PatentDe  


Dokumentenidentifikation EP0554440 18.12.1997
EP-Veröffentlichungsnummer 0554440
Titel LINSENSYSTEM MIT HOHER APERTUR UND KOPIERGERAET ZUR VERWENDUNG DES LINSENSYSTEMS
Anmelder Eastman Kodak Co., Rochester, N.Y., US
Erfinder DEJAGER, Donald, Rochester, NY 14615, US;
BAEK, Seung, Ho, Pittsford, NY 14534, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69223130
Vertragsstaaten DE, FR, GB
Sprache des Dokument En
EP-Anmeldetag 18.08.1992
EP-Aktenzeichen 929188563
WO-Anmeldetag 18.08.1992
PCT-Aktenzeichen US9206885
WO-Veröffentlichungsnummer 9304391
WO-Veröffentlichungsdatum 04.03.1993
EP-Offenlegungsdatum 11.08.1993
EP date of grant 12.11.1997
Veröffentlichungstag im Patentblatt 18.12.1997
IPC-Hauptklasse G02B 13/24

Beschreibung[en]
TECHNICAL FIELD

This invention relates generally to finite conjugate lens systems and more particularly to a well corrected finite conjugate micro relay lens system having high numerical apertures on both object and image sides. It also relates to a printer using such a lens.

BACKGROUND ART

Commercially available high aperture systems such as microscope objectives and Petzval-type lenses are generally designed for an object location which is far from the lens system when compared to the location of the image. Typical magnification provided by a microscope objective is 40:1 and while the f-number of the lens system is low on the image side, it is high on the object side. Relay lenses are also known. For example, U.S. Patent No. 4,753,522 discloses a six element, two lens group copier lens. This lens has a high f-number (F/16) and low numerical apertures (NA=0.031). U.S. Patent No. 4,955,701 also discloses a lens system with relatively low numerical apertures. The numerical apertures range from 0.04 to 0.67. Neither of the lens system disclosed in the above-referenced patents are suitable in applications requiring high numerical apertures on both object and image side. For a laser thermal printer, a micro relay lens system requires a very low f-number and thus extremely high numerical apertures on both object and image side of the lens system. No such lenses are known to exist.

DISCLOSURE OF THE INVENTION

The object of this invention is to provide a high speed, well corrected, finite conjugate imaging lens system, with unusually high numerical apertures and correspondingly very low f-numbers on both image and object side of the lens system.

It is also an object of the invention to provide a printer, for example, a laser thermal printer, using such a lens system.

In accordance with the present invention a high aperture finite conjugate lens systen is provided as defined in Claim 1 and 19.

Essentially a lens system comprising an aperture stop located approximately at the center of the system and a plurality of lens elements centered on an optical axis and arranged into two lens groups of positive power to provide the high numerical apertures on both the object and the image sides of the lens system. The two lens groups are located on each side of the aperture stop and each lens group comprises an outer-most lens element and an inner-most lens element. The inner lens elements are located in close proximity to the aperture stop and each of the inner-most lens elements have a convex surface facing towards the aperture stop.

BRIEF DESCRIPTION OF THE DRAWINGS

  • Fig. 1 is a profile drawing of an optical system of a first embodiment;
  • Fig. 2 is a schematic of a laser diode thermal printing system;
  • Fig. 3 is a schematic of a multi-fiber array printing head;
  • Fig. 4 is a profile drawing of an optical system of a second embodiment;
  • Fig. 5 is a profile drawing of an optical system of a third embodiment;
  • Fig. 6 is a profile drawing of an optical system of a fourth and fifth embodiment; and
  • Fig. 7 is a profile drawing of an optical system of a sixth embodiment.

BEST MODE OF CARRYING OUT THE INVENTION

The lens system of the present invention has a general application to systems requiring high numerical aperture on both object and image side while working at finite conjugates. An example of one such application is the use of the lens system in a new thermal printer system, an example of which is described below.

In the graphic arts industry, digital scanning printers are widely used for making color separation negatives. After the negatives are made, a color proof image is created, and is approved or rejected. This process may be repeated one or more times before approval is obtained from the customer. An alternate procedure, which uses the lens systems described herein, is to make the color proof image directly, bypassing the making of color separation negatives. Negatives may be made only after the color proof has been approved. This alternate procedure is less costly and is less time consuming than is the procedure that is presently in wide usage.

The images that are presently created by digital scanning printers require from 1000 to 3000 dots per inch. The image sizes typically range from A4 (8"x10") to A2 (18"x24"). The size of the image and the large amount of digital image data requires a laser scanning system which is quite expensive, using precision optical components and high bandwidth electronics. The system utilizing the lenses of our present invention is simpler, less expensive and produces results faster.

Referring to Figures 2 and 3, the printer system utilizing the lens systems of our present invention comprises a rotating drum 10, a printhead 14 and a leadscrew 12. A receiver material 16 is wrapped around the drum 10. A sheet of thermal sensitive media-containing colored dye is placed over the receiver material. The printhead 14 comprises a relay imaging lens system 15, and a linear array 20 of optical fiber ends, which are secured in position by a silicon wafer 13 (see Fig. 3) which is etched to have a series of adjacent V-grooves 17. The fibers 19 are made to lie in these grooves 17 in such a way that the ends of the fibers lie in a common plane. The center-to-center spacing between the fibers is typically 0.15 mm. There may be up to 20 such fibers in the array, so that the length of the array may be almost 3 mm. The fiber arrays are further described in U.S. Patents 4,389,655 and 4,911,526. The energy that is emitted by this array of fiber ends is picked up by the relay lens 15 and is focused on the thermal sensitive media 16 on the drum 10, forming an array of very small heated spots. The thermal sensitive media 16 releases the dye, which is then transferred to the paper undemeath. The printhead is carried along on a rail 18 by the leadscrew 12 in synchronization with the drum rotation. As the drum rotates, the energy coming out of each fiber end varies in accordance with the signal which is sent to the laser diode which feeds that particular fiber. If there are 20 such fibers, there are 20 parallel scan lines created simultaneously on the media, as the drum 10 rotates.

The characteristics of the relay lens systems of the illustrated embodiments are as follows:

  • 1. They are color corrected to perform well at wavelengths between 790 and 830 nanometers. The glasses that are used must be highly transparent at these wavelengths.
  • 2. They are designed to work at finite conjugates, at a fixed magnification, generally between 1/3 and l/2, so that the distance between the object and the image (called the total track length) is on the order of about 2 to 3 inches.
  • 3. They have high numerical apertures, on both object and image sides, such as are associated with microscope objectives. The numerical aperture on the object side of the lens should be large enough to capture a large fraction of the energy leaving the fiber ends. Multimode fibers typically have numerical apertures of 0.3 to 0.4, and single mode fibers will typically have numerical apertures of 0.1 to 0.2. The relay lenses described herein have object-side numerical apertures of 0.2 to 0.253, which is large enough to capture most of the energy emitted by the fibers.

    The numerical apertures on the object and image sides are related to the magnification MAG of the lens by the following equation: MAG = (numerical aperture at object)/(numerical aperture at image) For example, for embodiment #1, MAG = (0.25)/(0.5) = 0.5.

  • 4. The image quality, or sharpness of the imagery, does not have to be as good as is normally associated with microscope objectives. The spots that are formed on the image plane are approximately about 0.02 to 0.04 mm in diameter, whereas in a microscope objective having a numerical aperture of say, 0.25, the visible light diameter of the Airy disc would be about 0.003 mm. Thus, these lenses do not have to be "diffraction limited". Also, the useful depth of focus of these lenses is several times larger than that suggested by the Rayleigh criterion. Another consideration is that these lenses can be fabricated with looser tolerances than those associated with normal microscope objectives.

The first illustrative embodiments for the lens systems are described in the following table: Embodiment number 1 2 3 Number of Elements 7 8 8 Object Diagonal 3.6 mm 3.6 mm 2.4 mm Image Diagonal 1.8 mm 1.2 mm 0.8 mm Magnification 0.5 0.3333 0.3333 Object Numerical Aper. 0.25 0.2 0.2 Image Numerical Aper. 0.50 0.6 0.6 ANSI f-number of lens 0.67 0.63 0.63 Total Track Length 50.8 mm 50.8 mm 50.8 mm Embodiment number 4 5 Number of Elements 9 * 9 * Object Diagonal 3.6 mm 3.0 mm Image Diagonal 1.68 mm 1.4 mm Magnification 0.46 0.46 Object Numerical Aper. 0.253 0.253 Image Numerical Aper. 0.55 0.55 ANSI f-number of lens 0.62 0.62 Total Track Length 70.7 mm 58.5 mm
*not including the beamsplitter prism used for autofocusing.

In illustrative embodiments 3, 4 and 5, the rear element L may move +/-0.1 mm with respect to the rest of the lens. The focused image position also moves, in such a way that the distance from the rear surface of the rear element stays nearly constant, changing less than 0.01 mm. This feature in these embodiments is quite novel in a lens of this high aperture.

In illustrative embodiments 4 and 5, a beamsplitter prism B is added on the front or object side of the lens, permitting the use of a servo driven focusing rear lens element. In this system (not shown in the drawings), an infrared beam at wavelengths between 900 and 1,000 nanometers is introduced into the beamsplitter prism from the end of a fiber located near the multi-fiber array. The beam goes through the relay lens and is focused on the media. The beam has no heating effect on the media. After reflection at the media, the beam retraces itself backwards through the lens, and is reflected by the beamsplitting interface within the beamsplitter prism. This beam is then analyzed for focus. An electrical signal is generated, and used to drive the rear lens element into a new position so as to cause the heating beams to focus properly on the media.

The lens system 100 of the first embodiment of the present invention is illustrated in Fig. 1. It was designed for use in a laser diode thermal printing system (Fig. 2) using a multi-fiber array printing head (Fig. 3) coupled to high power laser diodes. The printer system uses a drum 10 for the line direction scan movement and a stepping motor or a linear translation stage for the page direction scan movement. A custom designed lens was necessary to meet the requirements for the numerical aperture and the field of view requirements. The numerical aperture of the beam on the object side of the lens system is 0.25, and the numerical aperture of the beam on the image side of the lens system is 0.5. The ANSI f-number of the lens system is 0.6667. The field angle is 3.08 degrees. Relative illumination due to cosine effects exceeds 1.0 at the edge of field of view. The distance from the object to image is 50.8 mm (2 inches). The lens system 100 is used in the rear infrared IR (630 to 810 nm) to relay an object having a diameter of 2.4 mm to an image of diameter 1.2 mm giving a magnification of 1/2. The lens system 100 is used to form an image of a source consisting of a linear array of fibers, each transmitting energy from remotely located infrared laser diodes. The combination of very high numerical aperture and sharp imagery over an extended field of view dictated the need for a new lens of a very unusual construction.

The lens system 100 comprises a plurality of lens elements and an aperture stop located approximately at the center of the lens system. Following from object to image, the lens elements are: a biconvex positive singlet L1, a meniscus negative singlet L2 with a concave surface S3 facing an object and a convex surface S4 towards an aperture stop ST, a plano-convex positive singlet L3 located near the aperture stop with its convex surface S6 facing the aperture stop, a meniscus doublet comprised of a bi-convex positive element L4 cemented to a bi-concave negative lens element L5, a bi-convex positive singlet L6 and a positive meniscus lens element L7. The numerical data for the optical system is as follows: SURFACE CLEAR APER. RADIUS THICKNESS GLASS S1 8.41 38.6019 3.670 517642 S2 8.82 -7.29740 4.100 S3 6.83 -4.31940 2.360 785258 S4 8.94 -8.54580 1.400 S5 10.12 PLANO 6.290 651559 S6 11.36 -10.7207 0.500 10.55 DIAPHRAGM 0.500 S7 10.44 17.0410 3.800 651559 S8 9.87 -12.0819 1.500 785258 S9 9.09 9.22950 1.810 S10 9.57 42.9968 3.020 651559 S11 10.01 -14.6843 0.500 S12 9.74 6.77130 6.400 720504 S13 5.98 15.7111 1.000 S14 5.14 PLANO 1.000 517642 S15 4.44 PLANO LENS LENGTH 37.850
The performance of the system is excellent. Sagital and tangential MTF's exceed .5 at 50 cycles/mm over the entire field of view, in a fixed flat focal plane and over the wavelength region from 800 to 820 nm. The lens system also has a low distortion. The focusing function is performed by moving an entire lens system.

The second embodiment of the present invention is illustrated in Fig. 4.

The optical system 200 of the second embodiment is illustrated in Fig. 4 and used to relay an object of a diameter 3.6 mm to an image of diameter 1.2 mm giving a magnification of 1/3. The numerical aperture of the optical system at the object side is 0.2. The numerical aperture of the optical system at the image side is 0.6. The ANSI f-number is 0.625. This lens system may be used as a 1/3 X relay lens in a laser thermal printer described in Figs. 2 and 3. The lens system 200 comprises a plurality of lens elements arranged into two lens groups on either side of the aperture stop ST. The aperture stop ST is again located approximately at the center of the lens system 200. However, the shapes of the lens elements are quite different from those of the first embodiment. Following from the object side to the image side the lens elements are:

  • a positive meniscus lens element L1 with its convex surface oriented towards an aperture stop;
  • a biconvex lens element L2;
  • a meniscus doublet comprised of a meniscus negative lens element L3 and a meniscus positive lens element L4 followed by an aperture stop;
  • a cemented doublet following the aperture stop comprised of a positive lens element L5 and a negative lens element L6 cemented together; and
  • a bi-convex singlet lens element L7 and a convex-plano singlet lens element L8.

Again, as in a preceeding embodiment, the surfaces facing the aperture stop of the components adjacent to the aperture stop are convex, thus forming a air space having a shape of a negative lens element at the aperture stop and the meniscus components of the two optical groups on either side of the aperture stop having their concave surfaces facing away from the aperture stop. The numerical data for the optical system of the second emobdiment is as follows: SURFACE CLEAR APER. RADIUS THICKNESS GLASS S1 8.35 -10.7207 2.970 651559 S2 9.42 -7.32390 0.580 S3 8.87 18.1807 3.070 651559 S4 8.22 -18.1807 1.650 S5 7.65 -5.62700 3.070 785258 S6 9.41 -96.0144 5.000 651559 S7 10.75 -8.52190 0.500 9.92 DIAPHRAGM 0.500 S8 9.76 11.9221 3.140 651559 S9 8.92 PLANO 1.500 785258 S10 7.88 6.67350 1.340 S11 8.13 18.1807 3.070 651559 S12 8.33 -18.1807 0.500 S13 7.97 5.91100 3.580 720504 S14 6.40 PLANO 0.500 S15 5.61 PLANO 1.000 517642 S16 4.72 PLANO LENS LENGTH 31.970
On the image side of the lens system, there is a 1 mm thick protective window, which can be easily cleaned. The focusing function is performed by moving an entire lens system.

The third embodiment is illustrated in Fig. 5. The lens system 300 of the third embodiment is designed for the wavelength range of 750 to 850 nm with the principal wavelength of 800 nm. The focusing function is performed by the movement of the rear-most lens element L8. The track length (i.e. the distance from the object to the image), nominally 2 inches or 50.8 mm will thus change by ±0.1 mm. Unlike the first two embodiments, this lens system does not use a protective window at the rear. The object diameter is 2.4 mm, while the image diameter is 0.8 mm, thus the optical system 300 has a magnification of 1/3. The numerical aperture at the object side is 0.2 and the numerical aperture at the image side is 0.6. The lens system 300 is comprised of 6 components in the following order from object to image:

A meniscus singlet lens element L1, a bi-convex singlet lens element L2, a doublet comprised of a bi-concave lens element L3 cemented to a bi-convex lens element L4, a doublet comprised of a convex-plano element L5 cemented to a plano-concave element L6, a bi-convex singlet L7 and a convex-plano singlet L8. The aperture stop ST is located between the third and the fourth components. The unusual feature of this lens system is that the sixth component can be varied in position, with respect to the preceeding components, by as much as +/-0.1 mm, while the location of the image surface will stay nearly fixed with respect to the rear plano surface of the sixth component.

The nominal lens is slightly undercorrected (-.015 mm) for lateral spherical aberration. Sagittal and tangential longitudinal astigmatic field are flat to less than .01 mm. Axial color is corrected to bring beams having wavelengths of 750 nm and 850 nm to a common focus postion. Lateral color is corrected to less than .002 mm. Lateral tangential coma is corrected to less than .005 mm. Lateral distortion is corrected to less than .0001 mm. This data all applies at the image, i.e., on the short conjugate side of the lens.

The object consists of a linear array of 15 circular spots, each 0.1 mm in diameter, with center to center spacing of 0.15 mm. At 1/3 magnification, the images of the spots are .0333 mm in diameter. This is relatively coarse image structure. By comparing the size of the lateral aberrations to the size of the spots, it is clear that the lens is able to satisfactorily relay the images of these spots.

Because of the high numerical aperture of the beam at the image, the depth of focus according to the Rayleigh criterion is about +/-.00111 mm, but because of the relatively coarse nature of the image structure, a more realistic tolerance for the depth of focus is about +/-0.01 mm, about 9 times larger than the Rayleigh depth. The numerical data for the lens system is as follows: SURFACE CLEAR APER. RADIUS THICKNESS GLASS S1 7.31 -11.7310 3.060 651559 S2 8.35 -7.21870 0.500 S3 8.06 24.8075 2.970 651559 S4 7.61 -15.0074 1.510 S5 7.19 -5.20670 3.910 785258 S6 9.77 42.2210 4.870 651559 S7 11.03 -8.23800 0.500 10.34 DIAPHRAGM 0.500 S8 10.14 10.9567 3.260 651559 S9 9.21 PLANO 1.500 785258 S10 7.97 6.38860 1.360 S11 8.23 15.0074 2.970 651559 S12 8.33 -24.8075 1.100 S13 7.94 6.19740 3.500 772497 S14 6.40 PLANO LENS LENGTH 31.510

The fourth and the fifth illustrative embodiments are similar to each other and are illustrated in Fig. 6.

They are designed to have a track length of 70.7 m and 58.5 mm respectively. The object side numerical aperture is 0.253. The image side numerical aperture is 0.55. The ANSI f-number is 0.62 and magnification is 0.46 for both lens system designs.

Both lens systems are designed for 750-850 nm range and the lens comprises 6 lens components which are:

  • a first, positive meniscus lens element L1;
  • a bi-convex cemented doublet component comprised of a meniscus negative lens element L2 cemented to a bi-convex positive lens element L3;
  • a meniscus cemented doublet component comprising a concave-plano negative lens element L4 cemented to a plano-convex lens element L5, having a convex surface facing the aperture stop AS;
  • a meniscus cemented doublet component comprising a bi-convex lens element L6 cemented to a bi-concave lens element L7;
  • a positive bi-convex lens element L8; and
  • a convex-plano lens element L9.

The numerical parameters for the lens systems are given in tables 4 and 5 respectively. SURFACE CLEAR APER. RADIUS THICKNESS GLASS S1 6.92 PLANO 12.000 785258 S2 10.65 PLANO 4.000 S3 12.40 -21.6194 3.020 772497 S4 13.39 -11.1939 3.860 S5 13.01 24.0092 2.000 785258 S6 12.11 9.35980 5.500 772497 S7 11.36 -32.6195 4.430 S8 8.62 -6.61220 4.400 785258 S9 10.81 PLANO 5.910 772497 S10 12.29 -10.9567 0.320 11.43 DIAPHRAGM 0.300 S11 11.25 14.0008 3.370 772497 S12 10.47 -34.0226 2.000 785258 S13 8.76 7.07690 2.220 S14 9.21 32.7992 2.170 772497 S15 9.39 -32.7992 1.100 S16 9.34 7.29740 3.500 772497 S17 8.12 PLANO LENS LENGTH 60.100
SURFACE CLEAR APER. RADIUS THICKNESS GLASS S1 4.83 PLANO 8.000 517642 S2 7.73 PLANO 4.000 S3 9.63 -18.9706 3.360 772497 S4 10.85 -9.27810 1.240 S5 10.56 32.8590 2.000 785258 S6 10.05 11.1065 4.790 772497 S7 9.47 -22.3953 4.380 S8 6.95 -5.06210 3.000 785258 S9 9.01 98.0453 5.060 772497 S10 10.49 -8.74010 0.550 9.80 DIAPHRAGM 0.420 S11 9.75 11.9576 3.690 772497 S12 8.89 -20.9492 2.000 785258 S13 7.42 6.11100 1.870 S14 7.88 23.8064 2.680 772497 S15 8.13 -23.8064 1.100 S16 7.99 6.19740 3.500 772497 S17 6.56 PLANO LENS LENGTH 51.640

The lens system 600 of the sixth embodiment of the present invention is illustrated in Fig. 7. The numerical aperture of the beam on the object side of the lens system is 0.15, and the numerical aperture of the beam on the image side of the lens system is 0.3. The ANSI f-number of the lens system is 1.11. The semi field angle is 2.54 degrees. The distance from the object to the image is 50.8 mm. The lens system 600 is used in the near infrared (760 to 860 nm) to relay an object having a diameter of 3.0 mm to an image of diameter 1.5 mm giving a magnification of 1/2.

The lens system 600 comprises six lens elements organized in two lens groups, I and II. An aperture stop ST is located approximately at the center of the lens system between the two lens groups I and II. Following from object to image, the lens elements are: a biconvex positive singlet L1, a meniscus negative singlet L2 with a concave surface S3 facing an object and a convex surface S4 towards an aperture stop ST, a biconvex positive singlet L3 located near the aperture stop, a bi-convex positive lens element L4, a meniscus negative L5, and a biconvex positive singlet L6. The numerical data for the optical system is as follows: SURFACE CLEAR APER. RADIUS THICKNESS GLASS S1 7.04 29.3420 4.550 517642 S2 7.21 -6.55540 1.160 S3 6.43 -5.08020 2.000 785258 S4 7.53 -55.2081 0.510 S5 8.00 35.1825 3.140 517642 S6 8.54 -10.5919 0.500 8.49 DIAPHRAGM 0.500 S7 8.70 10.5919 3.140 517642 S8 8.30 -35.1825 0.500 S9 7.61 9.22950 2.000 785258 S10 6.13 4.66120 1.340 S11 6.25 6.55540 4.550 517642 S12 5.23 -29.3420 0.510 S13 4.90 PLANO 1.000 517642 S14 4.55 PLANO LENS LENGTH 25.4
An unusual feature of this sixth embodiment is the use of two lens elements in one lens group that are identical but reversed in direction from two lens elements included in the second lens group; i.e. lens elements L1 and L6 are identical and lens elements L3 and L4 are identical in their structure. The term identical means that these have the same radii of curvature, the same thickness and are made of the same type of material, although their aperture sizes are different depending on the position that they occupy within the lens system. This feature permits for lower manufacturing costs.

For the purposes of this application, a protection plate P, shown in Fig. 7, is not considered to be a lens element.

Although in the preferred embodiment the lens element's surfaces are spherical, in a modification, aspherical surfaces can be used.


Anspruch[de]
  1. Linsensystem (100, 200, 300, 400, 500, 600) mit einer Aperturblende (ST) und einer Vielzahl von Linsenelementen, die mittig auf einer optischen Achse und in zwei aus jeweils drei Einzellinsen bestehenden positiven Linsengruppen (I, II) angeordnet sind, die jeweils auf einer Seite der Aperturblende (ST) vorgesehen ist, dadurch gekennzeichnet, daß jedes positive Linsenelement jeder der Linsengruppen eine der Aperturblende (ST) zugewandte konvexe Fläche (S2, S6, S7, S10, S12; S2, S4, S7, S8, S11, S13; S2, S4, S7, S8; S11, S13; S4, S7, S10, S11, S14, S16; S4, S7, S10, S11, S14, S16; S2, S4, S6, S7, S8, S11) aufweist, um sowohl auf der Motivseite als auch auf der Bildseite des Linsensystems numerisch große Blendenöffnung zu erzeugen.
  2. Linsensystem nach Anspruch 1, dadurch gekennzeichnet, daß jede Linsengruppe (I, II) ein äußerstes Linsenelement (L1 und L7, L1 und L8; L1 und L8, L1 und L9, L1 und L9; L1 und L6) und ein innerstes Linsenelement (L3, L4; L4, L5; L4, L5, L5, L6; L3, L4) aufweist, wobei die innersten Linsenelemente jeweils in unmittelbarer Nähe zur Aperturblende (ST) angeordnet sind und der Aperturblende (ST) zugewandte, konvexe Flächen (S6, S7; S7, S8; S7, S8; S10, S11, S6, S7) aufweisen.
  3. Linsensystem nach Anspruch 2, dadurch gekennzeichnet, daß die Gruppen (I, II) aus Linsenelementen jeweils ein Element (L2, L5; L3, L6; L3, L6; L4, L7; L2, L5) mit einer der Aperturblende (ST) abgewandten konkaven Fläche aufweisen.
  4. Linsensystem nach Anspruch 3, dadurch gekennzeichnet, daß das Element mit einer konkaven Fläche ein zweites Element der Aperturblende (ST) ist.
  5. Linsensystem nach Anspruch 2, dadurch gekennzeichnet, daß jedes positive Linsenelement des Systems eine der Aperturblende (ST) zugewandte konvexe Fläche aufweist.
  6. Linsensystem nach Anspruch 2, dadurch gekennzeichnet, daß die beiden Linsengruppen (I, II) eine vordere und eine hintere Linsengruppe sind, von denen die vordere Linsengruppe (II) vor der Aperturblende (SP) und die hintere Linsengruppe (II) hinter der Aperturblende (ST) angeordnet ist und die hintere Linsengruppe (II) drei Einzellinsen umfaßt.
  7. Linsensystem nach Anspruch 6, dadurch gekennzeichnet, daß die drei Einzellinsen aus vier Linsenelementen bestehen.
  8. Linsensystem nach Anspruch 7, dadurch gekennzeichnet, daß eines der die hintere Linsengruppe bildenden Linsenelemente negativ ist.
  9. Linsensystem nach Anspruch 2, dadurch gekennzeichnet, daß die beiden Linsengruppen aus einer vorderen und einer hinteren Linsengruppe bestehen, von denen die vordere Linsengruppe vor der Aperturblende, die hintere Linsengruppe hinter der Aperturblende und die vordere Linsengruppe vor der Aperturblende angeordnet ist und die vordere Linsengruppe aus drei Einzellinsen besteht.
  10. Linsensystem nach Anspruch 6, dadurch gekennzeichnet, daß die vordere Linsengruppe aus drei Einzellinsen besteht.
  11. Linsensystem nach Anspruch 10, dadurch gekennzeichnet, daß eine der drei Einzellinsen der vorderen Linsengruppe ein negatives Linsenelement aufweist.
  12. Linsensystem nach Anspruch 1, dadurch gekennzeichnet, daß jede Linsengruppe der Reihenfolge nach eine positive, eine negative und eine positive Einzellinse aufweist.
  13. Linsensystem nach Anspruch 12, dadurch gekennzeichnet, daß die beiden Linsengruppen aus einer vorderen und einer hinteren Linsengruppe bestehen, wobei die vordere Linsengruppe vor der Aperturblende und die hintere Linsengruppe hinter der Aperturblende angeordnet ist und die vordere und hintere Linsengruppe jeweils aus drei Einzellinsen bestehen und zwei Paare der Einzellinsen des Linsensystems identisch sind.
  14. Linsensystem nach Anspruch 12, gekennzeichnet durch folgende Konstruktionsparameter: Fläche freie Öffnung Radius Dicke Glas S1 7,04 29,3420 4,550 517642 S2 7,21 -6,55540 1,160 S3 6,43 -5,08020 2,000 785258 S4 7,53 -55,2081 0,510 S5 8,00 35,1825 3,140 517642 S6 8,54 -10,5919 0,500 8,49 Blende 0,500 S7 8,70 10,5919 3,140 517642 S8 8,30 -35,1825 0,500 S9 7,61 9,22950 2,000 785258 S10 6,13 4,66120 11,340 S11 6,25 6,55540 4,550 517642 S12 5,23 -29,3420 0,510 S13 4,90 Plan 1,000 517642 S14 4,55 Plan Linsenlänge 25,4
  15. Linsensystem nach Anspruch 1, gekennzeichnet durch numerische Daten, die im wesentlichen gemäß der folgenden Tabelle festgelegt sind: Fläche freie Öffnung Radius Dicke Glas 1 8,41 38,6019 3,670 517642 2 8,82 -7,29740 4,100 3 6,83 -4,31940 2,360 785258 4 8,94 -8,54580 1,400 5 10,12 Plan 6,290 651559 6 11,36 -10,7207 0,500 10,55 Blende 0,500 7 10,44 17,0410 3,800 651559 8 9,87 -12,0819 1,500 785258 9 9,09 9,22950 1,810 10 9,57 42,9968 3,020 651559 11 10,01 -14,6843 0,500 12 9,74 6,77130 6,400 720504 13 5,98 15,7111 1,000 14 5,14 Plan 1,000 517642 15 4,44 Plan Linsenlänge 37,850
  16. Linsensystem nach Anspruch 1, gekennzeichnet durch numerische Daten, die im wesentlichen aemäß der folgenden Tabelle festgelegt sind: Fläche freie Öffnung Radius Dicke Glas 1 8,35 -10,7207 2,970 651559 2 9,42 -7,32390 0,580 3 8,87 18,1807 3,070 651559 4 8,22 -18,1807 1,650 5 7,65 -5,62700 3,070 785258 6 9,41 -96,0144 5,000 651559 7 10,75 -8,52190 0,500 9,92 Blende 0,500 8 9,76 11,9221 3,140 651559 9 8,92 Plan 1,500 785258 10 7,88 6,67350 1,340 11 8,13 18,1807 3,070 651559 12 8,33 -18,1807 0,500 13 7,97 5,91100 3,580 720504 14 6,40 Plan 0,500 15 5,61 Plan 1,000 517642 16 4,72 Plan Linsenlänge 31,970
  17. Linsensystem nach Anspruch 1, gekennzeichnet durch numerische Daten, die im wesentlichen gemäß der folgenden Tabelle festgelegt sind: Fläche freie Öffnung Radius Dicke Glas 1 7,31 -11,7310 3,060 651559 2 8,35 -7,21870 0,500 3 8,06 24,8075 2,970 651559 4 7,61 -15,0074 1,510 5 7,19 -5,20670 3,910 785258 6 9,77 42,2210 4,870 651559 7 11,03 -8,23800 0,500 10,34 Blende 0,500 8 10,14 10,9567 3,260 651559 9 9,21 Plan 1,500 785258 10 7,97 6,38860 1,360 11 8,23 15,0074 2,970 651559 12 8,33 -24,8075 1,100 13 7,94 6,19740 3,500 772497 14 6,40 Plan Linsenlänge 31,510
  18. Linsensystem nach Anspruch 1, gekennzeichnet durch numerische Daten, die im wesentlichen gemäß der folgenden Tabelle festgelegt sind: Fläche freie Öffnung Radius Dicke Glas 1 6,92 Plan 12,000 785258 2 10,65 Plan 4,000 3 12,40 -21,6194 3,020 772497 4 13,39 -11,1939 3,860 5 13,01 24,0092 2,000 785258 6 12,11 9,35980 5,500 772497 7 11,36 -32,6195 4,430 8 8,62 -6,61220 4,400 785258 9 10,81 Plan 5,910 772497 10 12,29 -10,9567 0,320 11,43 Blende 0,300 11 11,25 14,0008 3,370 772497 12 10,47 -34,0226 2,000 785258 13 8,76 7,07690 2,200 14 9,21 32,7992 2,170 772497 15 9,39 -32,7992 1,100 16 9,34 7,29740 3,500 772497 17 8,12 Plan Linsenlänge 31,510
  19. Linsensystem nach Anspruch 1, gekennzeichnet durch numerische Daten, die im wesentlichen gemäß der folgenden Tabelle festgelegt sind: Fläche freie Öffnung Radius Dicke Glas 1 4,83 Plan 8,000 517642 2 7,73 Plan 4,000 3 9,63 -18,9706 3,360 772497 4 10,85 -9,27810 1,240 5 10,56 32,8590 2,000 785258 6 10,05 11,1065 4,790 772497 7 9,47 -22,3953 4,380 8 6,95 -5,06210 3,000 785258 9 9,01 98,0453 5,060 772497 10 10,49 -8,74010 0,550 9,80 Blende 0,420 11 9,75 11,9576 3,690 772497 12 8,89 -20,9492 2,000 785258 13 7,42 6,11100 1,870 14 7,88 23,8064 2,680 772497 15 8,13 -23,8064 1,100 16 7,99 6,19740 3,500 772497 17 6,56 Plan Linsenlänge 51,640
  20. Printer mit einer Vorrichtung (20) zum Erzeugen einer Vielzahl modulierter, kohärenter Lichtstrahlen und mit einem Linsensystem nach Anspruch 1 zum Projizieren der Lichtstrahlen auf eine Fläche (16).
Anspruch[en]
  1. A finite conjugate lens system (100, 200, 300, 400, 500, 600) comprising an aperture stop (ST) and a plurality of lens elements centred on an optical axis and being arranged in two positive lens groups (I, II) of three lens components each, said lens groups being located one on each side of said aperture stop (ST), characterized in that every positive lens element in each of said lens groups has a convex surface (S2, S6, S7, S10, S12; S2, S4, S7, S8, S11, S13; S2, S4, S7, S8, S11, S13; S4, S7, S10, S11, S14, S16; S4, S7, S10, S11, S14, S16; S2, S4, S6, S7, S8, S11) facing said aperture stop (ST) to provide high numerical apertures on both object and image sides of the lens system.
  2. A finite conjugate lens system according to Claim 1, wherein said lens groups (I, II) each comprise an outer-most lens element (L1 and L7, L1 and L8; L1 and L8, L1 and L9, L1 and L9; L1 and L6) and an inner-most lens element (L3, L4; L4, L5; L4, L5,L5, L6; L3, L4) said inner-most lens elements each located in close proximity to said aperture stop (ST), and having a convex surfaces (S6, S7; S7, S8; S7, S8; S10, S11, S6, S7) facing towards said aperture stop (ST).
  3. A finite conjugate lens system according to claim 2, wherein said groups (I, II) of lens elements each have an element (L2, L5; L3, L6; L3, L6: L4, L7; L2, L5) with a concave surface facing away from said aperture stop (ST).
  4. A finite conjugate lens system according to claim 3, wherein said element with a concave surface is a second element from the aperture stop (ST).
  5. A finite conjugate lens system according to claim 2, wherein every positive lens element in said system has a convex surface facing the aperture stop (ST).
  6. A finite conjugate lens system according to claim 2, wherein said two lens groups (I, II) are a front lens group and a rear lens group, said front lens group (I) located in front of said aperture stop (ST), said rear lens group (II) located behind said aperture stop (ST), said rear lens group (II) comprising three lens components.
  7. A finite conjugate lens system according to claim 6, wherein said three lens components comprise four lens elements.
  8. A finite conjugate lens system according to claim 7, wherein one of said lens elements comprising said rear lens group is negative.
  9. A finite conjugate lens system according to claim 2, wherein said two lens groups are a front lens group and a rear lens group, said front lens group located in front of said aperture stop, said rear lens group located behind said aperture stop, said front lens group comprising three lens components.
  10. A finite conjugate lens system according to claim 6, wherein said front lens group comprises three lens components.
  11. A finite conjugate lens system according to claim 10, wherein one of said three components of said front lens group includes one negative lens element.
  12. A finite conjugate lens system according to Claim 1, wherein each of said lens groups comprises in order a positive, negative and a positive lens component.
  13. A finite conjugate lens system according to claim 12, wherein said two lens groups are a front lens group and a rear lens group, said front lens group located in front of said aperture stop, said rear lens group located behind said aperture stop, said front lens group and said rear group each comprising three lens components and two pairs of lens components in said lens system are identical.
  14. A finite conjugate lens system according to claim 12 satisfying the following design parameters: SURFACE CLEAR APER. RADIUS THICKNESS GLASS S1 7.04 29.3420 4.550 517642 S2 7.21 -6.55540 1.160 S3 6.43 -5.08020 2.000 785258 S4 7.53 -55.2081 0.510 S5 8.00 35.1825 3.140 517642 S6 8.54 -10.5919 0.500 8.49 DIAPHRAGM 0.500 S7 8.70 10.5919 3.140 517642 S8 8.30 -35.1825 0.500 S9 7.61 9.22950 2.000 785258 S10 6.13 4.66120 1.340 S11 6.25 6.55540 4.550 517642 S12 5.23 -29.3420 0.510 S13 4.90 PLANO 1.000 517642 S14 4.55 PLANO LENS LENGTH 25.4
  15. A finite conjugate lens system according to claim 1 having numerical data substantially as set in the following table: SURFACE CLEAR APER. RADIUS THICKNESS GLASS 1 8.41 38.6019 3.670 517642 2 8.82 -7.29740 4.100 3 6.83 -4.31940 2.360 785258 4 8.94 -8.54580 1.400 5 10.12 PLANO 6.290 651559 6 11.36 -10.7207 0.500 10.55 DIAPHRAGM 0.500 7 10.44 17.0410 3.800 651559 8 9.87 -12.0819 1.500 785258 9 9.09 9.22950 1.810 10 9.57 42.9968 3.020 651559 11 10.01 -14.6843 0.500 12 9.74 6.77130 6.400 720504 13 5.98 15.7111 1.000 14 5.14 PLANO 1.000 517642 15 4.44 PLANO LENS LENGTH 37.850
  16. A finite conjugate lens system according to claim 1 having numerical data substantially as set in the following table: SURFACE CLEAR APER. RADIUS THICKNESS GLASS 1 8.35 -10.7207 2.970 651559 2 9.42 -7.32390 0.580 3 8.87 18.1807 3.070 651559 4 8.22 -18.1807 1.650 5 7.65 -5.62700 3.070 785258 6 9.41 -96.0144 5.000 651559 7 10.75 -8.52190 0.500 9.82 DIAPHRAGM 0.500 8 9.76 11.9221 3.140 651559 9 8.92 PLANO 1.500 785258 10 7.88 6.67350 1.340 11 8.13 18.1807 3.070 651559 12 8.33 -18.1807 0.500 13 7.97 5.91100 3.580 720504 14 6.40 PLANO 0.500 15 5.61 PLANO 1.000 517642 16 4.72 PLANO LENS LENGTH 31.970
  17. A finite conjugate lens system according to claim 1 having numerical data substantially as set in the following table: SURFACE CLEAR APER. RADIUS THICKNESS GLASS 1 7.31 -11.7310 3.060 651559 2 8.35 -7.21870 0.500 3 8.06 24.8075 2.970 651559 4 7.61 -15.0074 1.510 5 7.19 -5.20670 3.910 785258 6 9.77 42.2210 4.870 651559 7 11.03 -8.23800 0.500 10.34 DIAPHRAGM 0.500 8 10.14 10.9567 3.260 651559 9 9.21 PLANO 1.500 785258 10 7.97 6.38860 1.360 11 8.23 15.0074 2.970 651559 12 8.33 -24.8075 1.100 13 7.94 6.19740 3.500 772497 14 6.40 PLANO LENS LENGTH 31.510
  18. A finite conjugate lens system according to claim 1 having numerical data substantially as set in the following table: SURFACE CLEAR APER. RADIUS THICKNESS GLASS 1 6.92 PLANO 12.000 785258 2 10.65 PLANO 4.000 3 12.40 -21.6194 3.020 772497 4 13.39 -11.1939 3.860 5 13.01 24.0092 2.000 785258 6 12.11 9.35980 5.500 772497 7 11.36 -32.6195 4.430 8 8.62 -6.61220 4.400 785258 9 10.81 PLANO 5.910 772497 10 12.29 -10.9567 0.320 11.43 DIAPHRAGM 0.300 11 11.25 14.0008 3.370 772497 12 10.47 -34.0226 2.000 785258 13 8.76 7.07690 2.200 14 9.21 32.7992 2.170 772497 15 9.39 -32.7992 1.100 16 9.34 7.29740 3.500 772497 17 8.12 PLANO LENS LENGTH 60.100
  19. A finite conjugate lens system according to claim 1 having numerical data substantially as set in the following table: SURFACE CLEAR APER. RADIUS THICKNESS GLASS 1 4.83 PLANO 8.000 517642 2 7.73 PLANO 4.000 3 9.63 -18.9706 3.360 772497 4 10.85 -9.27810 1.240 5 10.56 32.8590 2.000 785258 6 10.05 11.1065 4.790 772497 7 9.47 -22.3953 4.380 8 6.95 -5.06210 3.000 785258 9 9.01 98.0453 5.060 772497 10 10.49 -8.74010 0.550 9.80 DIAPHRAGM 0.420 11 9.75 11.9576 3.690 772497 12 8.89 -20.9492 2.000 785258 13 7.42 6.11100 1.870 14 7.88 23.8064 2.680 772497 15 8.13 -23.8064 1.100 16 7.99 6.19740 3.500 772497 17 6.56 PLANO LENS LENGTH 51.640
  20. A printer comprising means (20) for generating a plurality of modulated coherent light beams and a finite conjugate lens as defined in Claim 1 for projecting the light beams onto a surface (16).
Anspruch[fr]
  1. Système d'objectif à points conjugués finis (100, 200, 300, 400, 500, 600) comprenant un diaphragme d'ouverture (ST) et une pluralité d'éléments de lentilles centrés sur un axe optique et étant agencés en deux groupes de lentilles convergentes (I, II) de trois composants de lentilles chacun, lesdits groupes de lentilles étant situés un de chaque côté dudit diaphragme d'ouverture (ST), caractérisé en ce que chaque élément de lentille convergente dans chacun desdits groupes de lentilles présente une surface convexe (S2, S6, S7, S10, S12; S2, S4, S7, S8, S11, S13; S2, S4, S7, S8, S11, S13; S4, S7, S10, S11, S14, S16; S4, S7, S10, S11, S14, S16; S2, S4, S6, S7, S8, S11) faisant face audit diaphragme d'ouverture (ST) afin de procurer de grandes ouvertures numériques tant du côté objet que du côté image du système d'objectif.
  2. Système d'objectif à points conjugués finis selon la revendication 1, dans lequel lesdits groupes de lentilles (I,II) comprennent chacun un élément de lentille le plus à l'extérieur (L1 et L7, L1 et L8; L1 et L8, L1 et L9, L1 et L9; L1 et L6) et un élément de lentille le plus à l'intérieur (L3, L4; L4, L5; L4, L5, L5, L6; L3, L4), lesdits éléments de lentilles les plus à l'intérieur étant chacun situé à proximité immédiate dudit diaphragme d'ouverture (ST), et présentant des surfaces convexes (S6 S7; S7, S8; S7, S8; S10, S11, S6, S7) étant dirigées face audit diaphragme d'ouverture (ST).
  3. Système d'objectif à points conjugués finis selon la revendication 2, dans lequel ledit groupe (I, II) des éléments de lentilles comportent chacun un élément (L2 L5; L3, L6; L3, L6; L4, L7; L2. L5) avec une surface concave dirigée face à l'opposé dudit diaphragme d'ouverture (ST).
  4. Système d'objectif à points conjugués finis selon la revendication 3, dans lequel ledit élément avec une surface concave est un second élément à partir du diaphragme d'ouverture (ST).
  5. Système d'objectif à points conjugués finis selon la revendication 2, dans lequel chaque élément de lentille convergente dans ledit système présente une surface convexe face au diaphragme d'ouverture (ST).
  6. Système d'objectif à points conjugués finis selon la revendication 2, dans lequel lesdits deux groupes de lentilles (I, II) sont un groupe de lentilles avant et un groupe de lentilles arrière, ledit groupe de lentilles avant (I) étant situé devant ledit diaphragme d'ouverture (ST), ledit groupe de lentilles arrière (II) étant situé derrière ledit diaphragme d'ouverture (ST), ledit groupe de lentille arrière (II) comprenant trois composants de lentilles.
  7. système d'objectif à points conjugués finis selon la revendication 6, dans lequel lesdits trois composants de lentilles comprennent quatre éléments de lentilles.
  8. Système d'objectif à points conjugués finis selon la revendication 7, dans lequel l'un desdits éléments de lentilles constituant ledit groupe de lentilles arrière est divergent.
  9. Système d'objectif à points conjugués finis selon la revendication 2, dans lequel lesdits deux groupes de lentilles sont un groupe de lentilles avant et un groupe de lentilles arrière, ledit groupe de lentilles avant étant situé devant ledit diaphragme d'ouverture, ledit groupe de lentilles arrière étant situé derrière ledit diaphragme d'ouverture, ledit groupe de lentilles avant comprenant trois composants de lentilles.
  10. Système d'objectif à points conjugués finis selon la revendication 6, dans lequel ledit groupe de lentilles avant comprend trois composants de lentilles.
  11. Système d'objectif à points conjugués finis selon la revendication 10, dans lequel l'un desdits trois composants dudit groupe de lentilles avant comprend un élément de lentille divergente.
  12. Système d'objectif à points conjugués finis selon la revendication 1, dans lequel chacun desdits groupes de lentilles comprend dans l'ordre un composant de lentille convergente, divergente et convergente.
  13. Système d'objectif à points conjugués finis selon la revendication 12, dans lequel lesdits deux groupes de lentilles sont un groupe de lentilles avant et un groupe de lentilles arrière, ledit groupe de lentilles avant étant situé devant ledit diaphragme d'ouverture, ledit groupe de lentilles arrière étant situé derrière ledit diaphragme d'ouverture, ledit groupe de lentilles avant et ledit groupe arrière comprenant chacun trois composants de lentilles, et deux paires de composants de lentilles dudit système d'objectif sont identiaues.
  14. Système d'objectif à points conjugués finis selon la revendication 12, satisfaisant les paramètres de conception suivants : SURFACE OUVERTURE RAYON EPAISSEUR VERRE S1 7,04 29,3420 4,550 517642 S2 7,21 -6,55540 1,160 S3 6,43 -5,08020 2,000 785258 S4 7,53 -55,2081 0,510 S5 8,00 35,1825 3,140 517642 S6 8,54 -10,5919 0,500 8,49 DIAPHRAGME 0,500 S7 8,70 10,5919 3,140 517642 S8 8,30 -35,1825 0,500 S9 7,61 9,22950 2,000 785258 S10 6,13 4,66120 1,340 S11 6,25 6,55540 4,550 517642 S12 5,23 -29,3420 0,510 S13 4,90 PLAN 1,000 517642 S14 4,55 PLAN LONGUEUR D'OBJECTIF 25,4
  15. Système d'objectif à points conjugués finis selon la revendication 1, présentant des données numériques sensiblement telles qu'établies dans le tableau suivant : SURFACE OUVERTURE RAYON EPAISSEUR VERRE 1 8,41 38,6019 3,670 517642 2 8,82 -7,29740 4,100 3 6,83 -4,31940 2,360 785258 4 8,94 -8,54580 1,400 5 10,12 PLAN 6,290 651559 6 11,36 -10,7207 0,500 10,55 DIAPHRAGME 0,500 7 10,44 17,0410 3,800 651559 8 9,87 -12,0819 1,500 785258 9 9,09 9,22950 1,810 10 9,57 42,9968 3,020 651559 11 10,01 -14,6843 0,500 12 9,74 6,77130 6,400 720504 13 5,98 15,7111 1,000 14 5,14 PLAN 1,000 517642 15 4,44 PLAN LONGUEUR D'OBJECTIF 37,850
  16. Système d'objectif à points conjugués finis selon la revendication 1, présentant des données numériques sensiblement telles qu'établies dans le tableau suivant : SURFACE OUVERTURE RAYON EPAISSEUR VERRE 1 8,35 -10,7207 2,970 651559 2 9,42 -7,32390 0,580 3 8,87 18,1807 3,070 651559 4 8,22 -18,1807 1,650 5 7,65 -5,62700 3,070 785258 6 9,41 -96,0144 5,000 651559 7 10,75 -852190 0,500 9,92 DIAPHRAGME 0,500 8 9,76 11,9221 3,140 651559 9 8,92 PLAN 1,500 785258 10 7,88 6,67350 1,340 11 8,13 18,1807 3,070 651559 12 8,33 -18,1807 0,500 13 7,97 5,91100 3,580 720504 14 6,40 PLAN 0,500 15 5,61 PLAN 1,000 517642 16 4,72 PLAN LONGUEUR D'OBJECTIF 31,970
  17. Système d'objectif à points conjugués finis selon la revendication 1, présentant des données numériques sensiblement telles qu'établies dans le tableau suivant : SURFACE OUVERTURE RAYON EPAISSEUR VERRE 1 7,31 -11,7310 3,060 651559 2 8,35 -7,21870 0,500 3 8,06 24,8075 2,970 651559 4 7,61 -15,0074 1,510 5 7,19 -5,20670 3,910 785258 6 9,77 42,2210 4,870 651559 7 11,03 -8,23800 0,500 10,34 DIAPHRAGME 0,500 8 10,14 10,9567 3,260 651559 9 9,21 PLAN 1,500 785258 10 7,97 6,38860 1,360 11 8,23 15,0074 2,970 651559 12 8,33 -24,8075 1,100 13 7,94 6,19740 3,500 772497 14 6,40 PLAN linsenlänge 31,510
  18. Système d'objectif à points conjugués finis selon la revendication 1, présentant des données numériques sensiblement telles qu'établies dans le tableau suivant : SURFACE OUVERTURE RAYON EPAISSEUR VERRE 1 6,92 PLAN 12,000 785258 2 10,65 PLAN 4,000 3 12,40 -21,6191 3,020 772497 4 13,39 -11,1939 3,860 5 13,01 24,0092 2,000 785258 6 12,11 9,35980 5,500 772497 7 11,36 -32,6195 4,430 8 8,62 -6,61220 4,400 785258 9 10,81 PLAN 5,910 772497 10 12,29 -10,9567 0,320 11,43 DIAPHRAGME 0,300 11 11,25 14,0008 3,370 772497 12 10,47 -34,0226 2,000 785258 13 8,76 7,07690 2,200 14 9,21 32,7992 2,170 772497 15 9,39 -32,7992 1,100 16 9,34 7,29740 3,500 772497 17 8,12 PLAN LONGUEUR D'OBJECTIF 60,100
  19. Système d'objectif à points conjugués finis selon la revendication 1, présentant des données numériques sensiblement telles qu'établies dans le tableau suivant : SURFACE OUVERTURE RAYON EPAISSEUR VERRE 1 4,83 PLAN 8,000 517642 2 7,73 PLAN 4,000 3 9,63 -18,9706 3,360 772497 4 10,85 -9,27810 1,240 5 10,56 32,8590 2,000 785258 6 10,05 11,1065 4,790 772497 7 9,47 -22,3953 4,380 8 6,95 -5,06210 3,000 785258 9 9,01 98,0453 5,060 772497 10 10,49 -8,74010 0,550 9,80 DIAPHRAGME 0,420 11 9,75 11,9576 3,690 772497 12 8,89 -20,9492 2,000 785258 13 7,42 6,11100 1,870 14 7,88 23,8064 2,680 772497 15 8,13 -23,8064 1,100 16 7,99 6,19740 3,500 772497 17 6,56 PLAN LONGUEUR D'OBJECTIF 51,640
  20. Dispositif d'impression comprenant un moyen (20) destiné à générer une pluralité de faisceaux de lumière cohérente modulée et un objectif à points conjugués finis selon la revendication 1, destiné à la projection des faisceaux de lumière jusque sur une surface (16).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com