PatentDe  


Dokumentenidentifikation DE3852168T2 22.06.1995
EP-Veröffentlichungsnummer 0311278
Titel Prozess zur Herstellung eines thermoplastischen Polyurethanharzes.
Anmelder Nippon Polyurethane Industry Co., Ltd., Tokyo, JP
Erfinder Ohbuchi, Yukio, Yokohama-shi Kanagawa-ken, JP;
Maeda, Yoshiaki, Yokohama-shi Kanagawa-ken, JP;
Kawasaki, Masahiro, Yokohama-shi Kanagawa-ken, JP;
Sato, Susumu, Yokohama-shi Kanagawa-ken, JP;
Akimoto, Mamoru, Yokohama-shi Kanagawa-ken, JP
Vertreter Grünecker und Kollegen, 80538 München
DE-Aktenzeichen 3852168
Vertragsstaaten DE, FR, GB
Sprache des Dokument En
EP-Anmeldetag 22.09.1988
EP-Aktenzeichen 883088163
EP-Offenlegungsdatum 12.04.1989
EP date of grant 23.11.1994
Veröffentlichungstag im Patentblatt 22.06.1995
IPC-Hauptklasse C08G 18/44
IPC-Nebenklasse C08G 18/76   

Beschreibung[de]

Diese Erfindung betrifft thermoplastische Polyurethan-Harze, und besonders thermoplastische Polyurethan-Harze mit verbesserter Hydrolysebeständigkeit, Wärmebeständigkeit, Temperaturabhängigkeit und mit verbessertem compression Set.

Thermoplastische Polyurethan-Harze haben ausgezeichnete physikalische Eigenschaften wie z.B. hohe Zugfestigkeit, eine hohe Beständigkeit gegen Ermüdungserscheinungen und gute Elastizität bei niedrigen Temperaturen, ebenso wie gute Abriebfestigkeit, - verglichen mit anderen thermoplastischen Harzen haben sie ausgezeichnete Eigenschaften.

Weiterhin sind thermoplastische Polyurethan-Harze geeignet zur Herstellung von Teilen geringer Größe wie z.B. von Präzisionsteilen, umfassend Dichtungen, schallgedämpfte Getriebe, Lager, Verbindungsstücke, Teile für Präzisionsmaschinen, Automobilteile und Teile für elektronische Instrumente. Aus diesen Polyurethanen können außerdem durch spritzguss Gurte, Schläuche, Röhren, Platten und Folien erzeugt werden.

Wenn man jedoch thermoplastische Polyurethan-Harze mit gegossenen elastomeren Formartikeln aus Urethan-Kautschuk vergleicht, so sind thermoplastische Polyurethan-Harze unterlegen hinsichtlich des compression set, und besonders bei der Verwendung als Dichtungsmaterial steigt die Verformung, was zur Verschlechterung der Dichtungseigenschaften führt. Für Flüssigkeit und Luft undichte Stellen können dann zu Problemem führen. Außerdem hat die Temperaturabhängigkeit den Nachteil, daß möglicherweise Änderungen der Härte auftreten können.

Die Temperaturgrenze, bis zu der die üblichen thermoplastischen Polyurethan-Harze vom Typ des Diphenylmethandiisocyanats (im folgenden als MDI bezeichnet) benutzt werden können, liegt bei etwa 100ºC. Aus diesem Grunde ist es seit langem wünschenswert, die Wärmebeständigkeit von Rohren, Überzügen und Dichtungen aus diesen Harzen zu verbessern, damit diese Teile in der Nähe von Automotoren auch unter Hochtemperaturbedingungen benutzt werden können.

Diese Polyurethan-Harze erfüllen ihren Zweck allerdings gut, wenn man sie mit anderen thermoplastischen Harzen (z.B. mit Polyvinylchlorid oder mit Harzen vom Polyester- und Polystyrol-Typ) hinsichtlich der Ölbeständigkeit und der Abriebfestigkeit vergleicht, und deshalb wurden für die Verwendung als Automobilteile Materialien mit geringer Härteänderung auch bei erhöhten Temperaturen gewünscht. Unter den thermoplastischen Harzen, die bei relativ höheren Temperaturen benutzt werden können, sind Polyester-Elastomere, aber diese sind unterlegen hinsichtlich des compression set und der Abriebfestigkeit, wenn man sie mit thermoplastischen Polyurethan-Harzen vergleicht.

Andererseits ist es bekannt, daß thermoplastische Polyurethan-Harze (im folgenden als TPU bezeichnet) eine verbesserte Hydrolyse- und Wärmebeständigkeit besitzen, wenn sie aus einem Polycarbonat-polyol hergestellt wurden, aber die meisten dieser TPU benutzen MDI als Diisocyanat- Komponente, und diese thermoplastischen Polyurethane(TPU) auf MDI/Polycarbonat-Basis haben verschiedene Nachteile wie z.B. schlechtere Eigenschaften bei niedriger Temperatur, eine hohe Temperaturabhängigkeit der Härte, einen schlechteren compression set und eine geringe Stoßelastizität, und es bestand ein dringendes Bedürfnis diese Nachteile zu vermeiden.

Die vorliegende Erfindung versucht die Nachteile zu überwinden, die nach dem oben erwähnten bisherigen Stand der Technik nicht vermieden werden konnten, nämlich die Beständigkeit gegen Wärmealterung, die Temperaturabhängigkeit der Härte, den compression set und die Charakteristik bei niedriger Temperatur; die Erfindung basiert auf der Beobachtung, daß diese Eigenschaften verbessert werden können durch die Verwendung eines spezifischen Polycarbonatpolyols und eines spezifischen Diisocyanates als die Komponenten, aus denen das thermoplastische Polyurethan-Harz besteht. Die FR-A-1 540 799 offenbart ein Verfahren zur Herstellung von Polyurethanen, wobei der Polycarbonat-polyol- Reaktand ein Derivat des Diarylcarbonats ist.

Entsprechend der vorliegenden Erfindung wird ein Verfahren zur Herstellung eines thermoplastischen Polyurethan-Harzes bereitgestellt, das folgende Schritte umfasst:

(i) Bei der Reaktion von 1,6-Hexanglykol mit Diethylcarbonat oder Ethylencarbonat entsteht ein Poly-(hexamethylencarbonat)-polyol mit endständigen Hydroxyl-Gruppen (Molekulargewicht von 850 bis 5000), und

(ii) Reaktion von (A), p-Phenylendiisocyanat, zusammen mit (B), dem Poly-(hexamethylencarbonat)-polyol mit endständigen Hydroxyl-Gruppen, und mit (C), einem kurzkettigen Polyol mit 2 bis 10 Kohlenstoff-Atomen, als Agens zur Kettenverlängerung, in einem molaren Verhältnis von (B) : (C) von 1 : 2 bis 1 : 0,05 und einem molaren Verhältnis der Isocyanat-Gruppen : Gesamtzahl der aktiven Wasserstoff-Atome von 0,93 : 1 bis 1,20 : 1, um ein thermoplastisches Polyurethan-Harz zu erhalten.

Das Poly-(hexamethylencarbonat)-polyol, das im ersten Reaktionsschritt dieser Erfindung erhalten wurde, hat ein Molekulargewicht von 850 bis 5000, vorzugsweise von 1000 bis 3000. Das Polyol wird durch Kondensation von 1,6-Hexanglykol mit Diethylcarbonat oder Ethylencarbonat erhalten und besitzt endständige Hydroxyl-Gruppen.

Das Poly-(hexamethylencarbonat)-polyol kann benutzt werden z.B. in Kombination mit Poly-(butylen-adipat)-polyol, Polycaprolacton-polyol, oder Poly-(hexamethylen-adipat)- polyol. Andere Polycarbonat-polyole als Poly-(hexamethylencarbonat)-polyol wie z.B. Polycarbonat-polyole, die von 1,5- Pentandiol, 3-Methyl-1,5-pentandiol oder Cyclohexandimethanol abgeleitet werden, können allein oder zusammen mit Poly-(hexamethylencarbonat)-polyol verwendet werden. Jedoch neigt die Leistungsfähigkeit dann zu einer geringen Verschlechterung, verglichen mit dem Fall der alleinigen Verwendung von Poly-(hexamethylencarbonat)-polyol.

Das organische Diisocyanat, das mit diesen Poly-(hexamethylencarbonat)-polyolen umgesetzt werden soll, ist p- Phenylendiisocyanat (im folgenden als PPDI bezeichnet) Dieses PPDI ist sehr schwer zu handhaben, da es ein Diisocyanat mit einem extrem hohen Schmelzpunkt von 95ºC und trotzdem sehr leicht sublimierbar ist, und außerdem neigt es dazu, sich im geschmolzenen Zustand in das Dimere umzuwandeln.

Für den Gebrauch als kettenverlängerndes Agens werden in der vorliegenden Erfindung kurzkettige Polyole mit 2 bis 10 Kohlenstoff-Atomen verwendet. Diese können z.B. umfassen: Ethylenglykol, 1,3-Propylenglykol, 1,4-Butandiol, Neopentylglykol, 3-Methyl-1,5-pentandiol, p-Xylolglykol, 1,4-Bis-(β-hydroxyethoxy)benzol, 1,3-Bis-(β-hydroxyethoxy)benzol, Cyclohexan-1,4-dimethanol, Octan-1,8-diol oder Decan-1,10-diol, und diese können entweder allein oder als Mischung von zwei oder mehreren Agenzien verwendet werden. Besonders bevorzugte Agenzien zur Kettenverlängerung sind 1,4-Butandiol und 1,4-Bis-(β-hydroxyethoxy) benzol.

Um entsprechend der vorliegenden Erfindung einen geringen Anteil von Quervernetzung in das Harz einzuführen, können Triole wie z.B. TMP, Glycerin und Hexan-1,2,6-triol dem Diol zugesetzt werden, wenn es nötig ist.

Die Isocyanat-Gruppe und der aktive Wasserstoff (Bestimmung nach der Methode von Zerewitinoff) müssen das stöchiometrische Verhältnis einhalten, und das molare Verhältnis zwischen den Isocyanat-Gruppen und dem aktiven Wasserstoff sollte von 0,93 : 1 bis 1,20 : 1 sein, vorzugsweise von 0,98 : 1 bis 1,10 : 1.

Wenn man außerdem das molare Verhältnis des Poly-(hexamethylencarbonat)-polyols zu dem in der vorliegenden Erfindung verwendeten kettenverlängernden Agens im Bereich von 1 : 2 bis 1 : 0,05, vorzugsweise von 1 : 1 bis 1 0,1 hält, können ausgezeichnete physikaliche Eigenschaften erhalten werden. Durch Variation des Verhältnisses von Poly- (hexamethylencarbonat)-polyol zu dem kettenverlängernden Agens, des Molekulargewichtes des Poly-(hexamethylencarbonat)-polyols und der Art des kettenverlängernden Agens kann ein thermoplastisches Polyurethan-Harz mit jeder gewunschten Härte erhalten werden.

Das thermoplastische Polyurethan-Harz entsprechend der vorliegenden Erfindung kann mit Additiven wie z.B. Antioxidantien, Schmierstoffen, Stabilisatoren, Pigmenten, Flammschutzmitteln und Agenzien, die die Wetterfestigkeit verbessern, wenn nötig in einem geeigneten Stadium der Herstellung vermischt werden.

Besonders bei der Herstellung unter Verwendung von hochmolekularem Poly-(hexamethylencarbonat)-polyol oder wenn der Anteil des kettenverlängernden Agens gering ist, kann ein tertiärer organischer Amin-Katalysator oder ein organischer Zinn-Katalysator verwendet werden. Typische organische Amin- Katalysatoren können Triethylamin, Triethylendiamin, N,N,N',N'-Tetramethylethylendiamin und N-Methylmorpholin, und deren Analoge umfassen. Typische organische Zinn- Katalysatoren können umfassen Zinn(II)-octoat, Zinn(II)- oleat, Dibutylzinndilaurat, Dibutylzinnoctoat und deren Analoge.

Die Verfahren zur Herstellung des thermoplastischen Polyurethan-Harzes entsprechend der vorliegenden Erfindung können in zwei Klassen eingeteilt werden; das einstufige Verfahren (one shot method) und das Prepolymer-Verfahren. Bei der Anwendung der vorliegenden Erfindung zeigt das Harz, das nach dem einstufigen Verfahren erhalten wurde, solche Eigenschaften, daß die Kristallinität ausgeprägt ist, daß die Schmelzeigenschaften während des Wärmeformverfahrens minderwertig sind, und daß das Verfahren trotzdem die Neigung hat, ein brüchiges Harz zu ergeben.

Folglich wird das thermoplastische Polyurethan-Harz entsprechend der vorliegenden Erfindung vorzugsweise nach dem Prepolymer-Verfahren hergestellt. Wenn die Herstellung entsprechend dem Prepolymer-Verfahren erfolgt, kann das gewünschte thermoplastische Polyurethan-Harz entweder nach dem Batch-Verfahren oder nach dem kontinuierlichen Verfahren hergestellt werden. Weil außerdem PPDI einen sehr hohen Schmelzpunkt hat, ist es gegen Verunreinigung (denaturation) im geschmolzenen Zustand empfindlich, und PPDI hat außerdem im geschmolzenen Zustand die Eigenschaft, sehr leicht zu sublimieren. Weil die notwendigen Anteile der Ausgangsstoffe bei der Herstellung entsprechend der vorliegenden Erfindung sorgfältig kontrolliert werden müssen, macht die Verwendung von PPDI im geschmolzenen Zustand Probleme bei der Einhaltung der korrekten stöchiometrischen Anteile der Isocyanat- Komponente und der Komponente mit den aktiven Wasserstoff- Atomen. Um das obige Problem bei der Herstellung des thermoplastischen Polyurethan-Harzes entsprechend der vorliegenden Erfindung zu vermeiden, sollte deshalb PPDI vorzugsweise in Form von Flocken eingesetzt werden.

Wenn bei dem Batch-Verfahren ein Prepolymer aus Poly- (hexamethylencarbonat)-polyol und PPDI synthetisiert wird und man das erhaltene Prepolymer mit dem kettenverlängernden Agens oder mit dem kettenverlängernden Agens und einem weiterem Anteil an Poly-(hexamethylencarbonat)-polyol reagieren lässt, ist es wegen der extrem hohen Viskosität des Prepolymeren günstig, die Herstellung mit Hilfe eines Zweischaufel-Kneters (two-arm type kneader), der eine hohe Rührkraft besitzt, durchzuführen. Zur Herstellung ist das in der japanischen Patent-Publikation Nr. 56-43245 beschriebene Verfahren nützlich.

In der vorliegenden Erfindung kann die Herstellung von Prepolymeren entweder in einem Reaktionsgefäß oder in einem Stempel-Kneter (pressure kneader) bei einer Reaktionstemperatur von 65ºC bis 95ºC und einer Reaktionsdauer von 15 bis 30 Minuten durchgeführt werden. Wenn man in diesem Fall das molare Verhältnis der Isocyanat-Gruppen : Zahl der aktiven Wasserstoff-Atome auf mehr als 2 : 1 ansteigen lässt, um einen Überschuss an Isocyanat-Gruppen zu erzeugen, dann wird das PPDI bei einer Temperatur von 90ºC oder höher sublimieren, so daß das Verhältnis von Isocyanat-Gruppen zur Zahl der aktiven Wasserstoff-Atome verändert wird und kein Produkt mit ausgezeichneten physikalischen Eigenschaften erhalten werden kann. Deshalb ist es in einem solchen Fall notwendig, die Temperatur des Prepolymeren bei 80ºC oder weniger zu halten.

Weiterhin kann bei der Herstellung des Polyurethan-Harzes nach dem Prepolymer-Verfahren die Reaktion des PPDI und des Poly-(hexamethylencarbonat)-polyols mit Hilfe eines Zweischaufel-Kneters ausgeführt werden, um das Prepolymer herzustellen, und anschließend lässt man das Prepolymer mit einem kettenverlängernden Agens oder mit einem kettenverlängernden Agens und einem weiteren Anteil an Poly- (hexamethylencarbonat)-polyol reagieren.

Bei dem kontinuierlichen Verfahren besitzt das Prepolymer eine hohe Viskosität und wird deshalb kontinuierlich durch eine Zahnrad-Pumpe für hohe Viskosität oder durch eine Schneckenpumpe gepumpt, und das kettenverlängernde Agens wird kontinuierlich durch eine Zahnrad-Pumpe für niedrige Viskosität gepumpt; beide Komponenten werden in einem Mischkopf vermischt und auf das Transportband gegossen. Die Mischung auf dem Transportband wird kontinuierlich in einem Heißluft-Trockenofen auf 140ºC bis 170ºC erhitzt, wodurch die Reaktion weiter fortschreitet. Der erhaltene, durch das Transportband geformte (belt shaped) Festkörper wird dann in einer Feinmühle zu Schuppen vermahlen. Nach einer ausreichenden Vernetzung durch Erhitzen kann das Produkt mit Hilfe eines Extruders in Stranggranulat oder abgerundete Pellets granuliert werden, um das gewünschte thermoplastische Polyurethan-Harz zu erhalten.

Das obige Verfahren ist der kontinuierliche Prozess, bei dem die Polymerisation unter den Bedingungen des stationären Zustandes durchgeführt wird; es gibt außerdem die sogenannte kontinuierliche stationäre Polymerisation, die in der japanischen Patent-Veröffentlichung Nr. 43-5920 beschrieben wird.

Es ist außerdem, - anders als bei den obigen Verfahren -, möglich, die kontinuierliche Polymeriation mit Hilfe eines Mehrwellen-Extruders (multi axial extruder) nach dem Prepolymer-Verfahren durchzuführen. Verfahren mit Hilfe eines Mehrwellen-Extruders umfassen auch die japanischen Patent-Veröffentlichungen Nr. 44-25600 und Nr. 56-5244, und jedes dieser Verfahren mag anwendbar sein. Weiterhin ist, um ein spezielles Beispiel zu geben - , auch die Herstellung mit Hilfe eines Speisewalzen-Extruders (planetary roller extruder) möglich. Weiterhin ist die Herstellung mit Hilfe eines Co-Kneters, wie er in der japanischen Patent- Veröffentlichung Nr. 49-31760 beschrieben ist, möglich.

Das Produkt dieser Erfindung zeigt spezifische, weiter unten beschriebene Eigenschaften, die nicht durch das nach dem Stand der früheren Technik erhaltene thermoplastische Polyurethan-Harz erreicht werden konnten, und es ist sehr nützlich für Teile zum industriellen Gebrauch und zur Verwendung im Automobil-Bereich.

1. Es besitzt eine ausgezeichnete Beständigkeit gegen Wärmealterung (heat aging resistance), und kann sogar bei erhöhten Temperaturen bis zu 150ºC verwendet werden.

2. Es besitzt einen außerordentlich guten, permanenten compression set, verglichen mit den thermoplastischen Elastomeren des bisherigen Standes der Technik.

3. Es besitzt eine außerordentlich niedrige Temperaturabhängigkeit der Härte, verglichen mit den Elastomeren des bisherigen Standes der Technik.

4. Es besitzt eine außerordentlich gute Beständigkeit gegen heißes Wasser.

5. Es besitzt eine gute Abriebfestigkeit.

6. Es besitzt eine gute Verarbeitbarkeit beim Spritzguß und bei der Extrusion.

Gemäß den oben beschriebenen, spezifischen Eigenschaften kann das der vorliegenden Erfindung entsprechende Harz durch Spritzguß mit guter Leistung (productivity) zu industriellen Teilen für den Gebrauch bei höheren Temperaturen verformt werden (Dichtungen, O-Ringe), Automobil-Teile (Dämpfer, Buchsen, Radblockierer) und andere.

Durch Extrusion hergestellte Gurte und Rohre können die Verwendung bei erhöhten Temperaturen aushalten.

Weiterhin kann das der vorliegenden Erfindung entsprechende Harz durch Spinnen aus der Schmelze zur Produktion von Spandex mit guter thermischer Stabilität und guter Beständigkeit gegen Dampf verwendet werden.

Beispiele

Die vorliegende Erfindung wird nachstehend durch die folgenden Beispiele und Vergleichsbeispiele genauer beschrieben. Wenn nicht anders angegeben, bedeuten "Teile" und "%" "Gewichtsteile" und "Gewichts-%".

Beispiel 1

Die Reaktion wurde durchgeführt zwischen 2010 g getrocknetem Poly-(hexamethylencarbonat)-polyol mit endständigen Hydroxyl-Gruppen (Molekulargewicht von 2010), - das durch die Kondensationsreaktion von 1,6-Hexanglykol und Diethylcarbonat erhalten wurde - , und 336 g PPDI, in einem mit einem Rührer ausgestatteten Reaktionsgefäß unter Rühren, wobei die Temperatur der Flüssigkeit 20 Minuten bei 80ºC gehalten wurde, um ein Prepolymer mit NCO-Gruppen zu erhalten.

Ein 3-Liter-Stempel-Kneter (mit einer Druckversorgungseinrichtung) wurde mit 2900 g des Prepolymeren beschickt, die Temperatur des Prepolymeren wurde unter Rühren bei 90ºC gehalten, und 111 g des getrockneten 1,4-Butandiols wurden zugegeben. Bei fortschreitender Reaktion stieg die Temperatur aufgrund der Reaktionswärme, und die Viskosität stieg plötzlich an. Das gebildete Harz wurde allmählich fest und guoll auf (bulked up). In diesem Reaktionsstadium wurde Kühlwasser durch die Ummantelung des Kneters geleitet, und der Druck-Stempel (pressurizing lid) wurde allmählich herunter gedrückt, um Druck auszuüben. Das Reaktionsprodukt wurde allmählich fein pulverisiert, und innerhalb von 30 Minuten nach Reaktionsbeginn wurde ein Polyurethan-Harz in Form eines feinen Pulvers erhalten. Das erhaltene Harz wurde durch 16-stündiges Erhitzen auf 105ºC weiter vernetzt. Das gebildete, pulverförmige Harz könnte auch als solches durch Extrusion oder durch Spritzguß weiter verarbeitet werden, aber die Granulierung wurde durch Extrusion erzielt, um Pellets von guter Form zu erhalten. Die erhaltenen Pellets wurden im Spritzguß mit außerordentlich guter Verformungseigenschaft verarbeitet. Im Spritzguß wurden Teststreifen hergestellt (Platten von 112 x 112 x 2 mm), und die physikalischen Eigenschaften wurden getestet, um die in der Tabelle 1 angegebenen Resultate zu erhalten. Weiterhin konnten die Pellets durch Extrusion zu Gurten, Platten und Rohren verarbeitet werden. Diese Produkte waren frei von Fischaugen (fish eyes), und hatten gute Oberflächeneigenschaften.

Beispiel 2

Ein 3-Liter-Stempel-Kneter wurde mit 2500 g des im Beispiel 1 verwendeten Poly-(hexamethylencarbonat)-polyols beschickt, und unter Rühren wurden bei 80ºC 418 g PPDI (in Schuppen- Form) zugesetzt. Während die Reaktion fortschritt, löste sich das PPDI vollständig auf, und die Viskosität der Reaktionsmischung stieg an. Als der NCO-Gehalt nach einer Reaktionsdauer von 20 Minuten gemessen wurde, wurde gefunden, daß sich der NCO-Gehalt in wesentlicher Übereinstimmung mit dem theoretischen NCO-Gehalt von 3,9 % befand.

Anschließend wurden unter fortgesetztem Rühren, zu dem Zeitpunkt, als die Temperatur des Prepolymeren auf 90ºC stieg, 112 g 1,4-Butandiol zugesetzt, um die Kettenverlängerungsreaktion durchzuführen. Bei fortschreitender Reaktion stieg die Temperatur aufgrund der Reaktionswärme, und auch die Viskosität stieg plötzlich an. Das gebildete Harz wurde allmählich fest. Die weitere Behandlung war die gleiche, wie im Beispiel 1 beschrieben. Die Granulierung wurde durch Extrusion erzielt, um Pellets von guter Form zu erhalten.

Die erhaltenen Pellets besaßen eine außerordentlich gute Verformungseigenschaft, ähnlich wie im Beispiel 1 beschrieben. Die Messergebnisse der physikalischen Eigenschaften der durch Spritzguß, - in der im Beispiel 1 beschriebenen Weise - , erhaltenen Teststreifen werden in der Tabelle 1 angegeben. Das Harz hatte ebenfalls sehr gute Verformungseigenschaften.

Beispiel 3

Das nach dem im Beispiel 1 beschriebenen Verfahren hergestellte Prepolymer wurde durch eine Zahnrad-Pumpe für hohe Viskosität mit einer Fördermenge von 1667 g/Minute gepumpt (delivered), und 1,4-Butandiol wurde durch eine Zahnrad- Pumpe für niedrige Viskosität mit einer Fördermenge von 63,8 g/Minute gepumpt, beides zu einem Mischkopf. Die Reaktionskomponenten wurden kontinuierlich im Mischkopf gemischt und auf ein Transportband gegossen, und die Reaktionsmischung wurde kontinuierlich auf 160ºC in einem Heißluft-Trockenofen erhitzt, in dem die Harz-Bildung weiterging. Der erhaltene, durch das Transportband geformte (belt shaped) Festkörper wurde in einer Feinmühle zu Schuppen vermahlen. Anschließend wurde das schuppenförmige Harz 16 Stunden lang bei 105ºC nachvernetzt; es folgte die Granulation durch Extrusion, um Pellets von guter Form zu erhalten.

Die erhaltenen Pellets hatten beim Spritzguß eine gute Verformungseigenschaft, ähnlich der im Beispiel 1 beschriebenen Verformungseigenschaft. Die Messergebnisse der physikalischen Eigenschaften der durch Spritzguß erhaltenen Teststreifen werden in der Tabelle 1 angegeben. Das Harz hatte ebenfalls eine gute Verformungseigenschaft.

Vergleichsbeispiel 1

Die Reaktion wurde in dem im Beispiel 1 beschriebenen Gefäß durchgeführt, zwischen 2010 g des gleichen getrockneten Poly-(hexamethylencarbonat)-polyols, wie es im Beispiel 1 verwendet wurde, und 1030 g MDI, um ein Pseudoprepolymer mit NCO-Gruppen herzustellen. Ein 3-Liter-Stempel-Kneter wurde mit 2500 g des Pseudoprepolymeren beschickt und gerührt, wobei die Temperatur des Prepolymeren bei 90ºC gehalten und getrocknetes 1,4-Butandiol zugesetzt wurde, um die Reaktion durchzuführen. Das Produkt wurde entsprechend den im Beispiel 1 angegebenen Schritten pelletiert, und die Teststreifen wurden nach den im Beispiel 1 beschriebenen Verfahren erhalten. Die Testresultate der physikalischen Eigenschaften werden in der Tabelle 1 angegeben.

Vergleichsbeispiel 2

Die Reaktion wurde in dem im Beispiel 1 beschriebenen Gefäß durchgeführt, zwischen 2010 g des gleichen getrockneten Poly-(hexamethylencarbonat)-polyols, wie es im Beispiel 1 verwendet wurde, und 776 g Toluidindiisocyanat, um ein Pseudoprepolymer mit NCO-Gruppen herzustellen. Ein 3-Liter- Stempel-Kneter wurde mit 2900 g des Pseudoprepolymeren beschickt und gerührt, wobei die Temperatur des Prepolymeren bei 110ºC gehalten und 168 g getrocknetes 1,4-Butandiol zugesetzt wurden, um die Reaktion durchzuführen. Das Produkt wurde entsprechend den im Beispiel 1 angegebenen Schritten pelletiert, und die Teststreifen wurden nach den im Beispiel 1 beschriebenen Verfahren erhalten. Die Testresultate der physikalischen Eigenschaften werden in der Tabelle 1 angegeben.

Vergleichsbeispiel 3

Die Reaktion wurde in dem im Beispiel 1 beschriebenen Gefäß durchgeführt, zwischen 2000 g eines getrockneten Polycaprolacton-polyols (mittleres Molekulargewicht von 2000), und 336 g PPDI, um ein Prepolymer mit NCO-Gruppen herzustellen.

Ein 3-Liter-Stempel-Kneter wurde mit 2900 g des Prepolymeren beschickt und gerührt, wobei die Temperatur des Prepolymeren bei 90ºC gehalten und 111 g getrocknetes 1,4-Butandiol zugesetzt wurden, um die Reaktion durchzuführen. Das Produkt wurde entsprechend den im Beispiel 1 angegebenen Schritten pelletiert, um Teststreifen zu erhalten. Die Testresultate der physikalischen Eigenschaften werden in der Tabelle 1 angegeben.

Vergleichsbeispiel 4

Die Reaktion wurde in dem im Beispiel 1 beschriebenen Gefäß durchgeführt, zwischen 2000 g eines getrockneten Polycaprolacton-polyols (mittleres Molekulargewicht von 2000), und 1181 g MDI, um ein Pseudoprepolymer mit einem NCO-Gehalt von 9,8 % herzustellen. Ein 3-Liter-Stempel-Kneter wurde mit 3000 g des Pseudoprepolymeren beschickt und gerührt, wobei die Temperatur des Prepolymeren bei 90ºC gehalten und 297 g getrocknetes 1,4-Butandiol zugesetzt wurden, um die Reaktion durchzuführen. Das Produkt wurde entsprechend den im Beispiel 1 angegebenen Schritten pelletiert, um Teststreifen zu erhalten. Die Testresultate der physikalischen Eigenschaften werden in der Tabelle 1 angegeben.

Beispiel 4

Unter Verwendung der Apparatur und des Verfahrens, das im Beispiel 2 beschrieben wurde, wurden 2500 g 1,6-Hexanpolycarbonat-polyol (Molekulargewicht von 2010) und 418 g PPDI eingesetzt, um ein Prepolymer mit NCO-Gruppen zu erhalten. Anschließend, als die Temperatur des Prepolymeren 95ºC betrug, wurden 246 g 1,4-Bis-(β-hydroxyethoxy)benzol zugesetzt, um die Kettenverlängerungsreaktion durchzuführen. Indem man anschließend den im Beispiel 1 beschriebenen Herstellungsschritten folgt, wurde die Pelletierung durchgeführt, um Teststreifen zu erhalten. Die Testresultate der physikalischen Eigenschaften werden in der Tabelle 1 angegeben.

Beispiel 5

Ein 3-Liter-Stempel-Kneter wurde, - unter Rühren, wie im Beispiel 2 beschrieben - , mit 2250 g des getrockneten Poly- (hexamethylencarbonat)-polyols (Molekulargewicht von 3000) und 252 g PPDI beschickt, um ein Prepolymer mit NCO-Gruppen (theoretischer NCO-Gehalt = 2,8 %) zu erhalten. Als die Temperatur des Prepolymeren 85ºC betrug, wurden 750 g Poly- (hexamethylencarbonat)-polyol (Molekulargewicht von 3000) und 99 g 1,4-Bis-(β-hydroxyethoxy)benzol zugesetzt, um die Kettenverlängerungsreaktion durchzuführen. Indem man den im Beispiel 1 beschriebenen Herstellungsschritten folgt, wurde die Pelletierung durchgeführt, um Teststreifen zu erhalten. Die Testresultate der physikalischen Eigenschaften werden in der Tabelle 1 angegeben.

Beispiel 6

Ein 3-Liter-Stempel-Kneter wurde mit 2020 g des getrockneten Poly-(hexamethylencarbonat)-polyols (Molekulargewicht von 1010) und 672 g PPDI (in Schuppen-Form) beschickt und bei 80ºC etwa 20 Minuten lang umgesetzt, um ein Pseudoprepolymer mit NCO-Gruppen zu erhalten (theoretischer NCO- Gehalt = 6,9%). Danach, als die Temperatur des Prepolymeren 80ºC betrug, wurden 180 g 1,4-Butandiol zugesetzt, um die Kettenverlängerungsreaktion durchzuführen. Indem man den im Beispiel 1 beschriebenen Herstellungsschritten folgt, wurde die Pelletierung durchgeführt, um Teststreifen zu erhalten. Die Testresultate der physikalischen Eigenschaften werden in der Tabelle 1 angegeben.

TABELLE 1
Spezifikation Nr. Beispiel Vergleichsbeispiel Härte Zugbeanspruchung Zugfestigkeit Dehnung Weiterreißfestigkeit compression set Stoßelastizität Erweichungstemperatur Wärmealterungsprüfung
TABELLE 1 (Fortsetzung)
Spezifikation Nr. Beispiel Vergleichsbeispiel Temperaturabhängigkeit der Härte Heißwasserbeständigkeit Tg (dynamische Viscoelastizität) Abriebverlust

Bemerkungen zu Tabelle 1:

1) entsprechend JIS K 7311

2) 70 ºC x 22 Stunden, 25 % Kompression entsprechend JIS K 6301

3) entsprechend JIS K 7206

4) Restfestigkeit nach Alterung entsprechend JIS K 6301

5) bei 98 bis 100 ºC 5 Stunden lang eingetaucht, Restfestigkeit nach Alterung

6) entsprechend JIS K 7311, Abriebring H-22, 1 kg Last, 1000-fach


Anspruch[de]

1. Verfahren zur Herstellung eines thermoplastischen Polyurethan-Harzes, das folgende Schritte umfasst:

(i) Reaktion von 1,6-Hexanglykol mit Diethylcarbonat oder Ethylencarbonat unter Bildung eines Poly-(hexamethylencarbonat)-polyols (B) mit endständigen Hydroxyl-Gruppen und einem Molekulargewicht von 850 bis 5000; und

(ii) Reaktion von (A), p-Phenylendiisocyanat, zusammen mit (B), dem Poly-(hexamethylencarbonat)-polyol mit endständigen Hydroxyl-Gruppen, und (C), einem kurzkettigen Polyol mit 2 bis 10 Kohlenstoff-Atomen, als Agens zur Kettenverlängerung, in einem molaren Verhältnis von (B) : (C) von 1 : 2 bis 1 : 0,05, und einem molaren Verhältnis der Isocyanat-Gruppen : Gesamtzahl der aktiven Wasserstoff-Atome von 0,93 : 1 bis 1,20 : 1, um ein thermoplastisches Polyurethan-Harzprodukt zu erhalten.

2. Verfahren nach Anspruch 1, worin das molare Verhältnis von (B) : (C) 1 : 1 bis 1 0,1 beträgt.

3. Verfahren nach Anspruch 1 oder Anspruch 2, worin das molare Verhältnis der Isocyanat-Gruppen : Gesamtzahl der aktiven Wasserstoff-Atome 0,98 : 1 bis 1,10 : 1 beträgt.







IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com