PatentDe  


Dokumentenidentifikation EP0748490 25.06.1998
EP-Veröffentlichungsnummer 0748490
Titel GLASBRUCHDETEKTION
Anmelder Digital Security Controls Ltd., Downsview, Ontario, CA
Erfinder CECIC, Dennis, Scarborough, Ontario M1E 2V1, CA;
FONG, Hartwell, Scarborough, Ontario M1T 2A6, CA
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69502591
Vertragsstaaten DE, FR, GB
Sprache des Dokument En
EP-Anmeldetag 03.03.1995
EP-Aktenzeichen 959103755
WO-Anmeldetag 03.03.1995
PCT-Aktenzeichen CA9500122
WO-Veröffentlichungsnummer 9524025
WO-Veröffentlichungsdatum 08.09.1995
EP-Offenlegungsdatum 18.12.1996
EP date of grant 20.05.1998
Veröffentlichungstag im Patentblatt 25.06.1998
IPC-Hauptklasse G08B 13/04

Beschreibung[en]
FIELD OF THE INVENTION

The present invention relates to a glass break detector for detecting the shattering of glass as well as a method used by a glass break detector for detecting the shattering of glass.

BACKGROUND OF THE INVENTION

There are a number of existing glass break detectors, however, to date these detectors have not been entirely effective. The most significant problem to be solved by a glass break detector is the elimination of the occurrence of false alarms. Most of the prior art glass break detectors have recognized that there are low frequency components of a glass break signal. These low frequency components are often referred to as the "thud" associated with the initial force which leads to flexure of the glass and the subsequent shattering of the glass. The low frequency vibration of the glass and the subsequent low frequency vibration of the surrounding supporting structure, typically the glass frame, dominates these components. The prior art has also recognized that there are high frequency components between 4kHz and approximately 8kHz.

Some of the prior art systems have tried to categorize the glass break event by analyzing the amplitude and/or frequency of the signal. Some of these prior art structures have focused on a portion of the glass break signal at approximately 6.5kHz while other systems have looked to timing relationships between the low frequency "thud" components and higher frequency components of a predetermined amplitude. The main problem with the prior art is the inability of the system to distinguish glass break events from non-glass break events. Common false alarms are caused by thunder, dropping metal objects, ringing of bells, service station bells, chirping birds, slamming doors, splintering wood and mouse traps. These sources have both low frequency components and high frequency components somewhat similar to a glass break event.

United States Patent 5,117,220 discloses a two part glass break detector where the detector measures low-frequency structural vibrations transmitted through the structure and also measures a high-frequency sound which travels primarily through the air. The device also uses a timing relationship between these signals for determining whether a glass break event has occurred.

An improved alarm detection arrangement for detecting glass breakage is proposed herein which is more reliable and can more readily distinguish glass break events from many non-glass break events which previously caused false alarms.

SUMMARY OF THE INVENTION

A glass break detector according to the present invention detects the breaking of glass based on the non-deterministic characteristics of high frequency components of the signal and other characteristics which distinguish the signal from non-glass break transient events. The signal is considered to be non-deterministic when it has no significant periodicity which characteristic is investigated using sampling techniques.

A glass break detector, according to an embodiment of the present invention, detects the breaking of glass and comprises an acoustic transducer which is capable of producing a wide-band electrical signal, a processing arrangement for removing low frequency components and identifying changes in the electrical signal caused by a transient high amplitude non-deterministic signal, and an alarm arrangement which produces an alarm signal when a transient high amplitude non-deterministic signal is detected.

According to a preferred embodiment of the invention, the processing arrangement of the glass break detector, includes an initial high-pass filter for eliminating low frequency components below about 1kHz.

A glass break detector, according to a further embodiment of the present invention, comprises an acoustical transducer responsive to acoustic pressure and, based thereon, produces an electrical output signal, a filter for removing low frequency components of the output electrical signal typically associated with the initial force leading to a glass break event and passing high frequency components of the output electrical signal, and a processing arrangement which uses statistical techniques for analyzing the high frequency components of the output signal for characteristics indicative of a glass break event and which collectively distinguish the output from non-glass break events, and producing an alarm signal when said characteristics are present.

According to a preferred embodiment of the invention, the glass break detector includes a reference signal as part of the processing means which is cross-correlated with the higher frequency components of the output electrical signal for assessing whether the output electrical signal has characteristics indicative of a glass break event. The reference signal is representative of the higher frequency components of a glass break event and can be an actual glass break event or can be a fabricated approximation of a typical higher frequency components of a glass break event.

A glass break detector and a method of detecting glass breakage advantageously analyzes high frequency components of transient events recorded by an acoustic transducer. It has been found that when high frequency components, caused by a transient event, is wide-band and random in nature for a duration typical of a glass break event, a glass break event has been detected. The normal non-glass break transient events, which previously were a source of false alarms in prior art sensors, tend to be periodic or narrow band and as such can be distinguished, preferably statistically from an actual glass break event. Other techniques can be used in combination with the above to improve the reliability of the prediction.

A method of detecting the breaking of glass, according to an embodiment of the present invention, comprises sensing acoustical pressure and producing an electrical signal representative of the sensed acoustical pressure and identifying sudden changes in the signal caused by transient events. Statistical techniques are used for assessing the randomness of high frequency components of the signal resulting from the sudden changes and producing an alarm signal when a sudden change is detected and the high frequency components thereof can be statistically determined to be representative of a glass break event.

According to an embodiment of the invention, the electrical signal is passed through a high-pass filter, which filters out frequencies less than about 1kHz.

According to a further embodiment of the invention, the method uses a cross-correlation statistical technique for comparing the the higher frequency components of the output signal with a reference glass break signal.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are shown in the drawings, wherein:

  • Figure 1 is a block diagram of the glass break detector;
  • Figure 2A shows a sample pattern representing a high pass filtered glass break event used as a reference signal in cross-correlation analysis to distinguish glass break events from other sounds;
  • Figure 2B is a plot of the summation of the absolute value of the cross-correlation output of the sample pattern to itself. This is the highest plot and other signals that may be caused by glass signal events can be compared therewith;
  • Figure 3 shows the autocorrelation function (lower graph) when the input to that function is a filtered glass break event produced by breaking a 3mm annealed glass sample 18" x 18" not broken in a frame (upper graph);
  • Figure 4 is a graph of the sample signal of Figure 3, followed by a graph of its cross-correlation output, then followed by the summation of the absolute value of the cross-correlation output;
  • Figure 5 is a graph of a filtered glass break signal representative of breaking 4mm tempered glass 18" x 18" not broken in a frame, followed by a graph of the output of the autocorrelation function for this sample;
  • Figure 6 is a graph of the sample signal of Figure 5, followed by a graph of the cross-correlation output, followed by the summation of the absolute value of the cross-correlation output;
  • Figure 7 is a graph of a glass break signal representative of breaking 7mm wired glass sample 18" x 18" broken in a frame, followed by a graph of the output of the autocorrelation function for this sample;
  • Figure 8 is a graph of the sample signal of Figure 7, followed by a graph of the cross-correlation output, followed by the summation of the absolute value of the cross-correlation output;
  • Figure 9 is a graph of a glass break signal representative of breaking 6mm laminated glass sample 18" x 18" broken in a frame, followed by a graph of the output of the autocorrelation function for this sample;
  • Figure 10 is a graph of the sample signal of Figure 9, followed by a graph of the cross-correlation output, followed by the summation of the absolute value of the cross-correlation output;
  • Figure 11 is a graph of a filtered signal from a precision noise generator, followed by a graph of the output of the autocorrelation function for this sample;
  • Figure 12 is a graph of the sample signal of Figure 11, followed by a graph of the cross-correlation output, followed by the summation of the absolute value of the cross-correlation output;
  • Figure 13 is a graph of a 4000Hz sine wave signal, followed by a graph of the output of the autocorrelation function for this sample;
  • Figure 14 is a graph of the sample signal of Figure 13, followed by a graph of the cross-correlation output, followed by the summation of the absolute value of the cross-correlation output;
  • Figure 15 is a graph of a filtered sample signal produced by dropping a wrench on a hard floor, followed by a graph of the output of the autocorrelation function for this sample;
  • Figure 16 is a graph of the sample signal of Figure 15, followed by a graph of the cross-correlation output, followed by the summation of the absolute value of the cross-correlation output;
  • Figure 17 is a graph of a telephone set ring signal, followed by a graph of the output of the autocorrelation function for this sample;
  • Figure 18 is a graph of the sample signal of Figure 17, followed by a graph of the cross-correlation output, followed by the summation of the absolute value of the cross-correlation output;
  • Figure 19 is a graph of a thunder storm signal, followed by a graph of the output of the autocorrelation function for this sample;
  • Figure 20 is a graph of the sample signal of Figure 19, followed by a graph of the cross-correlation output, followed by the summation of the absolute value of the cross-correlation output;
  • Figure 21 is a graph of a human voice producing the sound "pshhhhhh", followed by a graph of the output of the autocorrelation function for this sample; and
  • Figure 22 is a graph of the sample signal of Figure 21, followed by a graph of the cross-correlation output, followed by the summation of the absolute value of the cross-correlation output; and
  • Figure 23 is a graph of a mixed noise and 4000Hz sine wave signal, followed by a graph of the output of the autocorrelation function for this sample.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A glass break event, when detected by a microphone, produces a sudden change in the output electrical signal. The output electrical signal has low frequency components generally below 1kHz, and higher frequency components thereabove. The higher frequency components are well represented in the range of 1kHz to 12kHz (12kHz is typical about the upper limit of a microphone). The low frequency components includes the sounds produced by vibration of the window frame and the surrounding structure when a glass break event occurs. The higher frequency components, generally between 1kHz and 12kHz, are generally indicative of the sound produced by the shattering or fracturing of the glass. These higher frequency components have been found to be non-deterministic (wide-band or random) in nature (i.e. low periodicity) and the envelope of these components generally follows an exponential decay type function.

The present inventors have investigated the frequency distribution of the higher frequency components and have determined that these components are non-deterministic. The components are wide-band and do not repeat for different glass breaks, even if the same type and size of glass is used. Close inspection of the higher frequency components reveal that there is a high degree of randomness in the amplitude and there is only low periodicity of the high frequency components. Although the glass break event is quite unpredictable, this characteristic can be used to distinguish a glass break event from signals which commonly cause false alarms, such as dropping wrenches, bells, thunder, ringing phones, etc., which have relatively high periodicity throughout the signal and are more predictable.

The glass break event, particularly when the higher frequency components are analyzed alone, is highly random in nature and this characteristic of the signal is used to distinguish it from typical non-glass break transient event signals. In order to quantify the degree of randomness and periodicity in the input signal, statistical techniques are used and found to be highly efficient in distinguishing the higher frequency components from common non-glass break false alarm signals. By investigating the higher frequency components alone, improved analysis is possible, since the low frequency components are reduced and thus, the dynamic range available to the signal of interest is increased. Analysis established that the higher frequency components of a glass break event were very unpredictable, however, overall, the signal was wide-band, random and generally had a rapid rise followed by an exponential decay envelope.

It was also found that the low frequency components signal associated with the structural vibrations only tended to mask the differences between the higher frequency components and the typical sources of false alarms, and therefore, the entire system was improved by filtering out the low frequency components, leading to improved reliability of the statistical analysis.

In order to carry out the statistical analysis, the signal is first processed by filtering to remove the low frequency components, followed by sampling of the signal and statistical analysis thereof. In particular, the signal is analyzed using correlation techniques, in particular cross-correlation and autocorrelation are used. Autocorrelation accurately extracts periodicity in the signal, and in a glass shattering event, the higher frequency components are found to have no significant periodicity (i.e. random). The cross-correlation technique is used in combination with a typical glass shattering high frequency reference signal (Figure 2A) and this alone, in many cases, is able to distinguish sudden changes in the signal caused by a glass break event from other transient non-glass break events. For improved reliability, two different means of analysis of the signal are used (i.e. cross-correlation and autocorrelation).

As shown in Figure 1, the system includes a condenser microphone 1, an amplifier generally shown as 2, a high-pass filter 3 fed in parallel to an autocorrelator generally shown as 4, a cross-correlator generally shown as 6, and an envelope detection function 12. The autocorrelator 4 in combination with the autocorrelation and pattern classification arrangement 5 determines the degree of periodicity (low periodicity indicates a high degree of randomness), the cross-correlator 6 in combination with cross-correlator pattern classification arrangement 7 provides analysis relative to the filtered reference glass shattering signal (Figure 2A), and the envelope detection and classification 12 assesses the signal for the typical initial rapid increase associated with glass shattering followed by a nonlinear decay similar to an exponential type decay. These outputs can then be fed to the decision block 8 and, based on the various criteria thereof, alarm outputs 9 will be produced.

This separate processing of the high frequency components using at least two statistical procedures has been effective in distinguishing glass shattering events from common sources of false alarms.

The condenser microphone is a transducer which converts the nearby air pressure fluctuations into an electrical output signal which is processed by the detector. Its frequency response is approximately uniform from 50 Hz to 12kHz, where the response drops off sharply. The transducer is the predominant frequency selection device in this system, although other arrangements can be used.

The high-pass filter 3 and amplifier 2 filters and amplifies the microphone electrical output signal to prepare it for analysis. The high-pass filtering is used to eliminate the high amplitude, periodic, low frequency components of the glass break event, thereby preserving dynamic range and allowing only the higher frequency components of the glass break event to be passed to the remaining algorithms or functions. The low frequency components partially depend on location, type of frame used to hold the glass, and the size of the glass pane. Therefore, these low frequency components are difficult to distinguish from common sources of false alarms. By eliminating the low frequency components, the confidence of prediction is increased since the higher frequency components of the actual glass shattering event will occupy the majority of the available dynamic range of the system. The filter is preferably a "Butterworth" type with a smooth amplitude response and linear phase delay in the pass band.

The amplified higher frequency components of the output signal are analyzed by the autocorrelator 4. In theory, the correlator performs an N-sample autocorrelation of the higher frequency components. The mathematical operation performed on the higher frequency components sample is given by: Rxx(§) ≈ 1/N Σ x(t) x(t + §)Δt

The autocorrelation function computes the average product of a signal, "x(t)" and a time-shifted version of itself, "x(t + §)", over a particular period of time, "T". The arithmetic summation performed by the autocorrelation function causes unrelated (random, or uncorrelated) current and future signal components to cancel each other out, leaving behind the periodic (or correlated) components from the input signal. This technique has been utilized for years in communications receivers, which must extract signals buried in noise. Due to the noise cancelling feature of this function, this technique is used to extract frequency domain information without resorting to operations in the frequency domain (i.e. Fast Fourier Transform (FFT) analysis). By performing statistics on the zero-crossing periods of the autocorrelation output, extract periodicity information can be extracted from the input signals. Some examples of autocorrelation are shown in Figures 3, 5, 7, 9, 11, 13, 15, 17 and 19.

The various graphs of the cross-correlation and autocorrelation of the various signals are based on a sample period of approximately 186 milliseconds and 8192 samples. The time between samples is approximately 22.7 microseconds.

In order to allow comparison between the various graphs, the amplitude ranges of all signals and correlation plots are all scaled relative to the maximum values in the original data and normalized.

The third graph shown with respect to the cross correlation function of the various samples is a rudimentary post processing mechanism developed to distinguish glass break events from non-glass break events using the cross-correlation output. The scaling for this plot was derived to be relative to the maximum of the summed cross-correlation output between the pattern and itself (this situation being the condition of maximum agreement).

In summary, the autocorrelation function or an approximation thereof is used to extract the "wide-bandness" of input signals, and in doing so, provides immunity to many false alarm causing sounds, which are periodic in nature (as shown in Figures 13, 25, 17, 19 and 21). However, there may be situations where there is a large source of air turbulence in the protected area. This may produce whistling noises (see Figure 22), which are random in nature. This necessitates the need for a "second opinion" correlation mechanism, which computes the degree of correlation of the input signal to a stored reference signal representative of a higher frequency components of a glass break event which has non-deterministic characteristics and of a certain envelope pattern. A single criterion is not particularly satisfactory in declaring a transient event a glass shattering event, however, with two or more criteria which indicate a glass break event has occurred, a much higher confidence level is realized.

As can be seen, the glass break signal, when processed by the autocorrelation function (Fig. 3, 5, 7 and 9), has characteristics exemplified by the wide-band nature of the glass shattering signal. This feature, in combination with the cross-correlator (see Fig. 4, 6, 8 and 10), has been used to accurately distinguish glass shattering events from other common transient events which previously have caused false alarms, such as those indicated in Figures 12 through 23.

Cross-correlation alone, in some cases, is able to distinguish the higher frequency components of a glass break event from other transient events which previously caused false alarms, since the reference signal used in the cross-correlation is random (similar to a glass break event) and can be distinguished from most other transient events constant noise >T which produce signals having a high degree of periodicity in the higher frequency components. Positive cross-correlation provides a convenient approach for detecting a glass break event, particularly when used with other investigative techniques. It can be appreciated an approximation of the cross-correlation function can be used to reduce costs or processing time.

A reference glass break event signal, generally limited to the high frequency components, can be created by using known arrangements for selecting the frequencies followed by adjusting the amplitudes to fit the envelope of a glass break event (i.e. rapid increase followed by generally exponential decay). Any reference signal that has a high correlation with glass break events in general can be used. There may also be other reference signals which can distinguish glass break events from other transient events.

Wide-bandness and random have been used to describe the non-deterministic characteristic of a glass break event. The conventional sources of false alarms have a significant degree of periodicity (more predictable) and this property is used to distinguish these transient events from a transient glass break event. Several different techniques can be used to improve the confidence in predicting whether a detected transient event is a glass break event. For example, a low assessment of periodicity together with a significant correlation to the reference glass break signal is more reliable than either measurement alone. Further reliability is possible by examining the envelope of the transient event signal for a sharp rise followed by a nonlinear decay similar to an exponential decay. Each of these measures are more effective when the low frequency components (preferably below about 1kHz) are removed as these components often are periodic in a glass break event and therefore mask the results to some extent.

Elimination of the low frequency components while maintaining a large higher frequency band maintains most of the information associated with the transient event and therefore is useful in distinguishing the likely source thereof. All of this useful information has been maintained, however, it is possible to analyse a reduced portion thereof if desired and sufficient reliability is achieved.

It should be noted that the time duration of analysis may be in the range of R to S seconds, and therefore, is not necessarily the entire glass shattering event with secondary shattering, such as the glass shattering again on impact with the floor.

As illustrated by the integration plots, glass break events generally possess a higher degree of overall correlation to the glass break pattern (i.e. Figure 2A) than do non-glass break events.

The amplitude dependency of the function is evident in the output from the 4kHz tone signal (Figure 13). The tone signal amplitude is significantly greater than the average amplitude of the pattern, therefore, the 4kHz components within the pattern are amplified, producing a degree of positive correlation which is higher than that given when the pattern is mixed with itself. This situation illustrates the need for other post processing mechanisms which are less amplitude dependent than direct integration of the cross-correlation output. In terms of providing a first order evaluation of the degree of correlation, the integration algorithm is found to be adequate, but is supplemented by analysis from the autocorrelation output.

It has been found that the non-deterministic nature of the glass break event allows it to be statistically distinguished from other non-glass break event signals and thus, provides a reliable apparatus and method for distinguishing glass break events. The particular statistical techniques disclosed are only representative of techniques which can identify this non-deterministic nature of the glass break event and the invention is not limited to these particular techniques, although they are readily available and thus, suitable for this approach. Simplifications of these techniques can be used to allow for a low cost detector. Thus, the invention realizes that there are certain low frequency components of a glass break event that should be removed to allow improved statistical analysis of higher frequency components, which due to their non-deterministic nature, can be distinguished from other non-glass break event sources.

One useful measure of the degree of wide-bandness in the output signal is made by using the Degree of Correlation information to determine Maximum Peak Value (Average of the Absolute Value of all Peak Values). With noise, the ratio is very high (approximately 1000 or more), whereas periodic signals have a low ratio (approximately 1). A glass shattering signal has an intermediate ratio (approximately 10). This ratio provides a convenient, inexpensive assessment of the degree of correlation. Another measure of the information contained in the degree of correlation in autocorrelation, is the time to the first zero crossing of the signal. Note how a thunderstorm signal (powerful low frequency) has a long duration to the zero crossing, whereas with a glass shattering event, the duration is short. Autocorrelation provides assessment of the number of frequencies in the signal (i.e. whether the signal is wide-band).

The above measures illustrate how it is possible to extract useful information from autocorrelation output and are not the only possible measures.

Although various preferred embodiments of the present invention have been described herein in detail, it will be appreciated by those skilled in the art, that variations may be made thereto without departing from the scope of the appended claims.


Anspruch[de]
  1. Glasbruchdetektor zum Erfassen des Bruchs von Glas, enthaltend einen Schallwandler, der in der Lage ist, ein breitbandiges elektrisches Signal zu erzeugen, eine Verarbeitungsanordnung zur Verarbeitung plötzlicher Änderungen im elektrischen Signal, die durch ein vorübergehendes Ereignis verursacht werden, wobei die Verarbeitungsanordnung das Ausgangssignal durch ein Hochpaßfilter filtert und das gefilterte Signal analysiert, um vorübergehende Ereignisse zu identifizieren und das gefilterte Signal eines jeden vorübergehenden Ereignisses unter Verwendung von Abtast- und Statistiktechniken zu untersuchen, um zu ermitteln, ob das gefilterte Signal keine kennzeichnende Periodizität hat, und eine Einrichtung zum Erzeugen eines Alarmsignals, wenn ermittelt wird, daß das gefilterte Signal eines vorübergehenden Ereignisses keine kennzeichnende Periodizität hat.
  2. Glasbruckdetektor nach Anspruch 1, bei dem die Verarbeitungseinrichtung als Teil der Untersuchung des gefilterten Signals eine Kreuzkorrelation des gefilterten Signals mit einem Glasbruch-Bezugssignal verwendet, um zu ermitteln, daß das Signal keine kennzeichnende Periodizität hat.
  3. Glasbruchdetektor nach Anspruch 1, bei dem die Verarbeitungseinrichtung eine autokorrelations-ähnliche Funktion verwendet, um den Umfang der Periodizität des gefilterten Signals zu ermitteln.
  4. Glasbruchdetektor nach Anspruch 3, bei die Verarbeitungseinrichtung weiterhin eine Einrichtung zum Vergleichen des gefilterten Signals mit einem Bezugssignal enthält, das für Hochfrequenzkomponenten eines Glasbruchsignals repräsentativ ist, wobei die Vergleichseinrichtung eine angenäherte Kreuzkorrelationstechnik verwendet, um in Kombination mit Ergebnissen der Autokorrelation zu beurteilen, ob das gefilterte Signal angibt, daß ein Glasbruchereignis aufgetreten ist.
  5. Glasbruchdetektor nach Anspruch 1, bei dem die Statistiktechniken auch den Umfang der Korrelation des Signals mit einem Ereignis-Bezugssignal bewerten, das typisch für ein Glasbruchereignis ist, und ein Alarmsignal erzeugen, wenn ein vorübergehendes Ereignis vorliegt, das eine Änderung in dem Signal verursacht, das
    • 1) keine kennzeichnende Periodizität hat, und
    • 2) eine kennzeichnende Korrelation mit dem Glasbruch-Bezugssignal hat.
  6. Verfahren zum Ermitteln des Bruchs von Glas, enthaltend die Erfassung von Schalldruck und die Erzeugung eines elektrischen Signals, das für den erfaßten Schalldruck repräsentativ ist, und das Identifizieren von Änderungen im Signal, die durch vorübergehende Ereignisse verursacht sind, und die Verwendung von Statistiktechniken zur Bewertung der Periodizität der Änderungen im Signal und die Unterscheidung der Änderungen im Signal von Hintergrundgeräusch und die Erzeugung eines Alarmsignals, wenn keine kennzeichnende Periodizität in dem Abschnitt des Signals vorhanden ist, der die Änderungen enthält, und das Signal von einer Intensität ist, die größer als das Hintergrundgeräusch ist und davon unterscheidbar ist.
  7. Verfahren zum Erfassen des Bruchs von Glas nach Anspruch 6, enthaltend zu Anfang das Durchleiten des elektrischen Signals durch ein Hochpaßfilter, das Niederfrequenzkomponenten aus einem Glasbruchsignal ausfiltert, das gewöhnlich kennzeichnende Periodizität hat.
  8. Verfahren zur Erfassung des Bruchs von Glas nach Anspruch 7, bei dem die Statistiktechniken die Kreuzkorrelierung des elektrischen Signals mit einem vorbestimmten Glasbruch-Bezugssignal einschließen.
  9. Glasbruchdetektor zur Erfassung des Splitterns von Glas, enthaltend einen Schallwandler, der ein elektrisches Signal des Glasbruchereignisses erzeugt, das zu Anfang Niederfrequenzkomponenten enthält, die von einer Kraft herrühren, die zur Durchbiegung und dem nachfolgenden Zersplittern des Glases führt, und Hochfrequenzkomponenten enthält, die vom Splittern des Glases herrühren und breitbandig sind und keine kennzeichnende Periodizität aufweisen, und eine Verarbeitungseinrichtung zum Verarbeiten des elektrischen Signals, um die Niederfrequenzkomponenten zu entfernen und die verbleibenden Hochfrequenzkomponenten des Signals zu analysieren, um zu ermitteln, ob kennzeichnende Periodizität nicht vorhanden ist, und um Eigenschaften zu ermitteln, die für ein Glaszersplitterungsereignis kennzeichnend sind, und auf deren Grundlage das Auftreten eines Glasbruchereignisses zu ermitteln.
  10. Glasbruchdetektor zur Erfassung des Splitterns von Glas nach Anspruch 9, enthaltend Statistikeinrichtungen zum Analysieren der Hochfrequenzkomponenten des elektrischen Signals auf die Abwesenheit kennzeichnender Periodizität und auf ein Breitbandsignal.
  11. Glasbruchdetektor zur Erfassung des Splitterns von Glas nach Anspruch 10, bei dem die Statistikeinrichtung eine Autokorrelationstechnik zur Bewertung der Breitbandigkeit des elektrischen Signals einschließt.
  12. Glasbruchdetektor zur Erfassung des Splitterns von Glas nach Anspruch 10, bei dem die Statistikeinrichtung eine Kreuzkorrelationstechnik des gefilterten Signals bezüglich eines Glaszersplitterungs-Bezugssignals verwendet, um ein Glasbruchereignis zu erfassen.
Anspruch[en]
  1. A glass break detector for detecting the breaking of glass comprising an acoustic transducer which is capable of producing a wide band electrical signal, a processing arrangement for processing sudden changes in the electrical signal caused by a transient event, said processing arrangement filtering the output signal through a high pass filter and analysing the filtered signal to identify transient events and investigate the filtered signal of each transient event using sampling and statistical techniques to determine if the filtered signal has no significant periodicity and means for producing an alarm signal when the filtered signal of a transient event is determined to have no significant periodicity.
  2. A glass break detector as claimed in claim 1 wherein said processing means as part of the investigation of the filtered signal uses cross correlation of the filtered signal with a glass break reference signal for determining whether the signal has no significant periodicity.
  3. A glass break detector as claimed in claim 1 wherein said processing means uses an autocorrelation like function to determine the amount of periodicity of the filtered signal.
  4. A glass break detector as claimed in claim 3 wherein said processing means further includes means for comparing the filtered signal with a reference signal representative of high frequency components of a glass break signal, said means for comparing using an approximate cross-correlation technique to evaluate, in combination with results of the autocorrelation, whether the filtered signal indicates a glass break event has occurred.
  5. A glass break detector as claimed in claim 1 wherein said statistical techniques also assess the amount of correlation the signal with a reference event signal typical of a glass break event and producing an alarm signal when there is a transient event which causes a change in the signal having
    • 1) no significant periodicity, and
    • 2) a significant correlation with the reference glass break signal.
  6. A method of detecting the breaking of glass comprising sensing acoustical pressure and producing an electrical signal representative of the sensed acoustical pressure, and identifying changes in the signal caused by transient events and using statistical techniques for assessing the periodicity of the changes in the signal and discriminating the changes in the signal from background noise and producing an alarm signal when there is no significant periodicity in the portion of the signal containing the changes and the signal is of an intensity greater than background noise and distinguishable therefrom.
  7. A method of detecting the breaking of glass as claimed in claim 6 including initially passing the electrical signal through a high pass filter which filters out frequencies low frequency components of a glass break signal which commonly has significant periodicity.
  8. A method of detecting the breaking of glass as claimed in claim 7 wherein the statistical techniques include cross correlating the electrical signal with a predetermined reference glass break signal.
  9. A glass break detector for detecting the shattering of glass comprising an acoustic transducer which produces an electrical signal of the glass break event including initial low frequency components associated with a force leading to the flexure and subsequent shattering of the glass and high frequency components associated with the shattering of the glass which are wide-band with no significant periodicity and processing means for processing the electrical signal to remove low frequency components and analysing the remaining high frequency components of the signal for determining whether significant periodicity is absent and for characteristics indicative of a glass shattering event and based thereon determining the occurrence of a glass break event.
  10. A glass break detector for detecting the shattering of glass as claimed in claim 9 including statistical means for analysing the high frequency components of the electrical signal for no significant periodicity and for a wide-band signal.
  11. A glass break detector for detecting the shattering of glass as claimed in claim 10 wherein said statistical means includes an autocorrelation technique for assessing wide-bandness of the electrical signal.
  12. A glass break detector for detecting the shattering of glass as claimed in claim 10 wherein said statistical means uses a cross-correlation technique of the filtered signal relative a reference glass shattering signal for distinguishing a glass breakage event.
Anspruch[fr]
  1. Détecteur de bris de verre, permettant de détecter le bris de verre, comprenant un transducteur acoustique qui est capable de produire un signal électrique à large bande, un agencement de traitement servant à traiter des variations brusques se présentant dans le signal électrique sous l'effet d'un phénomène transitoire, l'agencement de traitement filtrant le signal de sortie à travers un filtre passe-haut et analysant le signal filtré pour identifier des phénomènes transitoires et examiner le signal filtré de chaque phénomène transitoire en utilisant des techniques d'échantillonnage et statistiques pour déterminer si le signal filtré ne présente pas une périodicité significative, et des moyens servant à produire un signal d'alarme lorsqu'il est établi que le signal filtré d'un phénomène transitoire ne présente pas une périodicité significative.
  2. Détecteur de bris de verre tel que revendiqué à la revendication 1, dans lequel les moyens de traitement, en temps que partie de l'examen du signal filtré, utilisent une corrélation croisée du signal filtré avec un signal de bris de verre de référence pour déterminer si le signal ne présente pas une périodicité significative.
  3. Détecteur de bris de verre tel que revendiqué à la revendication 1, dans lequel les moyens de traitement utilisent une fonction analogue à une autocorrélation pour déterminer la valeur de périodicité du signal filtré.
  4. Détecteur de bris de verre tel que revendiqué à la revendication 3, dans lequel les moyens de traitement comprennent en outre des moyens servant à comparer le signal filtré à un signal de référence représentatif de composants à haute fréquence d'un signal de bris de verre, les moyens de comparaison utilisant une technique de corrélation croisée en approximation pour évaluer, en combinaison avec des résultats de l'autocorrélation, si le signal filtré indique qu'un phénomène de bris de verre a eu lieu.
  5. Détecteur de bris de verre tel que revendiqué à la revendication 1, dans lequel les techniques statistiques établissent aussi la valeur de corrélation du signal avec un signal de phénomène de référence typique d'un phénomène de bris de verre et produisant un signal d'alarme lorsqu'il existe un phénomène transitoire qui provoque une variation dans le signal qui
    • 1) ne présente pas de périodicité significative et
    • 2) présente une corrélation significative avec le signal de bris de verre de référence.
  6. Procédé permettant de détecter le bris de verre, consistant à détecter une pression acoustique et produire un signal électrique représentatif de la pression acoustique détectée, à identifier des variations se présentant dans le signal sous l'effet de phénomènes transitoires et utiliser des techniques statistiques pour établir la périodicité des variations se présentant dans le signal, et à faire une distinction entre les variations se présentant dans le signal par rapport au bruit de fond et produire un signal d'alarme lorsqu'il n'existe pas de périodicité significative dans la partie du signal contenant les variations et que le signal est d'une intensité plus grande que le bruit de fond et peut être distingué de celui-ci.
  7. Procédé permettant de détecter le bris de verre tel que revendiqué à la revendication 6, consistant à faire passer initialement le signal électrique à travers un filtre passe-haut qui sépare par filtrage des fréquences de composants à basse fréquence d'un signal de bris de verre qui ne présente habituellement pas de périodicité significative.
  8. Procédé permettant de détecter le bris de verre tel que revendiqué à la revendication 7, dans lequel les techniques statistiques consistent à réaliser une corrélation croisée du signal électrique avec un signal de bris de verre de référence préfixé.
  9. Détecteur de bris de verre permettant de détecter le bris de verre, comprenant un transducteur acoustique, qui produit un signal électrique du phénomène de bris de verre comportant des composantes initiales à basse fréquence associées à une force conduisant à la flexion et au bris suivant du verre et des composantes à haute fréquence associées au bris du verre qui sont à large bande sans présenter de périodicité significative, et des moyens de traitement servant à traiter le signal électrique pour supprimer les composantes à basse fréquence et à analyser les composantes restantes à haute fréquence du signal pour déterminer si une périodicité significative est absente et en ce qui concerne des caractéristiques indiquant un phénomène de bris de verre et, basé là-dessus, déterminer l'existence d'un phénomène de bris de verre.
  10. Détecteur de bris de verre permettant de détecter le bris de verre tel que revendiqué à la revendicaticn 9, comprenant des moyens statistiques pour analyser les composantes à haute fréquence du signal électrique en ce qui concerne l'absence de périodicité significative et en ce qui concerne un signal à large bande.
  11. Détecteur de bris de verre permettant de détecter le bris de verre tel que revendiqué à la revendication 10, dans lequel les moyens statistiques comprennent une technique d'autocorrélation servant à établir le caractère de large bande du signal électrique.
  12. Détecteur de bris de verre permettant de détecter le bris de verre tel que revendiqué à la revendication 10, dans lequel les moyens statistiques utilisent une technique de corrélation croisée du signal filtré par rapport à un signal de bris de verre de référence pour distinguer un phénomène de bris de verre.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com