PatentDe  


Dokumentenidentifikation EP0605470 27.03.1997
EP-Veröffentlichungsnummer 0605470
Titel HYDROPHILE MEMBRANE, HERGESTELLT AUS POLYÄTHERSULFON-/POLY-2-OXAZOLIN/POLYVINYLPYRROLIDON-MISCHUNG
Anmelder Gelman Sciences, Inc., Ann Arbor, Mich., US
Erfinder Hu, Hopin, Ann Arbor, Michigan 48103, US;
KATSNELSON, Inessa, Ann Arbor, MI 48104, US;
WU, Xiaosong, Ypsilanti, MI 48197, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69217499
Vertragsstaaten AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, SE
Sprache des Dokument En
EP-Anmeldetag 17.08.1992
EP-Aktenzeichen 929189199
WO-Anmeldetag 17.08.1992
PCT-Aktenzeichen US9206883
WO-Veröffentlichungsnummer 9305871
WO-Veröffentlichungsdatum 01.04.1993
EP-Offenlegungsdatum 13.07.1994
EP date of grant 12.02.1997
Veröffentlichungstag im Patentblatt 27.03.1997
IPC-Hauptklasse B01D 69/02
IPC-Nebenklasse B01D 71/68   B01D 67/00   

Beschreibung[en]
Field of the Invention

The invention relates to novel hydrophilic microporous membranes, more particularly, high strength, low melting point membranes which may be cast from a blend of polyethersulfone (PES) polymer, poly-2-oxazoline and polyvinylpyrrolidone resin. The invention also concerns both a process for preparing porous membranes and a process for filtering a fluid through such a porous filtration membrane.

Background of the Invention

Microporous membranes are generally defined as thin walled structures having an open spongy morphology with a narrow pore size distribution. The mean pore size for microporous membranes typically range from 0.01 um to 10 um. Traditionally, microporous membranes are used to remove fine particulate matter such as dust and bacteria from liquids and gases. The filtration mechanism is believed to be a combination of size exclusion and absorption/adsorption on the walls of the pores inside the membrane. In general, the smaller the pore size of membrane, the slower the rate of membrane at which a filtrate can be passed. To be considered "microporous", the typical inner width of the membrane pores is in the range that passes macromolecules and retains particles contained in a fluid. Below this range, are "ultrafiltration" (UF) membranes which serve to retain macromolecules such as albumin, and "reverse osmosis" (RO) membranes which serve to separate ions. To be useful for a particular application, the fluid flow rate through the membrane must be reasonably high.

In aqueous microfiltration such as the production of particle free water or solutions in electronics, beverage, and pharmaceutical industries, it is highly desirable to use filtration membranes which have as little leachable material as possible. Also it is desired that the membranes be easily wettable by water or aqueous solutions. Therefore, membranes which are inherently water wettable are often preferred over hydrophobic membranes post-treated by a wetting agent. Thus, hydrophobic membranes are commonly made wettable by adding a wetting agent. Upon use of the treated hydrophobic membranes, however, there is a risk that wetting agent may be leached by the solution being filtered. Such leaching, in turn, may result in contamination of the filtrate.

Polyethersulfone (PES) resin has been used to prepare microporous membranes as described in U.S. Patent No. 4,900,449. The membranes contain polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) as non-leachable, intrinsic wetting agents and therefore are hydrophilic. Recently, a new microporous membrane comprising PES resin and phenoxy resin has been developed as described in WO-A-91 18664. This membrane has a substantially higher strength than the membrane made with only PES resin, and can be readily used in disc form as a housed porous filter membrane component, in a melt-compatible thermoplastic device for the membrane such as a device of the type disclosed in U.S. Patent No. 4,444,661. Despite the unexpectedly high strength, this membrane is however, hydrophobic.

Polyethersulfone has been shown to be miscible in a common solvent (dimethylformamide or dimethylsulfoxide), with phenoxy resin (V.B. Singh and D.J. Walsh, J. Macromol, Sci.-Phys., B25 (1 & 2), 65-87, 1986). Also shown is that the melting temperature of cast films of blended PES/phenoxy resin is lowered by using more phenoxy resin (relative to PES) in the blend. Not suggested is a membrane made from such a blend nor was such a film suggested to be porous or to be useful as a filtration membrane.

EP 0 528 582 filed earlier than the present invention, but not published until after the present application was filed, describes filtration membranes comprising polyethersulfone, and poly-2-oxazoline. The membranes have been rendered porous by treatment with a suitable pore former, such as polyvinylpyrrolidone.

Poly-2-oxazoline, more particularly poly(2-ethyl-2-oxazoline), is described as being a water soluble adhesive by Chiu et al., Advances in Chemistry Series 213, pp. 425-433, American Chemical Society, 1986. Poly-2-oxazoline is used to blend with various thermoplastics to prepare membranes for use in separating components of liquid mixtures such as water/ethanol or ethanol/hexane mixtures as described in U.S. Pat. No. 4,678,833. In this patent, it is reported that the membranes made from poly-2-oxazoline are sometimes extractable from miscible blends with alcohol or alcohol/water mixtures. Therefore, such leaching may not only result in contamination of the filtrate, but also cause the membrane to be non-wettable when re-used in aqueous solutions.

Summary of the Invention

In accordance with the present invention, there is provided a hydrophilic membrane that is instantly water wettable and has a microporous matrix, comprising a homogeneous blend of polyethersulfone (PES) resin, poly (2-alkyl or aryl)-2-oxazoline resin, and polyvinylpyrrolidone (PVP) resin, the polyvinylpyrrolidone resin being present in a non-leachable amount sufficient to make the membrane instantly water wettable even after prolonged extraction with alcohol. The membranes are unique in that they are hydrophilic and possess exceedingly high strength, even after exhaustive alcohol extraction. The invention further provides a process of making a hydrophilic porous filtration membrane which comprises forming a homogenous blended solution of solutes comprising polyethersulfone resin, poly-2-oxazoline resin, and polyvinylpyrrolidone resin in a compatible solvent, forming the resulting solution in a film, quenching the film in a quenching medium, and drying the resulting film.

Detailed Description of the Invention

The invention in one preferred aspect concerns porous filtration membranes having a porous matrix which preferably is isotropic, which membranes are microporous membranes. The matrix comprises a homogeneous blend of PES resin, poly-2-oxazoline resin, and PVP resin.

The preferred PES resin (sold under the trade name Victrex, ICI Corp.; or Ultrason E, BASF Corp.) has the molecular structure I:

where m is an integer in the range from 50 to 150.

The preferred poly-2-oxazoline resin is poly-2-ethyl-2-oxazoline resin (sold under the trade name PEOX®, Dow Chemicals; or Aquazol®, Polymer Chemistry Innovations, Inc.). Poly-2-oxazoline resin has the general structure II:

where R is an alkyl group, preferably a C1-4 alkyl group, more preferably an ethyl group, or an aryl group, preferably a phenyl group, and n is an integer in the range of 500 to 5,000.

The preferred PVP resin (sold under the trade name Plasdone® K-90, GAF Chemical Corporation) has a molecular weight of 700,000. The PVP resin has the general structure III:

where p is an integer in the range from 360 to 6300.

A preferred membrane is one wherein the matrix blend comprises about 70 to 79 wt. % of PES resin, about 18 to 23 wt. % of poly-2-ethyl-2-oxazoline resin, and about 3% to 7% of PVP resin based upon the total amount of these resins included in the blend. In the preferred relative amounts, we found that the softening or melting temperature of the membrane is lower and also the membrane strength is unexpectedly higher than that of a comparable membrane made only with PES resin. In addition, the membrane so prepared is hydrophilic and such hydrophilicity will stay unchanged even after exhaustive extraction with water or alcohol such as ethanol or isopropanol (IPA), or extensive heat treatments. Control experiments in which similar membranes were prepared from polymer solutions lacking PVP were also conducted. We found that unlike the polyethersulfone/poly-2-oxazoline/PVP membrane, these membranes lost their hydrophilicity considerably after exhaustive extraction with alcohols. Thus, blending PES with poly-2-ethyl-2-oxazoline and PVP in a polymer membrane formulation indeed results in a strong, hydrophilic membrane matrix which has an unexpected advantage over a polyethersulfone/poly-2-oxazoline blend membrane. Literature data on the thermal properties of the above described polymers are detailed in Table I. Polymer Glass Transition Temperature Tg Softening Temperature Polyethersulfonea 226°C 226°C Phenoxy Resinb 91°C 100°C Poly-2-ethyl-2-oxazolinec 70°C 70°C
a Victrex® PES - 5200P, ICI Corp. b Ucar® - Phenoxy Resin PKHH, Union Carbide Corp. c PEOX® - Dow Chemical Corp.

The invention in another preferred aspect concerns a method of preparing a microporous membrane including the steps of forming a solution of a blend of PES resin, poly-2-oxazoline resin, and PVP resin in a suitable solvent, preferably such as N-methylpyrrolidone, dimethylformamide, or mixtures thereof. Any of various suitable art-recognized additives or solvent mixtures may be included in the polymer solution, of which polyethylene glycol is preferred. A thin film is formed of the polymer solution. The polymer is precipitated as a microporous membrane and dried.

In general, the polymer solution is cast on a moving stainless-steel belt and subjected to conditions of controlled air velocity, belt temperature, and relative humidity. The liquid film of the polymer imbibes sufficient water to affect initial precipitation of the polymer from the solvent. Final precipitation, which forms the microporous membrane, occurs in a quench bath which contains a strong non-solvent such as water. The formed microporous membrane may subsequently be dried in an oven.

In another preferred aspect, the invention concerns a process for filtering an aqueous fluid comprising causing said fluid to flow through a microporous filtration membrane as described having a matrix comprising a homogeneous blend of PES, poly-2-ethyl-2-oxazoline resin, and PVP resin. As a result of the enhanced strength of the matrix comprising PES/poly-2-ethyl-2-oxazoline/PVP, the membrane can be made thinner, i.e. of a selected thickness that still provides suitable strength, which results in reducing the hydrodynamic resistance and imparts a faster water flow rate and a higher level of throughput to the membrane.

The invention and the best mode of practicing the same are illustrated by the following examples of preferred embodiments of the invention.

DEFINITIONS

Water Bubble Point: The water bubble point is a test to measure the largest pore size of a membrane, based on the air pressure necessary to force liquid from the pores of a wetted membrane. The larger the pore, the less pressure to vacate it. Air passing through the empty pore is detected as bubbles. The differential pressure to force the first bubble out is defined as the bubble point. The relationship between the bubble point pressure and the diameter of the large pores is given by: Bubble point pressure = Brcos&thetas; / (D) where B is a constant, r is liquid-air surface tension, &thetas; is the liquid-solid contact angle, and D is pore diameter.

Water Flow Rate: The water flow rate is the flow rate of water passing through the membrane of given dimension, commonly expressed in seconds at a given pressure per a given volume of water.

EXAMPLE 1 - PREPARATION OF POLYMER FILMS

Solutions of 10% wt PES (Victrex® 5200 P, ICI), and of 9% wt PES and 1% Wt Poly-2-ethyl-2-oxazoline (PEOX®-200, Dow Chemical) in dimethylformamide were separately prepared. The homogeneous polymer solutions were then separately cast on a glass plate in 254 µm (10 mil) thickness, and oven dried at 120°C to form thin films. Tests of the films for tensile strength and elongation indicated that the PES/poly-2-ethyl-2-oxazoline film was significantly stronger than the PES film. The results are shown below, whereby 1 kg/m2 corresponds to 9.8 Pa. Property PES Film PES/poly-2-ethyl-2-oxazoline Film Tensile Strength at break 1.41x106 kg/m2 (2,000 psi) 45.7x106 kg/m2 (6,050 psi) Elongation at Break (%) 0.2 2.5

EXAMPLE 2 - PREPARATION OF 0.2 µm HYDROPHILIC POLYETHERSULFONE MEMBRANE

Polyethylsulfone (Victrex® 5200P, ICI), dimethylformamide, polyethylene glycol, and polyvinylpyrrolidone were mixed in the ratio of 13: 20: 66.8: 0.2. The mix was stirred at ambient temperature to homogeneity and cast at 254-304.8 µm (10-12 mil) on a glass or stainless steel plate, then the polymer solution was subjected to 60% relative humidity ambient air until it became opaque. The membrane was then immersed in water to complete coagulation, excess solvent was leached out for 2-12 hours, and the membrane was finally dried at 70°C.

The membrane obtained was instantly water wettable and exhibited 100% bacteria retention when challenged with 107/cm2 of Pseudomonas diminuta. The membrane had the following characteristics: Water Bubble Point 4.08x104 kg/m2 (58 psi) Water Flow Rate 22 seconds/9.62 cm2 - 100 mL at 7.031x103 kg/m2 (10 psi)

EXAMPLE 3 - PREPARATION OF 0.8 µm HYDROPHILIC POLYETHERSULFONE MEMBRANE

Polyethersulfone, dimethylformamide, polyethylene glycol, and polyvinylpyrrolidone were mixed in the ratio of 12.5: 23: 64.3: 0.2. The membrane was cast and set as in example 2. The membrane so made was hydrophilic and showed the following characteristics: Water Bubble Point 1.69x104 kg/m2 (24 psi) Water Flow Rate 4 seconds/9.62 cm2 - 100 mL at 7.031x103 kg/m2 (10 psi)

EXAMPLE 4 - PREPARATION OF 0.2 µm HYDROPHOBIC POLYETHERSULFONE/PHENOXY MEMBRANE

The phenoxy resin (UCAR® Phenoxy Resin PKHH, Union Carbide) was first added to dimethylformamide and stirred until dissolved. The PES resin was dispersed in polyethylene glycol to which the phenoxy solution was added. The final composition ratio of phenoxy resin, PES, dimethylformamide, and polyethylene glycol was 4: 10: 20: 66. The resulting clear polymer mix was cast in 381 µm (15 mil) thickness on a flat plate subjected to humidity, and finally oven dried at 70°C.

The membrane obtained was hydrophobic and showed the following performance: Water Bubble Point (prewet in methanol) 4.36x104 kg/m2 (62 psi) Water Flow Rate (prewet in methanol) 28 seconds/9.62 cm2 - 100 mL at 7.031x103 kg/m2 (10 psi)

EXAMPLE 5 - PREPARATION OF 0.2 µm HYDROPHILIC POLYETHERSULFONE/POLY-2-ETHYL-2-OXAZOLINE/PVP MEMBRANE

Poly-2-ethyl-2-oxazoline (PEOX®, Dow Chemical) was dissolved in dimethylformamide with agitation. The PES resin and PVP resin (Plasdone® K-90, GAF Chemicals Corp.) were evenly dispersed in polyethylene glycol to which a poly-2-ethyl-2-oxazoline solution was added with stirring. The composition of poly-2-ethyl-2-oxazoline, dimethylformamide, polyethersulfone, PVP and polyethylene glycol in the resulting mix was 1.5: 20.5: 13: 0.5: 64.5. The homogeneous mix was cast to form a microporous membrane by a procedure similar to that described in Example 4. The membrane so prepared was hydrophilic. After Soxhlet extraction using ethanol for 8 hours, 100°C water boiling for 30 minutes, or 121°C autoclaving for 45 minutes, the membrane did not lose its instant water wettability and performance. The membrane performance was: Water Bubble Point 4.22x104 kg/m2 (60 psi) Water Flow Rate 24 seconds/9.62 cm2 - 100 mL at 7.031x103 kg/m2 (10 psi)

EXAMPLE 6 - PREPARATION OF 1.2 µm HYDROPHILIC POLYETHERSULFONE/POLY-2-ETHYL-2-OXAZOLINE/PVP MEMBRANE

Poly-2-ethyl-2-oxazoline (Aquazol® -500, Polymer Chemistry Innovations Inc.) was dissolved in dimethylformamide with agitation. Then the PES resin was dispersed in polyethylene glycol containing polyvinylpyrrolidone to which poly-2-ethyl-2-oxazoline solution was added with stirring. The ingredient composition of poly-2-ethyl-oxazoline, dimethylformamide, polyethersulfone, polyethylene glycol, and polyvinylpyrrolidone in the resulting mix is 2: 23.3: 8.5: 65.5: 0.6. The membrane was cast and set as in Example 4. The membrane so prepared was instantly water wettable and did not change its hydrophilicity and membrane performance after isopropanol-Soxhlet extraction for 30 hours, 100°C water boiling for 30 hours, or 3 cycles of 121°C autoclaving for 45 minutes. The membrane performance was as follows: Water Bubble Point 6.68x103 kg/m2 (9.5 psi) Water Flow Rate 4 seconds/9.62 cm2 - 250 mL at 7.031x103 kg/m2 (10 psi)

EXAMPLE 7 - PREPARATION OF 1.2 µm POLYETHERSULFONE/POLY-2-ETHYL-2-OXAZOLINE MEMBRANE

Poly-2-ethyl-2-oxazoline (Aquazol®-500, Polymer Chemistry Innovations Inc.) was dissolved in dimethylformamide with vigorous agitation. Then PES resin was dispersed in polyethylene glycol to which poly-2-ethyl-2-oxazoline solution was added with agitation. The ingredient composition of poly-2-ethyl-2-oxazoline, dimethylformamide, polyethersulfone, and polyethylene glycol in the resulting mix is 2:23.3:8.5:66.2. The membrane was cast and set as in Example 4. The membrane so made was initially water wettable. However, it lost its hydrophilicity to a certain extent after isopropanol- or ethanol-Soxhlet extraction for 16 hours. The initial performance of the membranes was: Water Bubble Point 6.33x103 kg/m2 (9.0 psi) Water Flow Rate 3.8 seconds/9.62 cm2 - 250 mL at 7.031x103 kg/m2 (10 psi)

EXAMPLE 8 - PREPARATION OF 1.2 µm POLYETHERSULFONE/POLY-2-ETHYL-2-OXAZOLINE MEMBRANE

This membrane was prepared in the same manner as in Example 7 except that the ingredient composition of poly-2-ethyl-2-oxazoline, dimethylformamide, polyethersulfone, and polyethylene glycol in the resulting mix was 4:23.3:8.5:64.2. The membrane so prepared was instantly water wettable initially. However, it lost its water wettability to a certain extent after isopropanol- or ethanol-Soxhlet extraction for 40 hours. The membrane initial characteristics was: Water Bubble Point 6.68x103 kg/m2 (9.5 psi) Water Flow Rate 4.5 seconds/9.62 cm2 - 250 mL at 7.031x103 kg/m2 (10 psi)

EXAMPLE 9 - COMPARATIVE MEMBRANE PERFORMANCE

The membranes prepared in Examples 2, 3, 4, 5 and 6 were compared for their relative performance characteristics with the typical results tabulated as follows: PROPERTY MEMBRANE PREPARED IN EXAMPLE 2 3 4 5 6 Wettability YES YES NO YES YES Burst Strength (kg/m2) 1.76x104 (25 psi) 1.4x104 (20 psi) 2.4x104 (34 psi) 2.53x104 (36 psi) NO BURST Tensile Strength at Break in Parallel (kg/m2) 4.2x105 (598 psi) 3.16x105 (450 psi) 5.22x105 (742 psi) 7.19x105 (1,023 psi) 5.62x105 (800 psi) Tensile Strength Break in Perpendicular (kg/m2) 3.33x105 (474 psi) 2.39x105 (340 psi) 3.91x105 (556 psi) 5.62x105 (799 psi) 4.22x105 (600 psi) Elongation at Break in Parallel (%) 41 25 21 21 25 Elongation at Break in Perpendicular (%) 31 29 37 25 35

These data clearly indicate that the 0.2 µm PES/poly-2-ethyl-2-oxazoline/PVP membrane has a higher strength than the PES/PVP membrane or the PES/phenoxy membrane of the same pore size (see Examples 2, 4, and 5). Also, the data show that the 1.2 µm PES/poly-2-ethyl-2-oxazoline/PVP membrane is even stronger than the 0.8 µm membrane made with PES/PVP only (see Examples 3 and 6).

Further, the data show that the membranes of the present invention (Examples 5 and 6) were significantly stronger than the conventional membranes (Examples 2 and 3) with respect to burst strength and tensile strength (both parallel and perpendicular).

EXAMPLE 10 - COMPARATIVE MEMBRANE WETTABILITY

The membranes made in Examples 6, 7, and 8 were compared for their relative water wettability and were found to have the representative results shown below. PROPERTY MEMBRANE PREPARED IN EXAMPLE 6 7 8 Initial wettability instant instant instant Wettability after IPA-Soxhlet extraction for 16 hours instant hydrophobic 7 seconds Wettability after IPA-Soxhlet extraction for 40 hours instant hydrophobic partially hydrophobic Wettability after EtOH-Soxhlet extraction for 16 hours instant partially hydrophobic 3 seconds Wettability after EtOH-Soxhlet extraction for 40 hours instant partially hydrophobic partially hydrophobic

The data shown in this table indicate that each membrane which lacks PVP (see Examples 7 and 8) significantly lost its hydrophilicity whereas the membrane containing PVP according to the invention (Example 6) still retained its instant hydrophilicity after extensive leaching in alcohols. This demonstrates that the presence of PVP in a membrane according to the invention is essential for long-term water wettability of the membrane.


Anspruch[de]
  1. Hydrophile Filtrationsmembran, die sofort mit Wasser benetzbar ist und eine mikroporöse Matrix aufweist, umfassend ein homogenes Gemisch aus Polyäthersulfonharz, Poly(2-alkyl oder aryl)-2-oxazolinharz und Polyvinylpyrrolidonharz, wobei das Polyvinylpyrrolidonharz in einer nichtauswaschbaren Menge vorhanden ist, die ausreichend ist, um die Membran auch nach längerer Extraktion mit Alkohol sofort mit Wasser benetzbar zu machen.
  2. Membran nach Anspruch 1, wobei das Polyäthersulfon ein Harz mit der Formel I: [(C6H4-SO2-C6H4O)n] umfaßt, in der n eine ganze Zahl in dem Bereich von 50 bis 150 ist.
  3. Membran nach Anspruch 1, wobei das Poly-2-oxazolinharz ein Polymer mit der Formel II:
    umfaßt, in der n eine ganze Zahl in dem Bereich von 500 bis 5 000 ist und R eine Alkylgruppe oder eine Arylgruppe ist.
  4. Membran nach Anspruch 1, wobei das Polyvinylpyrrolidonharz ein Polymer mit einem Molekulargewicht von 700 000 umfaßt.
  5. Membran nach Anspruch 1, wobei das Polyvinylpyrrolidonharz ein Polymer mit der Formel III:
    umfaßt, in der p eine ganze Zahl in dem Bereich von 360 bis 6 300 ist.
  6. Membran nach Anspruch 3, wobei das Harz Poly(2-ethyl)-2-oxazolin umfaßt.
  7. Membran nach Anspruch 3, wobei das Harz ein Poly(2-phenyl)-2-oxazolin umfaßt.
  8. Membran nach Anspruch 1, wobei das Gemisch eine derartige Menge an Polyäthersulfonharz relativ zu der Menge an Poly-2-oxazolinharz umfaßt, daß die Berstfestigkeit der Membran wesentlich größer als die einer vergleichbaren Membran ohne das Poly-2-oxazolinharz ist.
  9. Membran nach Anspruch 1, wobei das Gemisch etwa 70 bis 79 Gew.-% Polyäthersulfonharz, etwa 18 bis 23 Gew.-% Poly-2-oxazolinharz und etwa 3 bis 7 Gew.-% Polyvinylpyrrolidonharz umfaßt, basierend auf der Gesamtmenge der Harze, die in dem Gemisch enthalten sind.
  10. Membran nach Anspruch 3, wobei das Poly-2-oxazolinharz ein Molekulargewicht in dem Bereich von 50 000 bis 500 000 hat.
  11. Membran nach Anspruch 1, wobei das Gemisch eine derartige Menge an Polyvinylpvrrolidonharz umfaßt, daß die Hydrophilie der Membran nach einer erschöpfenden Extraktion mit Wasser oder Alkohol unverändert bleibt.
  12. Membran nach Anspruch 1, wobei das Gemisch eine derartige Menge an Polyäthersulfonharz relativ zu der Menge an Poly-2-oxazolinharz umfaßt, daß die Zugfestigkeit der Membran wesentlich größer als die einer vergleichbaren Membran ohne das Poly-2-oxazolinharz ist.
  13. Verfahren zur Herstellung einer hydrophilen porösen Filtrationsmembran, das die Erzeugung einer homogenen gemischten Lösung aus gelösten Stoffen, umfassend Polyäthersulfonharz, Poly-2-oxazolinharz und Polyvinylpyrrolidonharz in einem verträglichen Lösungsmittel, die Ausbildung der entstehenden Lösung zu einem Film, das Abschrecken des Filmes in einem abschreckenden Medium und das Trocknen des entstehendenden Filmes umfaßt.
  14. Verfahren nach Anspruch 13, wobei das Lösungsmittel aus N-Methylpyrrolidon, Dimethylformamid oder einem Gemisch davon ausgewählt wird.
  15. Verfahren nach Anspruch 13, wobei das abschreckende Medium Wasser ist.
  16. Verfahren zur Filtration einer wäßrigen Flüssigkeit, das umfaßt, daß man die Flüssigkeit durch eine Filtrationsmembran nach Anspruch 1 mit einer mikroporösen Matrix, umfassend ein homogenes Copolymerengemisch aus Polyäthersulfonharz, einem Poly-2-oxazolinharz und Polyvinylpyrrolidonharz, fließen läßt.
  17. Verfahren nach Anspruch 16, wobei das Polyäthersulfonharz ein Polymer mit der Formel I [(C6H4-SO2-C6H4-O)m] umfaßt, in der m eine ganze Zahl in dem Bereich von 50 bis 150 ist.
  18. Verfahren nach Anspruch 16, wobei das Poly-2-oxazolinharz ein Polymer mit der Formel II:
    umfaßt, in der n eine ganze Zahl in dem Bereich von 500 bis 5 000 und R eine Alkylgruppe oder eine Arylgruppe ist.
  19. Verfahren nach Anspruch 16, wobei das Poly-2-oxazolinharz Poly(2-ethyl)-2-oxazolin oder Poly(2-phenyl)-2-oxazolin umfaßt.
  20. Verfahren nach Anspruch 16, wobei das Polyvinylpyrrolidonharz ein Polymer mit der Formel III:
    umfaßt, in der p eine ganze Zahl in dem Bereich von 360 bis 6 300 ist.
Anspruch[en]
  1. A hydrophilic filtration membrane that is instantly water wettable and has a microporous matrix comprising a homogeneous blend of polyethersulfone resin, poly(2-alkyl or aryl)-2-oxazoline resin, and polyvinylpyrrolidone resin, the polyvinylpyrrolidone resin being present in a non-leachable amount sufficient to make the membrane instantly water wettable even after prolonged extraction with alcohol.
  2. The membrane of claim 1 wherein the polyethersulfone comprises resin having the formula I
    where n is an integer in the range from 50 to 150.
  3. The membrane of claim 1 wherein the poly-2-oxazoline resin comprises polymer having the formula II
    where n is an integer in the range from 500 to 5,000 and R is an alkyl group or an aryl group.
  4. The membrane of claim 1 wherein the polyvinylpyrrolidone resin comprises polymer having a molecular weight of 700,000.
  5. The membrane of claim 1 wherein the polyvinylpyrrolidone resin comprises polymer having the formula III
    where p is an integer in the range from 360 to 6300.
  6. The membrane of claim 3 wherein the resin comprises poly(2-ethyl)-2-oxazoline.
  7. The membrane of claim 3 wherein the resin comprises a poly(2-phenyl)-2-oxazoline.
  8. The membrane of claim 1 wherein the blend comprises an amount of polyethersulfone resin relative to the amount of poly-2-oxazoline resin such that the burst strength of the membrane is substantially greater than that of a comparable membrane lacking the poly-2-oxazoline resin.
  9. The membrane of claim 1 wherein the blend comprises about 70 to 79 wt.% of polyethersulfone resin about 18 to 23 wt.% of poly-2-oxazoline resin, and about 3 to 7 wt.% of polyvinylpyrrolidone resin based upon the total amount of said resins included in the blend.
  10. The membrane of claim 3 wherein the poly-2-oxazoline resin has a molecular weight in the range from 50,000 to 500,000.
  11. The membrane of claim 1 wherein the blend comprises an amount of polyvinylpyrrolidone resin such that the hydrophilicity of the membrane stays unchanged after exhaustive extraction with water or alcohol.
  12. The membrane of claim 1 wherein the blend comprises an amount of polyethersulfone resin relative to the amount of poly-2-oxazoline resin such that the tensile strength of the membrane is substantially greater than that of a comparable membrane lacking the poly-2-oxazoline resin.
  13. A process of preparing a hydrophilic porous filtration membrane, which comprises forming a homogeneous blended solution of solutes conprising polyethersulfone resin, poly-2-oxazoline resin, and polyvinylpyrrolidone resin in a compatible solvent, forming the resulting solution in a film, quenching the film in a quenching medium, and drying the resulting film.
  14. The process of claim 13 wherein the solvent is selected from N-methylpyrrolidone, dimethylformamide or a mixture thereof.
  15. The process of claim 13 wherein the quenching medium is water.
  16. A process for filtering an aqueous fluid comprising causing said fluid to flow through a filtration membrane according to claim 1 having a microporous matrix comprising a homogeneous copolymer blend of polyethersulfone resin, a poly-2-oxazoline resin, and polyvinylpyrrolidone resin.
  17. A process according to claim 16 wherein the polyethersulfone resin comprises polymer having the formula I
    where m is an integer in the range from 50 to 150.
  18. A process according to claim 16 wherein the poly-2-oxazoline resin comprises polymer having the formula II
    where n is an integer in the range from 500 to 5,000 and R is an alkyl group or an aryl group.
  19. A process according to claim 16 wherein the poly-2-oxazoline resin comprises poly(2-ethyl)-2-oxazoline or poly(2-phenyl)-2-oxazoline.
  20. A process according to claim 16 wherein the polyvinylpyrrolidone resin comprises polymer having the formula III
    where p is an integer in the range from 360 to 6300.
Anspruch[fr]
  1. Membrane de filtration hydrophile qui est instantanément mouillable avec de l'eau et qui contient une matrice microporeuse comprenant un mélange homogène de résine polyéthersulfone, de résine poly-(2-alkyl ou -aryl)-2-oxazoline, et de résine polyvinylpyrrolidone, la résine polyvinylpyrrolidone étant présente dans des quantités ne pouvant être lessivées, suffisantes pour rendre la membrane instantanément mouillable avec de l'eau, même après une extraction prolongée avec de l'alcool.
  2. Membrane de la revendication 1 dans laquelle la polyéthersulfone comprend une résine ayant la formule I: [(C6H4-SO2-C6H4-O)n] dans laquelle n est un nombre entier situé dans l'intervalle de 50 à 150.
  3. Membrane de la revendication 1 dans laquelle la résine poly-2-oxazoline comprend un polymère ayant la formule II:
    dans laquelle n est un nombre entier situé dans l'intervalle de 500 à 5 000 et R est un groupe alkyle ou un groupe aryle.
  4. Membrane de la revendication 1 dans laquelle la résine polyvinylpyrrolidone comprend un polymère ayant un poids moléculaire de 700 000.
  5. Membrane de la revendication 1 dans laquelle la résine polyvinylpyrrolidone comprend un polymère ayant la formule III:
    dans laquelle p est un nombre entier situé dans l'intervalle de 360 à 6 300.
  6. Membrane de la revendication 3 dans laquelle la résine comprend de la poly-(2-éthyl)-2-oxazoline.
  7. Membrane de la revendication 3 dans laquelle la résine comprend de la poly-(2-phényl)-2-oxazoline.
  8. Membrane de la revendication 1 dans laquelle le mélange comprend une quantité de résine polyéthersulfone par rapport à la quantité de résine poly-2-oxazoline telle que la résistance à l'éclatement de la membrane soit sensiblement plus grande que celle d'une membrane comparable dépourvue de résine poly-2-oxazoline.
  9. Membrane de la revendication 1 dans laquelle le mélange comprend environ de 70 à 79% en poids de résine polyéthersulfone, environ de 18 à 23% en poids de résine poly-2-oxazoline, et environ de 3 à 7% en poids de résine polyvinylpyrrolidone sur la base de la quantité totale desdites résines comprises dans le mélange.
  10. Membrane de la revendication 3 dans laquelle la résine poly-2-oxazoline a un poids moléculaire situé dans l'intervalle de 50 000 à 500 000.
  11. Membrane de la revendication 1 dans laquelle le mélange comprend une quantité de résine polyvinylpyrrolidone telle que le caractère hydrophile de la membrane reste inchangé après une extraction approfondie avec de l'eau ou de l'alcool.
  12. Membrane de la revendication 1 dans laquelle le mélange comprend une quantité de résine polyéthersulfone par rapport à la quantité de résine poly-2-oxazoline telle que la résistance à la rupture par traction de la membrane soit sensiblement plus grande que celle d'une membrane comparable dépourvue de résine poly-2-oxazoline.
  13. Procédé pour préparer une membrane de filtration poreuse hydrophile, qui comprend la formation d'une solution homogène mélangée de solutés comprenant de la résine polyéthersulfone, de la résine poly-2-oxazoline, et de la résine polyvinylpyrrolidone dans un solvant compatible, le façonnage d'une pellicule à partir de la solution résultante, le trempage de la pellicule dans un milieu de trempage, et le séchage de la pellicule résultante.
  14. Procédé de la revendication 13 dans lequel le solvant est choisi parmi la N-méthylpyrrolidone, la diméthylformamide ou un mélange de ceux-ci.
  15. Procédé de la revendication 13 dans lequel le milieu de trempage est l'eau.
  16. Procédé pour filtrer un fluide aqueux comprenant l'écoulement dudit fluide au travers d'une membrane de filtration selon la revendication 1 qui contient une matrice microporeuse comprenant un mélange copolymère homogène de résine polyéthersulfone, de résine poly-2-oxazoline, et de résine polyvinylpyrrolidone.
  17. Procédé selon la revendication 16 dans lequel la résine polyéthersulfone comprend un polymère ayant la formule I: [(C6H4-SO2-C6H4-O)m] dans laquelle m est un nombre entier situé dans l'intervalle de 50 à 150.
  18. Procédé selon la revendication 16 dans lequel la résine poly-2-oxazoline comprend un polymère ayant la formule II:
    dans laquelle n est un nombre entier situé dans l'intervalle de 500 à 5 000 et R est un groupe alkyle ou un groupe aryle.
  19. Procédé selon la revendication 16 dans lequel la résine poly-2-oxazoline comprend de la poly-(2-éthyl)-2-oxazoline ou de la poly-(2-phényl)-2-oxazoline.
  20. Procédé selon la revendication 16 dans lequel la résine polyvinylpyrrolidone comprend un polymère ayant la formule III:
    dans laquelle p est un nombre entier situé dans l'intervalle de 360 à 6 300.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com