen diviseur.
  14. Appareil de calcul des facteurs de filtrage selon la revendication 13, dans lequel ledit moyen de calcul comprend un moyen de transformation de Fourier inverse qui réalise la transformation de Fourier inverse de la courbe de réponse obtenue par ledit premier moyen de transformation.
  15. Appareil de calcul des facteurs de filtrage selon l'une quelconque des précédentes revendications qui comprend en outre :
    • un moyen d'entrée pour entrer une courbe de réponse fréquence-amplitude souhaitable,
    • un moyen de division en bandes pour diviser la bande de la courbe de réponse fréquence-amplitude entrée en une pluralité de bandes et pour amincir les points d'échantillonnage,
    • un premier moyen de transformation servant à effectuer une transformation de Hilbert ou une transformation linéaire de phase pour la courbe de réponse fréquence-amplitude de chacune des bandes divisées par ledit moyen de division en bandes,
    • un second moyen de transformation servant à réaliser la transformation de Fourier inverse de la courbe de réponse transformée par ledit premier moyen de transformation, et
    • un moyen de transfert pour transférer directement ou indirectement le facteur de filtrage obtenu par ledit second moyen de transformation.
  16. Appareil de calcul des facteurs de filtrage selon la revendication 15, comprenant en outre :
    • un moyen de transformation de la fréquence d'échantillonnage qui effectue une opération de telle sorte que les fréquences d'échantillonnage des facteurs de filtrage que fournit ledit moyen de transformation de Fourier inverse pour chaque bande de fréquence divisée coïncident les unes avec les autres,
    • un moyen formant filtre passe-bande pour émettre uniquement un signal de la bande de chaque sortie dudit moyen de transformation de la fréquence d'échantillonnage, et
    • un moyen d'addition qui effectue l'addition du facteur de filtrage obtenu pour chacune des bandes, dans lequel les facteurs de filtrages additionnés sont transférés par ledit moyen de transfert.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com