PatentDe  


Dokumentenidentifikation EP0599882 18.12.1997
EP-Veröffentlichungsnummer 0599882
Titel FAHRZEUGAUFHÄNGUNGSSYSTEM
Anmelder Kinetic Ltd., Dunsborough, AU
Erfinder HEYRING, Christopher, Brian, Dunsborough W.A. 6281, AU
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69223149
Vertragsstaaten AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, MC, NL, SE
Sprache des Dokument En
EP-Anmeldetag 16.07.1992
EP-Aktenzeichen 929164051
WO-Anmeldetag 16.07.1992
PCT-Aktenzeichen AU9200362
WO-Veröffentlichungsnummer 9301948
WO-Veröffentlichungsdatum 04.02.1993
EP-Offenlegungsdatum 08.06.1994
EP date of grant 12.11.1997
Veröffentlichungstag im Patentblatt 18.12.1997
IPC-Hauptklasse B60G 21/06

Beschreibung[en]

THIS INVENTION relates to a suspension system for a vehicle, and is specifically related to controlling the movement of the wheels relative to the vehicle body when turning at speed and traversing uneven surfaces.

In known suspension systems resilient means such as springs or torsion bars are provided to perform a multiplicity of functions ranging from the absorption of impact loading (as from hitting bumps at speed) to the provision of flexible support to enable all the wheels to maintain ground contact when traversing uneven terrain. Additionally applied loads such as cargo deflects traditional suspensions to induce movement between the body and wheels in a similar manner to dynamic or contour loadings.

Traditional resiliently sprung suspensions are based on each wheel assembly being provided with an individual resilient component which mechanically supports the respective "corners" of the vehicle. The resilient components have rapidly progressive load rating as deflected and normal vehicle weight is only distributed to all wheels when the wheels collectively describe a flat plane surface. When one wheel of a vehicle passes over (or is parked on) a bump, that wheel carries more vehicular weight than it normally carries on flat ground. Meanwhile the other wheels are correspondingly relieved of some of their normal share of the weight.

The rapidly progressively resiliently sprung suspension systems work satisfactorily only within a very narrow spectrum of dynamic, static and applied loading situations, and any type of overloading or even underloading of a vehicle normally adversely affects its abilities to maintain traction, average ground clearance, and quality of ride. Moreover the scope of demands upon known resilient suspension systems leads to self conflicting performance characteristics as there is no inherent ability in the system to detect and react differently to diverse situations, which cause resonant rebounding, requiring excessive damping with shock absorbers, and also anti-roll bars, thus limiting free movement of unsprung components.

Recently there has been a trend towards resilient sprung suspension systems incorporating variable damping and spring rates in an attempt to redress some of the above referred to shortcomings. Some other more advanced suspension systems (active and semi-active suspensions) incorporate a number of electronic sensors which monitor information such as vertical wheel travel and body roll, as well as speed, acceleration, steering and braking commands. This and other data is processed by a computer which instructs hydraulic actuators to override the normal function of resilient springs in order to interpret, compensate and adjust the suspensions performance to suit speed, terrain and other factors in order to maintain a level ride and even distribution of weight onto the wheels. These suspension systems therefore require an external intelligent back-up system, and call for a substantial input of external energy, drawn from the vehicle engine, to operate the actuators that effect the adjustment to the suspension system.

A range of constructions of active and semi-active suspensions for vehicles have been proposed including systems operating on the basis of compression and/or displacement of fluids and such systems currently in use incorporate a pump to maintain the working fluid at the required pressure and effect distribution thereof, and sophisticated control mechanisms to regulate the operation of the suspension system in accordance with sensed road and/or vehicle operating conditions. These known systems, incorporating pumps and electronic control systems, one example of which is US-A-3752497, are comparatively expensive to construct and maintain, and require energy input, and therefore have limited acceptability in the vehicle industry.

There has been proposed, such as in US Patent No. 4606551, damping systems used in conjunction with conventional sprung suspensions wherein fluid damping devices associated with individual wheels are interconnected to provide additional damping action during lateral rolling or longitudinal pitching movements. Although these constructions may contribute to improved damping performance the undesirable characteristics of the basic sprung suspension, of rapidly progressive change in spring forces, lead to undesirable changes in weight distribution and limited wheel movements are still present.

Furthermore, French patent specification FR-A-1535641, comprising the features defined in the preamble of claim 1, discloses a vehicle suspension system incorporating a fluid container disposed between each wheel and the vehicle body thus to be operatively interposed therebetween, each fluid container being divided into a major and a minor fluid chamber by a piston, the major fluid chamber of each container being linked by a fluid conduit to the minor fluid chamber of the container for the diagonally opposite wheel, thereby forming for diagonally opposite pairs of wheels an hydraulically discrete closed circuit. However, the diagonal circuits are independent of one another and cannot ensure consistent loading on each of the vehicle wheels independent of the terrain being traversed.

It is therefore the object of the present invention to provide a suspension system which eliminates the use of conventional spring components and incorporates a totally fluid suspension without the need for controlled external energy input during operation and provides unrestricted wheel movement while minimising roll and pitch motion, and is of relative simpler construction and effective in operation.

With this object in view, there is provided by the present invention a vehicle having a load support body, at least one pair of front ground engaging wheels and at least one pair of rear ground engaging wheels, connected to the body by suspension members connected between each wheel and the body to permit the relative movement between the wheels and body in a substantially vertical direction, the support position of the body relative to each of the wheels, being determined by a double acting fluid ram, one for each wheel, each incorporating a fluid container operatively interposed between the body and the wheel, each fluid container being divided by a ram piston into a major and a minor fluid chamber which are substantially proportionally reciprocal within the fluid container, the major fluid chamber of each container being linked to the minor fluid chamber of the diagonally opposite container by a fluid communicating conduit each pair of diagonally disposed fluid communicating conduits between the same containers forming a diagonally paired circuit, said diagonally paired circuits during normal vehicle operation being closed and independent of external pressure sources; characterised in that interposed between the diagonally paired circuits is a load distribution unit adapted to substantially equalise the pressure in said circuits without direct fluid communication therebetween, such that the total volume of fluid in each diagonally paired circuit is unchanged and at the same pressure; and in that both diagonally paired circuits together define the average height and attitude of the vehicle regardless of different vertical positions of the two pairs of diagonally opposite wheels, and such that consistent loading is maintained on each wheel independent of the terrain being traversed.

The provision of diagonally paired circuits provides an arrangement whereby when any one wheel is subjected to a load attempting to move that wheel in one direction relative to the body, the diagonally opposite wheel attempts to move in the same direction. In operating conditions that would induce body roll or pitch in a vehicle, whereby an increase in load, on the two front or two rear wheels in the case of pitch, or on one front and one rear wheel on the same side of the vehicle in the case of roll, the presently proposed construction will inhibit pitch or roll due to the diagonally opposite wheels being controlled to prevent movement in the opposite direction, and limit movements in the same direction. In addition, the load distribution unit provides substantially equal pressure in the two diagonally paired circuits without direct fluid transfer therebetween. This achieves the desired suspension performance whereby the average height and attitude of the vehicle is independent of the relative position of the diagonally paired wheels.

Conveniently each of the diagonally paired circuits have branch conduits connecting them to the common load distribution unit. The load distribution unit comprises two further minor chambers of fixed volume, each being subdivided into two reciprocal minor chambers. Each two reciprocal minor chambers are proportionally reciprocal in volume within the fixed volume of the further minor chambers and are separated by a movable dividing member. The dividing members are linked together so that both move in unison causing reciprocal fluid volume flow to and from the two pairs of reciprocal minor chambers into the associated branch conduits to promote consistent loading on each wheel during axle articulation.

In one arrangement, two of the reciprocal minor chambers of the load distribution unit, which function reciprocally with respect to each other, are ultimately in fluid communication with the major fluid chambers on one side of the vehicle, while the other two reciprocal minor chambers, which function reciprocally with respect to one another, are in fluid communication with the major fluid chambers on the opposite side of the vehicle to substantially resist axial movement of both the dividing members during turning of the vehicle. This limits vehicular roll motion.

Also, two of the reciprocal minor chambers of the load distribution unit, which do not function reciprocally with respect to each other but do function reciprocally with respect to the other two reciprocal minor chambers, are in fluid communication with the major fluid chambers associated with the diagonally opposite wheels. This promotes axial movement of the connected dividing members to promote substantially consistent loading on all wheels regardless of the relative positions of the two pairs of diagonally opposite wheels with respect to the body. Thus when uneven terrain is traversed, all wheels maintain a substantially consistent load irrespective of wheel position during axle articulation.

Unlike other suspension systems, roll and pitch minimisation and the re-establishment of body level is achieved in the presently proposed construction without the input of energy to the suspension system, drawn from a pump, compressor or otherwise from an engine or an external power source, and without the requirement of pressure transducers and other performance monitoring devices feeding information to one or more ECUs which in turn may control electrical actuated solenoid valves, pumps, compressors or the controlled release of pressurised fluid from accumulators.

The vehicle suspension above described differs from known systems in that the wheel travel is not controlled entirely by progressive resilient suspension mechanisms, and all wheels can freely follow even extremely uneven terrain. The interaction of the pressure and volume changes in the fluid circuits maintaining a substantially average vehicle body height and attitude, without unduly limiting the permissible extent of wheel travel movements. Furthermore, there is an unprecedented working interrelationship between the diagonal opposite wheels which are interconnected to each other by the individual fluid circuits, which is collectively applied to the vehicle body so that conventional resilient components, such as springs, are not required in the suspension system.

A vehicle supported on wheels in the above described manner allows free vertical travel of the wheels with respect to the vehicle body without having to first overcome the resistance of the conventional spring mechanisms normally incorporated between the wheels and the vehicle body. Thus, the wheels are free to move to follow the undulations of the surface being travelled without continually changing the vehicle weight distribution between the individual wheels. This substantial elimination of changes in weight distribution significantly improves the traction of the wheels to the surface being transversed and the handling characteristics of the vehicle.

Several practical applications of the present invention will now be described by way of examples with reference to the accompanying drawings.

In the drawings:-

  • Figure 1 is a diagrammatic layout of a vehicle chassis and wheel assembly incorporating a suspension system according to the prior art.
  • Figure 2 is a fluid circuit diagram of the suspension system shown in Figure 1 and incorporating the present invention.
  • Figure 3 is a fluid circuit diagram of a modification of the suspension system incorporating the present invention.

Referring now to Figure 1 of the drawings, the vehicle chassis 5, is supported by four wheels 1 to 4 respectively through parallel wishbone type linkages 6, for front wheels 1 and 2, and through trailing arms 6a for rear wheels 3 and 4, the construction of each being well known. Other known forms of linkage for connecting vehicle wheels to a chassis could be used if preferred. It is however to be noted that no springs, torsion bars, roll or stabiliser bars or other resilient mechanical suspension elements are necessary between the chassis and the respective wheels.

A respective double acting ram or fluid container is interconnected between the chassis 5 and the linkages 6 and 6a connecting each wheel to the chassis. The front and rear containers on the left side in Figure 1 are numbered 18 and 17 respectively and on the right side 14 and 13 respectively. Each of the containers includes a cylinder coupled as at 50 to the chassis 5 and a piston therein dividing the cylinder into two chambers indicated as 17a and 17b in respect of fluid container 17 and 18a and 18b in respect of fluid container 18. The other two fluid containers 13 and 14 are of the same construction and similarly identified. The piston of each container is connected to the respective wheel through the linkage 6 so the piston will reciprocate in the container as the wheel is moved in the general vertical direction relative to the chassis 5.

Referring now to Figures. 1 and 2, the diagonally opposite fluid containers 18 and 14 have the upper chamber 18a and the lower chamber 14b in communication by the conduit 10 and lower chamber 18b and upper chamber 14a in communication by the conduit 8. Similarly the upper and lower chambers of the fluid containers 17 and 13 are in communication, chambers 17a and 13b by the conduit 8a and chambers 17b and 13a by conduit 10a.

The conduits 8, 8a 10 and 10a interconnecting the four double acting rams or fluid containers 13, 14, 17 and 18 which support the chassis 5, each has at least one pressure accumulator 27, 21, 22 and 28 in communication therewith, which is primarily responsible for providing resilience in the suspension as do springs in most prior art sprung suspensions. If the fluid used in the cylinders and connecting conduits is compressible, such as a gas, accumulators are not required as the resilient medium itself provies the required level of compressibility or resilience. It is preferred, as shown in Figure 2 that additional optional pressure accumulators, are provided, such as 23, 24, 29 and 30, in each of the conduits, 8, 10, and 8a, 10a respectively. These accumulators, when provided are preferably smaller and matched in size and function to the lower chambers of the fluid containers allowing the fluid in the lower chambers to be expelled quickly and provide resistance to shock loading when the wheels may be thrust down and could damage the pistons and their housings. The provision of accumulators in general also enable faster reactions and responses of piston movements as frictional losses are minimised.

All accumulators preferably are located as near as practical to their associated fluid containers to provide an immediate and accurate response to fast dynamic forces arising when the vehicle is travelling fast.

When the above described suspension is fitted to normally slow moving vehicles, such as cranes, it is appropriate to incorporate only a single accumulator in each conduit and located near the major chamber of the fluid container connected by that conduit. In such vehicles the accumulators may be provided with an isolating means, such as a solenoid valve, to reduce the resilience of these particular circuits when under heavy load. Additionally and conversely there can be multiple accumulators in any circuit and each accumulator may be precharged with gas to a different pressure to provide a progressive variety of spring rates to suit different loading situations.

The accumulators can each be provided with a damping valve in the throat thereof to perform the same function as so called shock absorbers in other vehicles suspension systems.

Flow control devices such as indicated at 31, 32, 33 and 34 may be provided in any or each of the conduits to reduce the rate of the fluid flow to ensure that the fluid containers at either end of the conduits communicate directly only at a relatively slow speed, as arises when the vehicle is traversing rough ground, requiring large wheel travel motions and optimum low ground pressure on all wheels. At high speeds the small dynamic wheel travel motions are best resolved primarily by the accumulators.

Any of the conduits may be provided with flow control devices of a variable nature or other means to vary and even stop the flow along the conduits between the connected fluid containers. An example of such a valve may be a solenoid valve controlled by an ECU which processes a variety of information from sources such as accelerometers or pressure transducers and thereby cause the sudden or gradual closure of the valves.

The above construction of the suspension system results in the movement of wheels 1 and 3, relative to the chassis 5, under the control of fluid containers 18 and 14, in the same direction due to the arrangement of the interconnecting conduits 8 and 10. The movements are also approximately equal except for such difference as may arise from the fluid passed to the accumulator or accumulators coupled to the conduits 8 and 10. The same conditions exist in respect of the wheels 4 and 3.

The above interactions between the respective fluid containers associated with each wheel of the vehicle effects control of roll when the vehicle is turning, particularly when turning at speed, and control of pitch when the vehicle is braking or acceleration, particularly severe braking or acceleration.

Figure 2 illustrates one embodiment of the suspension system as previously described with reference to Figure 1, but incorporating the present invention. The basic arrangement of the double acting fluid containers 13, 14, 17 and 18 and the interconnecting conduits 8, 8a, 10 and 10a as described with reference to Figure 1 is identical in the suspension system shown in Figure 2. Accordingly, corresponding components in Figure 2 are numbered identical to that used in Figures 1 and 2 and the construction and operations of the components will not be repeated.

The suspension system shown in Figure 2 includes a load distribution unit 40 with which each of the conduits 8, 8a, 10 and 10a is in direct independent communication. The load distribution unit comprises a body having in the preferred form a cylindrical bore 42 closed at each end 43 and 44 and divided into two major chambers 46 and 47 by the intermediate fixed wall 45. Respective pistons 48 and 49 are provided in the chambers 47 and 46 each mounted on a piston rod 51 which extends in sealed relation through the intermediate wall 45 and each closed end 43 and 44 of the body.

The pistons 48 and 49 and the piston rod 51 can move in the cylindrical bore 42 providing four variable volume minor chambers 55, 56, 57 and 58, with minor chambers 55 and 57 varying in the same direction in response to piston movement, and minor chambers 56 and 58 varying in the same direction but in the opposite direction to minor chambers 55 and 57 for the same piston movement. The conduits 8 and 10, forming the fluid circuit between diagonally opposite fluid containers 18 and 14, communicate with chamber 55 and 57 by branch conduits 60 and 61. Similarly conduits 8a and 10a, forming the fluid circuit between diagonally opposite containers 17 and 13, communicate with chambers 56 and 58 by branch conduits 62 and 63.

In the initial setting up of the suspension the fluid in the chambers 55, 56, 57 and 58 is adjusted so that the pistons 48 and 49 are each located substantially centrally in the respective major chambers 47 and 46. This initial setting up is carried out with the vehicle body 5 substantially horizontal or at the preferred operating attitude; and at the preferred operating height with respect to the wheels.

When operating the vehicle if the net pressure in minor chambers 55 and 57 is greater than the net pressure in minor chambers 56 and 58 a force will exist to effect displacement of the pistons 48 and 49 upwardly as seen in Figure 2 to achieve a balance between the respective net pressures. This in turn will displace fluid from chambers 56 and 58 into the respect conduits 8a and 10a to bring about a balanced pressure in all of the double acting fluid containers 13, 14, 17 and 18 thereby achieving substantially uniform load distribution between all four wheels 1, 2, 3 and 4, independent of the respective position of each wheel relative to the chassis 5.

This pressure balance between the fluid in the respective circuits is particularly achieved when variation in wheel positions is relatively large as encountered in traversing terrain of substantial irregular surface, such as encountered in off-road vehicle operation, and where wheel movement is of relatively lower frequency but of substantial magnitude. In such operating conditions, it is most desirable to retain substantially even load distribution to all wheels in order to maintain traction and prevent bogging of the vehicle. Also in such conditions it is important to reduce lateral tilting of the vehicle to improve driver and passenger comfort, and safety from rolling over of the vehicle. The load distribution unit 40 operable as above discussed affects the necessary transfer of fluid to maintain substantially even load distribution between all four wheels and reduced chassis tilting movement.

Figure 3 illustrates a preferred modification of the suspension system as previously described with reference to Figure 2. The basic arrangement of the double acting fluid containers 13, 14, 17 and 18 and the interconnecting conduits 8, 8a, 10 and 10a as described with reference to Figures 1 and 2 is identical in the suspension system shown in Figure 3. Accordingly, corresponding components in Figure 3 are numbered identical to that used in Figures 1 and 2 and the construction and operations of the components will not be repeated.

Levelling of the vehicle may be achieved by pumping up the vehicle's lower side while allowing fluid to drain to a reservoir from the high side. Alternatively levelling may be accomplished, not by introducing or removing fluid from the circuits, but by redistributing the fluid already within the circuits.

The modification of the suspension system, as shown in Figure 3, resides in the interconnections between the load distribution unit 40 and the conduits 8, 8a, 10 and 10a, which incorporates the manifold 76 between branch conduits 60, 61, 62 and 63 and load distribution unit 41. The load distribution unit as described with reference to Figure 2 includes the end walls 43 and 44 and intermediate wall 45 forming major chambers 46 and 47 and pistons 48 and 49, mounted on the piston rod 51 which extends in sealed relation through the intermediate wall 45 and each closed ends 43 and 44 of the body. However the load distribution unit 40 as shown in Figure 3 includes a further major chamber 65 through which the piston rod 51 also extends with the piston 59 mounted thereon.

The manifold 76 provides a respective straight through path for each of the branch conduits 60, 61, 62 and 63 to connect each to the respective chambers of the load distribution devices 40 by the conduits 60b, 61b, 62b and 63b. It is to be noted that conduit 60b and 62b are connected to the minor chambers 55 and 56 respectively and conduits 61b and 63b are connected to minor chambers 57 and 58. Incorporated in the manifold 76 are two change-over valves shown diagrammatically at 81 and 82. The change-over valve 81 is operable in relation to conduits 61, 61b, and 63, 63b, and valve 82 operable between conduits 60, 60b and 62, 62b. Each of the change-over valves 81 and 82 may be driver operated, or automatically operated in response to sensed vehicle operating conditions. The change-over valves may conveniently be solenoid operated.

By way of illustration the change-over valve 81 as shown in Figure 3 is in the cross-over mode with conduit 60 communicating with conduit 62b and conduit 62 communicating with conduit 60b. Change-over valve 80 remains in the straight through mode with conduits 61 and 61b connected and conduits 63 and 63b connected.

The additional minor chambers 74 and 75 formed in the further major chamber 65 are connected via the manifold 76 and conduits 70, 70b and 71, 71b to the pump 78 and fluid reservoir 77 respectively, the latter being the fluid supply to the pump 78. The manifold 76 also incorporates a solenoid operated change-over valve at 83 which is operable to enable fluid to be pumped into either one of chambers 74 and 75 and to be returned from the other to the reservoir 77. Also the valve 83 is operable to short circuit conduits 70 and 71 and at the same time directly interconnect the minor chambers 74 and 75 whereby the piston 56 will not hinder the movement of the piston rod 51. The change-over valve 83 can also be driver operated or automatically operated.

While the vehicle is in normal passive use, load sharing by the wheels is accomplished by the redistribution of pressures and fluid volumes as previously described and therefore the solenoid valves within the manifold 76 remain in a position to allow the free passage of fluid to and from the associated load distribution unit 40 and the related circuits as previously described with reference to Figure 2. During such periods of operation the change-over valve 83 is positioned so the chambers 74 and 75 are directly interconnected and isolated from the pump 78 and reservoir 77.

If, however, a load is introduced into, or removed from the vehicle causing one end or side to go up or down, then the change-over valves 81 and 82 can be actuated to cause a load levelling procedure to be initiated.

By way of example, it may be desired to lower the left side of the vehicle and raise the right side and this can be accomplished by causing the piston rod 51 to move upwardly as viewed in Figure 3 by delivering fluid to minor chamber 75 by the pump 78 while the change-over valve 82 is in the position as shown in Figure 3 with conduits 60 and 62b connected, and conduits 60b and 62 connected. The vehicle can similarly be caused to roll in the opposite direction by moving the piston rod 51 downward as seen in Figure 3 and pump fluid into minor chamber 74.

Similarly if the rear of the vehicle needs to be raised the solenoid valves within the manifold may only cross connect conduit 63 to 60b and 60 to 63b while the piston rod 51 is moved upwards.

In the embodiment shown in Figure 3 the piston rod 51 can be moved by the selective admission of fluid to the minor chambers 74 and 75 from the pump 78 and this is convenient as the pump 78 can be a pump already incorporated in the vehicle such as a power steering pump. However, the piston rod 51 may be selectively moved by other means such as a solenoid thereby eliminating the need for the additional major chamber 65 and piston 56 together with the associated connections to the pump 78 and reservoir 77.

It will be appreciated that if required the levelling device described may be required to work at high speed to effect vehicular attitude changes while the vehicle is travelling at speed. When so operating it is preferable that the load distribution unit 40 and the associated change-over valves incorporated in the manifold 76 be controlled by electronic actuators governed by an ECU which monitors the vehicle operating conditions by appropriate sensors. In this case it is normally preferable to separate the functions of load distribution and vehicle levelling these processes may occur concurrently without influencing one another.

While the accumulators described with reference to the various embodiments commonly incorporate damper valves the pneumatic version of the invention uses the volume of the chambers and connecting conduits as the resilient means itself, and the dampers normally incorporated in accumulators are therefore not available. It is therefore necessary to provide separate damper units in parallel with the fluid containers. These may be of the common telescopic shock absorber variety and can be incorporated into the containers in a variety of ways.

The double acting fluid container may be of forms other than a rigid cylinder and moving piston type, and, for example, may be of the flexible bellows type which do not require seals as provided in the rigid cylinder type.

The bellow type being leak-free do not require provision to replace leaked fluid such as a pump, however when common double acting cylinders are used it is optionally normal and beneficial to include a pump, compressor, accumulator or other power source to permit raising, levelling and attitude change or correction in the vehicle that may be necessary as a result of fluid leakage. Some vehicles may also require the facility of being able to run at different and changeable heights. These variations are not illustrated or described in detail as such provisions in suspension systems are known and can easily be adapted or incorporated in the suspension system herein described.

It is to be understood that multiple axle vehicles can utilise variations of the suspension system disclosed therein and that linked suspension systems which may comprise more than two circuits may usefully incorporate the technology described.


Anspruch[de]
  1. Fahrzeug mit einem Tragrahmen (5), wenigstens einem Paar den Boden berührender Vorderräder (1, 2) und wenigstens einem Paar den Boden berührender Hinterräder (3, 4), die mit dem Rahmen durch Aufhängungsteile (6) verbunden sind, welche zwischen jedes Rad und den Rahmen geschaltet sind, um die Relativbewegung zwischen den Rädern und dem Rahmen in einer im wesentlichen vertikalen Richtung zu gestatten, wobei die Abstützposition des Rahmens relativ zu jedem der Räder durch einen doppeltwirkenden Fluidstoßdämpfer für jedes Rad bestimmt wird, von denen jeder einen Fluidbehälter (13, 14, 17, 18) aufweist, der operativ zwischen dem Rahmen und dem Rad angeordnet ist, wobei jeder Fluidbehälter durch einen Druckkolben in eine Haupt- und eine Nebenkammer (13a, 13b, 14a, 14b, 17a, 17b, 18a, 18b) unterteilt ist, die innerhalb des Fluidbehälters im wesentlichen proportional reziprok sind, wobei die Hauptfluidkammer (13a, 14a, 17a, 18a) jedes Behälters mit der Nebenfluidkammer (13b, 14b, 17b, 18b) des diagonal entgegengesetzten Behälters durch eine Fluidverbindungsleitung (8, 10, 8a, 10a) verbunden ist, wobei jedes Paar diagonal angeordneter Fluidverbindungsleitungen zwischen denselben Behältern einen diagonal gepaarten Kreis (8, 10) und (8a, 10a) bildet und wobei die diagonal gepaarten Kreise während des normalen Fahrzeugbetriebes geschlossen und von externen Druckquellen unabhängig sind, dadurch gekennzeichnet, daß zwischen den diagonal gepaarten Kreisen eine Belastungsverteileinheit (40) angeordnet ist, die dazu dient, den Druck in den Kreisen ohne direkte Fluidverbindung zwischen denselben im wesentlichen zu egalisieren, so daß das gesamte Fluidvolumen in jedem diagonal gepaarten Kreis unverändert und auf demselben Druck ist, und daß die beiden diagonal gepaarten Kreise zusammen die mittlere Höhe und Lage des Fahrzeuges ungeachtet unterschiedlicher Vertikalpositionen der beiden Paare diagonal entgegengesetzter Räder festlegen, und zwar so, daß eine bleibende Belastung an jedem Rad unabhängig von dem Gelände, das befahren wird, aufrechterhalten wird.
  2. Fahrzeug nach Anspruch 1, wobei die diagonal gepaarten Kreise (8, 10) und (8a, 10a) jeweils Zweigleitungen (60, 61, 62, 63) haben, die sie mit der Belastungsverteileinheit (40) verbinden, wobei die Belastungsverteileinheit zwei weitere Nebenkammern (46, 47) festen Volumens aufweist, wobei jede weitere Nebenkammer in zwei reziproke Nebenkammern (57, 58) und (55, 56) unterteilt ist, wobei jedes Paar reziproker Nebenkammern im Volumen innerhalb des festen Volumens der weiteren Nebenkammern proportional reziprok ist und durch bewegliche Unterteilungsteile (49, 48) getrennt ist und wobei beide Unterteilungsteile (49, 48) verbunden sind, so daß beide Unterteilungsteile sich im Gleichlauf bewegen und einen reziproken Fluidvolumenstrom in die und aus den beiden Paaren reziproker Nebenkammern in die zugeordneten Zweigleitungen hervorrufen, um eine bleibende Belastung an jedem Rad während einer Achsengelenkbewegung zu fördern.
  3. Fahrzeug nach Anspruch 2, wobei zwei der reziproken Nebenkammern (58, 55) der Belastungsverteileinheit (40), die in bezug auf einander reziprok arbeiten, schließlich in Fluidverbindung mit den Hauptfluidkammern (13a, 14a) auf einer Seite des Fahrzeuges sind, während die anderen beiden reziproken Nebenkammern (56, 57), die in bezug auf einander reziprok arbeiten, in Fluidverbindung mit den Hauptfluidkammern (17a, 18a) auf der entgegengesetzten Seite des Fahrzeuges sind, um sich dadurch einer Axialbewegung der beiden Unterteilungsteile (49, 48) während des Wendens des Fahrzeuges im wesentlichen zu widersetzen und dadurch eine Bewegung des Fahrzeuges um die Längsachse zu begrenzen, und wobei zwei der reziproken Nebenkammern (55, 57) und (56, 58) der Belastungsverteileinheit (40), die in bezug auf einander nicht reziprok arbeiten, sondern in bezug auf die anderen beiden reziproken Nebenkammern reziprok arbeiten, in Fluidverbindung mit den Hauptfluidkammern (14a, 18a) und (17a, 13a) sind, welche den diagonal entgegengesetzten Rädern zugeordnet sind, um dadurch eine Axialbewegung der verbundenen Unterteilungsteile (48, 49) zu fördern, um eine im wesentlichen bleibende Belastung an allen Rädern ungeachtet der Relativpositionen der beiden Paare diagonal entgegengesetzter Räder in bezug auf den Rahmen zu fördern, so daß, wenn unebenes Gelände befahren wird, alle Räder eine im wesentlichen bleibende Belastung ungeachtet der Radposition während einer Achsengelenkbewegung behalten.
  4. Fahrzeug nach Anspruch 1, 2 oder 3, wobei die Fluidbehälter die Form von hydraulischen Stoßdämpfern (13, 14, 17, 18) haben, die jeweils einen Hydraulikzylinder aufweisen, der an dem Fahrzeugrahmen (5) befestigt ist und in welchem ein beweglicher Kolben vorgesehen ist, der an einer Kolbenstange befestigt ist, die ihrerseits an einer Radbaugruppe befestigt ist, so daß der Kolben eine bewegliche Grenze zwischen den Haupt- und Nebenfluidkammern bildet, wenn die Anstützeinrichtungen ausgefahren und kontraktiert werden, um die Relativposition der Räder und des Rahmens widerzuspiegeln.
  5. Fahrzeug nach Anspruch 3, wobei die Belastungsverteileinheit (40) einen Zylinder (42) aufweist, der zwei Endwände (43, 44) hat und durch eine feste zentrale Wand (45) in zwei weitere Nebenkammern (46, 47) unterteilt ist, wobei eine Stange (51) in dem Zylinder konzentrisch gelagert ist und sich durch die zentrale Wand und die Endwände erstreckt und wobei zwei Kolben (48, 49) an der Stange befestigt sind, von denen einer in jeder der beiden weiteren Nebenkammern (47, 46) angeordnet ist, um die reziproken Nebenkammern (55, 56) und (57, 58) zu bilden, und zwar so, daß, wenn ein Kolben gedrängt wird sich zu bewegen, was aus einer Druckdifferenzänderung auf entgegengesetzten Seiten dieses Kolbens resultiert, der andere Kolben in der anderen weiteren Nebenkammer gedrängt wird, sich ähnlich zu bewegen, um einen im wesentlichen bleibenden Druck in beiden diagonal gepaarten Kreisen aufrechtzuerhalten, wenn das Fahrzeug über unebenes Gelände fährt, welches verlangt, daß ein Paar diagonal entgegengesetzter Räder zur Kompensation auf höherem Boden als das andere Paar diagonal entgegengesetzter Räder positioniert wird und gleichzeitig keine unbeschränkte Anialbewegung der Stange innerhalb der Belastungsverteileinheit aufgrund einer im wesentlichen gleichen und entgegengesetzten Zunahme des Druckes auf den entgegengesetzten Seiten von jedem der Kolben innerhalb jeder weiteren Nebenkammer aufgrund von Druckänderungen gestattet, die aus scheinbaren orthogonalen Gewichtsverlagerungen aufgrund von Eingaben durch Bewegungen um die Längsachse und durch Nickbewegungen resultieren, um dadurch übermäßige Bewegungen des Fahrzeuges um die Längsachse und Nickbewegungen des Fahrzeuges zu begrenzen.
  6. Fahrzeug nach einem der Ansprüche 1 bis 5, wobei ein oder mehrere Drucksammler (21, 22, 23, 24, 27, 28, 29, 30) in jedem einzelnen Kreis vorgesehen sind.
  7. Fahrzeug nach Anspruch 6, wobei eine Dämpfungseinrichtung (31, 32, 33, 34) in jedem einzelnen Kreis vorgesehen ist.
  8. Fahrzeug nach Anspruch 7, wobei die Dämpfungseinrichtungen (31, 32, 33, 34) dazu dienen, für eine variable Drosselung zu sorgen, um den Fluidstrom aufgrund von Information aus einer Sensoreinrichtung, die durch eine Steuereinrichtung verarbeitet wird, zu verändern.
  9. Fahrzeug nach Anspruch 6, wobei Einrichtungen vorgesehen sind zum wahlweisen Isolieren eines Drucksammlers von dem Kreis, in welchem er angeordnet ist.
  10. Fahrzeug nach Anspruch 7 oder 8, wobei die Dämpfungseinrichtung an der Eingangsöffnung eines Drucksammlers angeordnet ist.
  11. Fahrzeug nach einem der Ansprüche 1 bis 10, bei welchem jede der Fluidverbindungsleitungen wahlweise mit einer Fluiddruckquelle (77) verbindbar ist, um ihr zum Anheben eines ausgewählten Teils des Fahrzeugrahmens Fluid zu liefern, oder mit einem Hydrauliktank zum wahlweisen Anlassen von Fluid, um einen Teil des Fahrzeuges abzusenken, wobei das Pumpen von Fluid zu oder das Anlassen von Fluid aus jeder Fluidverbindungsleitung das Anheben bzw. Absenken desjenigen Teils des Rahmens bewirkt, der der Hauptfluidkammer des Behälters an dem zugeordneten Rad zugeordnet ist, um Fahrzeuggewichts- oder -lageänderungen zu kompensieren und die Rahmenhöhe auszugleichen und aufrechtzuerhalten durch Anheben und/oder Ansenken von Seiten oder Enden des Fahrzeuges je nach Bedarf aufgrund von Fluidleckagen und/oder Belastungsänderungen in dem Fahrzeug, die bewirken, daß die elastischen Einrichtungen mehr oder weniger zusammengedrückt werden.
  12. Fahrzeug nach Anspruch 11, bei welchem die Druckquelle eine Fluidpumpe (78) ist.
Anspruch[en]
  1. A vehicle having a load support body (5), at least one pair of front ground-engaging wheels (1, 2) and at least one pair of rear ground engaging wheels (3, 4), connected to the body by suspension members (6) connected between each wheel and the body to permit the relative movement between the wheels and body in a substantially vertical direction, the support position of the body relative to each of the wheels, being determined by a double acting fluid ram, one for each wheel, each incorporating a fluid container (13, 14, 17, 18) operatively interposed between the body and the wheel, each fluid container being divided by a ram piston into a major and a minor fluid chamber (13a, 13b, 14a, 14b, 17a, 17b, 18a, 18b) which are substantially proportionally reciprocal within the fluid container, the major fluid chamber (13a, 14a, 17a, 18a) of each container being linked to the minor fluid chamber (13b, 14b, 17b, 18b) of the diagonally opposite container by a fluid communicating conduit (8, 10, 8a, 10a), each pair of diagonally disposed fluid communicating conduits between the same containers forming a diagonally paired circuit (8, 10) and (8a, 10a), said diagonally paired circuits during normal vehicle operation being closed and independent of external pressure sources; characterised in that interposed between the diagonally paired circuits is a load distribution unit (40) adapted to substantially equalise the pressure in said circuits without direct fluid communication therebetween, such that the total volume of fluid in each diagonally paired circuit is unchanged and at the same pressure; and in that both diagonally paired circuits together define the average height and attitude of the vehicle regardless of different vertical positions of the two pairs of diagonally opposite wheels, and such that consistent loading is maintained on each wheel independent of the terrain being traversed.
  2. A vehicle as claimed in Claim 1, wherein each of the diagonally paired circuits (8, 10) and (8a, 10a) have branch conduits (60, 61, 62, 63) connecting them to the load distribution unit (40), said load distribution unit comprising two further minor chambers (46, 47) of fixed volume, each further minor chamber being subdivided into two reciprocal minor chambers (57, 58) and (55, 56), each pair of reciprocal minor chambers being proportionally reciprocal in volume within the fixed volume of the further minor chambers and being separated by movable dividing members (49, 48), both dividing members (49, 48) being linked so that both dividing members move in unison causing reciprocal fluid volume flow to and from the two pairs of reciprocal minor chambers into the associated branch conduits to promote consistent loading on each wheel during axle articulation.
  3. A vehicle suspension system as claimed in Claim 2, wherein two of the reciprocal minor chambers (58, 55) of the load distribution unit (40) which function reciprocally with respect to each other are ultimately in fluid communication with the major fluid chambers (13a, 14a) on one side of the vehicle, while the other two reciprocal minor chambers (56, 57) which function reciprocally with respect to one another are in fluid communication with the major fluid chambers (17a, 18a) on the opposite side of the vehicle to thereby substantially resist axial movement of both the dividing members (49, 48) during turning of the vehicle and thereby limit vehicular roll motion, and wherein two of the reciprocal minor chambers (55, 57) and (56, 58) of the load distribution unit (40) which do not function reciprocally with respect to each other but do function reciprocally with respect to the other two reciprocal minor chambers are in fluid communication with the major fluid chambers (14a, 18a) and (17a, 13a) associated with the diagonally opposite wheels to thereby promote axial movement of the connected dividing members (48, 49) to promote substantially consistent loading on all wheels regardless of the relative positions of the two pairs of diagonally opposite wheels with respect to the body, such that as uneven terrain is traversed all wheels maintain a substantially consistent load irrespective of wheel position during axle articulation.
  4. A vehicle as claimed in Claims 1, 2 or 3, wherein the fluid containers are in the form of hydraulic rams (13, 14, 17, 18) each comprising a hydraulic cylinder attached to the vehicle body (5) and in which a movable piston is provided attached to a piston rod which attaches to a wheel assembly such that the piston forms a movable boundary between the major and minor fluid chambers as the support means extend and contract reflecting the relative position of the wheels and body.
  5. A vehicle as claimed in Claim 3, wherein the load distribution unit (40) comprises a cylinder (42) having two end walls (43, 44), and divided by a fixed central wall (45) into said two further minor chambers (46, 47), having a rod (51) concentrically mounted in the cylinder and extending through the central and end walls, two pistons (48, 49) attached to the rod, one located in each of the two further minor chambers (47, 46) to form the reciprocal minor chambers (55, 56) and (57, 58) and such that as one piston is urged to move resulting from a pressure differential change on opposite sides of that piston, the other piston in the other further minor chamber will be urged to similarly move, in order to maintain substantially consistent pressure in both diagonally paired circuits when the vehicle traverses uneven terrain that requires one pair of diagonally opposite wheels to accommodate to be positioned on higher ground than the other pair of diagonally opposite wheels and simultaneously not permitting unrestrained axial movement of the rod within the load distribution unit in response to a substantially equal and opposite increase in pressure on the opposite sides of each of the pistons within each further minor chamber in response to pressure changes resulting from apparent orthogonal weight transfers due to roll and pitch motion inputs thereby limiting excessive vehicular roll and pitch movements.
  6. A vehicle as claimed in any one of Claims 1 to 5, where there is provided one or more pressure accumulator (21, 22, 23, 24, 27, 28, 29, 30) in each individual circuit.
  7. A vehicle as claimed in Claim 6, wherein there is provided damping means (31, 32, 33, 34) in each individual circuit.
  8. A vehicle as claimed in Claim 7, wherein the damping means (31, 32, 33, 34) are adapted to provide a variable restriction to vary the fluid flow in response to information from sensor means processed by a control means.
  9. A vehicle as claimed in Claim 6, wherein means are provided to selectively isolate a pressure accumulator from the circuit in which it is located.
  10. A vehicle as claimed in Claim 7 or 8, wherein the damping means is located at the entry port of a pressure accumulator.
  11. A vehicle as claimed in any of Claims 1 to 10, in which each of the fluid communicating conduits is selectively connectable to a fluid pressure source (77) to deliver fluid thereto to raise a selected portion of the vehicular body, or to an hydraulic tank to selectively drain fluid to lower a part of the vehicle, the pumping of fluid to, or the draining of fluid from each fluid communicating conduit respectively causing the raising or lowering of the part of the body being associated with the major fluid chamber of the container at the associated wheel, in order to compensate for vehicular height or attitude changes to level and maintain body height by raising and/or lowering sides or ends of the vehicle as appropriately required due to fluid leakages and/or changes of load in the vehicle causing the resilient means to become additionally or less compressed.
  12. A vehicle as claimed in Claim 11 in which the pressure source is a fluid pump (78).
Anspruch[fr]
  1. Véhicule comportant un bâti de support de charge (5), au moins une paire de roues avant (1, 2) en contact avec le sol et au moins une paire de roues arrière (3, 4) en contact avec le sol, reliées au bâti par des éléments de suspension (6) raccordés entre chaque roue et le bâti pour permettre un mouvement relatif entre les roues et le bâti dans une direction sensiblement verticale, la position, de support du bâti par rapport à chacune des roues étant déterminée par un coulisseau hydraulique à double effet, un pour chaque roue, chacun d'eux comportant un réservoir de fluide (13, 14, 17, 18) interposé de manière active entre le bâti et la roue, chaque réservoir de fluide étant divisé par un piston de coulisseau en une grande et une petite chambres de fluide (13a, 13b, 14a, 14b, 17a, 17b, 18a, 18b), qui sont sensiblement complémentaires de manière proportionnelle à l'intérieur du réservoir de fluide, la grande chambre de fluide (13a, 14a, 17a, 18a) de chaque réservoir étant reliée à la petite chambre de fluide (13b, 14b, 17b, 18b) du réservoir diagonalement opposé par une canalisation de mise en communication de fluide (8, 10, 8a, 10a), chaque paire de canalisations de mise en communication de fluide disposée de manière diagonale entre les mêmes réservoirs formant un circuit accouplé de manière diagonale (8, 10) et (8a, 10a), lesdits circuits accouplés de manière diagonale durant le déplacement normal du véhicule étant fermés et indépendants de sources de pression extérieures; caractérisé en ce qu'est interposée, entre les circuits accouplés de manière diagonale, une unité de répartition de la charge (40) conçue pour équilibrer sensiblement la pression dans lesdits circuits sans mise en communication de fluide directe entre eux, de telle sorte que le volume total de fluide dans chaque circuit accouplé de manière diagonale est inchangé et à la même pression; et dans lequel les deux circuits accouplés de manière diagonale définissent la hauteur et l'assiette moyennes du véhicule quelles que soient les différentes positions verticales des deux paires de roues opposées de manière diagonale, et de telle sorte qu'une charge uniforme est appliquée sur chaque roue indépendamment du terrain traversé.
  2. Véhicule selon la revendication 1, dans lequel chacun des circuits accouplés de manière diagonale (8, 10) et (8a, 10a) comportent des canalisations secondaires (60, 61, 62, 63) les raccordant à l'unité de répartition de la charge (40), ladite unité de répartition de la charge comprenant deux autres petites chambres (46, 47) à volume fixe, chaque autre petite chambre étant subdivisée en deux petites chambres complémentaires (57, 58) et (55, 56), chaque paire de petites chambres complémentaires étant proportionnellement complémentaires en volume dans le volume fixe des autres petites chambres et étant séparées par des organes diviseurs mobiles (49, 48), les deux organes diviseurs (49, 48) étant reliés de telle sorte que les deux organes diviseurs se déplacent à l'unisson, amenant un volume de fluide complémentaire à s'écouler vers et depuis les deux paires de petites chambres complémentaires dans les canalisations secondaires associées pour provoquer une mise en charge uniforme de chaque roue durant l'articulation des essieux.
  3. Système de suspension de véhicule selon la revendication 2, dans lequel deux des petites chambres complémentaires (58, 55) de l'unité de répartition de la charge (40) qui opèrent de manière complémentaire l'une par rapport à l'autre sont finalement en communication de fluide avec les grandes chambres de fluide (13a, 14a) sur un côté du véhicule, tandis que les deux autres petites chambres complémentaires (56, 57) qui opèrent de manière complémentaire l'une par rapport à l'autre sont en communication de fluide avec les grandes chambres de fluide (17a, 18a) sur le côté opposé du véhicule, résistant ainsi sensiblement au mouvement axial des deux organes diviseurs (49, 48) durant le braquage du véhicule et limitant ainsi le mouvement de roulis du véhicule, et dans lequel deux des petites chambres complémentaires (55, 57) et (56, 58) de l'unité de répartition de la charge (40) qui n'opèrent pas de manière complémentaire l'une par rapport à l'autre, mais opèrent de manière complémentaire par rapport aux deux autres petites chambres complémentaires, sont en communication de fluide avec les grandes chambres de fluide (14a, 18a) et (17a, 13a) associées aux roues opposées de manière diagonale, provoquant ainsi le mouvement axial des organes diviseurs (48, 49) connectés pour faire en sorte qu'une charge sensiblement uniforme soit appliquée sur toutes les roues quelles que soient les positions relatives des deux paires de roues opposées de manière diagonale par rapport au bâti, ce qui fait que lorsqu'un terrain accidenté est traversé, toutes les roues continuent de supporter une charge sensiblement uniforme, quelle que soit la position des roues lors de l'articulation des essieux.
  4. Véhicule selon les revendications 1, 2 ou 3, dans lequel les réservoirs de fluide se présentent sous la forme de coulisseaux hydrauliques (13, 14, 17, 18), chacun comprenant un vérin hydraulique fixé sur le bâti du véhicule (5) et dans lequel un piston mobile est prévu, fixé à une tige de piston, qui est connectée à un ensemble de roue de telle sorte que le piston forme une barrière mobile entre les grande et petite chambres de fluide lorsque les moyens de support s'allongent et se contractent, répercutant la position relative des roues et du bâti.
  5. Véhicule selon la revendication 3, dans lequel l'unité de répartition de la charge (40) comprend un vérin (42) comportant deux parois d'extrémité (43, 44) et divisé, par une paroi centrale fixe (45), en lesdites deux autres petites chambres (46, 47), muni d'une tige (51) montée de manière concentrique dans le vérin et traversant les parois centrale et d'extrémité, de deux pistons (48, 49) fixés à la tige, un placé dans chacune des deux autres petites chambres (47, 46), définissant ainsi les petites chambres complémentaires (55, 56) et (57, 58) et de telle sorte que lorsqu'un piston est sollicité au déplacement par suite d'une modification différentielle de pression sur les côtés opposés de ce piston, l'autre piston de l'autre petite chambre sera sollicité pour se déplacer de manière similaire, afin de maintenir une pression sensiblement uniforme dans les deux circuits accouplés de manière diagonale lorsque le véhicule traverse un terrain accidenté, qui implique qu'une paire de roues opposées de manière diagonale soit adaptée pour être positionnée sur un sol plus élevé que l'autre paire de roues opposées de manière diagonale et simultanément en ne permettant pas un mouvement axial libre de la tige à l'intérieur de l'unité de répartition de la charge en réponse à une augmentation sensiblement égale et opposée de la pression sur les côtés opposés de chacun des pistons à l'intérieur de chaque autre petite chambre en réponse à des modifications de pression résultant de transferts de poids perpendiculaires apparents suite à des entrées mouvements de roulis et de tangage, limitant ainsi des mouvements de roulis et de tangage excessifs du véhicule.
  6. Véhicule selon l'une quelconque des revendications 1 à 5, dans lequel il est prévu un ou plusieurs dispositifs de compensation de pression (21, 22, 23, 24, 27, 28, 29, 30) dans chaque circuit individuel.
  7. Véhicule selon la revendication 6, dans lequel il est prévu des moyens d'amortissement (31, 32, 33, 34) dans chaque circuit individuel.
  8. Véhicule selon la revendication 7, dans lequel les moyens d'amortissement (31, 32, 33, 34) sont agencés pour fournir un étranglement variable pour faire varier l'écoulement de fluide en réponse à des informations provenant de moyens de détection traitées par des moyens de commande.
  9. Véhicule selon la revendication 6, dans lequel des moyens sont fournis pour isoler de manière sélective un dispositif de compensation de pression du circuit dans lequel il est monté.
  10. Véhicule selon la revendication 7 ou 8, dans lequel les moyens d'amortissement sont disposés au niveau de l'orifice d'entrée d'un dispositif de compensation de pression.
  11. Véhicule selon l'une quelconque des revendications 1 à 10, dans lequel chacune des canalisations de mise en communication de fluide est connectable de manière sélective à une source de pression hydraulique (77) pour envoyer du fluide dans celle-ci pour faire monter une partie du bâti du véhicule, ou dans un réservoir hydraulique pour retirer de manière sélective du fluide pour faire descendre une partie du véhicule, le pompage de fluide vers ou le retrait de fluide de chaque canalisation de mise en communication de fluide provoquant respectivement la montée ou la descente de la partie du bâti associée à la grande chambre de fluide du réservoir au niveau de la roue associée, de manière à compenser des modifications de la hauteur ou de l'assiette du véhicule pour mettre de niveau et maintenir la hauteur du bâti en faisant remonter et/ou descendre les côtés ou les extrémités du véhicule, dans les conditions qui s'imposent, suite à des fuites de fluide et/ou des modifications de charge dans le véhicule, amenant les moyens élastiques à être davantage ou moins comprimés.
  12. Véhicule selon la revendication 11, dans lequel la source de pression est une pompe hydraulique (78).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com