PatentDe  


Dokumentenidentifikation EP0803968 25.02.1999
EP-Veröffentlichungsnummer 0803968
Titel GESCHWINDIGKEITSREGLER FÜR EINEN MOTOR
Anmelder Kabushiki Kaisha Yaskawa Denki, Kitakyushu, Fukuoka, JP
Erfinder NAKAMURA, Hiroshi, Kabushiki Kaisha Yaskawa Denki, Kitakyushu-shi, Fukuoka 806, JP;
TSURUTA, Kazuhiro, Kabushiki Kaisha Yaskawa Denki, Kitakyushu-shi, Fukuoka 806, JP
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69507340
Vertragsstaaten CH, DE, GB, LI
Sprache des Dokument En
EP-Anmeldetag 02.08.1995
EP-Aktenzeichen 959279522
WO-Anmeldetag 02.08.1995
PCT-Aktenzeichen JP9501534
WO-Veröffentlichungsnummer 9604708
WO-Veröffentlichungsdatum 15.02.1996
EP-Offenlegungsdatum 29.10.1997
EP date of grant 13.01.1999
Veröffentlichungstag im Patentblatt 25.02.1999
IPC-Hauptklasse H02P 5/00
IPC-Nebenklasse G01P 3/44   

Beschreibung[en]
TECHNICAL FIELD

This invention relates to a motor speed control device.

BACKGROUND ART

Heretofore, for motor speed feedback control, a speed detector such as a tachometer generator is popularly employed. However, recently a system has been intensively employed in which a feedback speed signal is calculated from position data which is detected, for instance, with an encoder. In this speed feedback signal calculating method, the following formula is generally employed: v = Δy/Ts where Δy is an increment during a sampling period Ts of a position signal.

However, the method suffers from the following difficulties: The phase of the speed signal thus calculated lags the actual speed, and, accuracy in a range of low speeds is considerably deteriorated. The latter problem that the accuracy in a range of low speeds is considerably deteriorated, has been solved by obtaining a moving average of a plurality of past points. However, in this case, the phase lag is further increased. In the case where the sampling period is long, or the position detection is delayed, the phase lag is further increased. If the feedback control is carried out with the signal which lags in phase in the above-described manner, it is impossible to set the feedback gain to a high value, and accordingly the response speed becomes low.

On the other hand, Japanese Patent Unexamined Publication No. Hei. 4-9767 has disclosed a method in which the speed at a calculation time instant is predicted and detected. However, the method is disadvantageous in the following points: In the method, the operating characteristics of the motor, and the torque command are not taken into account; that is, the prediction is carried out only on the basis of the position data detected by an encoder or the like, and therefore the predicted value may be different from the actual value.

DISCLOSURE OF THE INVENTION

In view of the foregoing, an object of the invention is to provide a motor speed control device in which a speed is predicted from position data detected with an encoder or the like, the operating characteristics of a motor, and a torque command, and a weighted moving average thereof is calculated, so that the feedback signal is less deteriorated in accuracy when the motor is in a range of low speeds, and has no phase lag.

The foregoing object of the invention has been achieved by the provision of a motor speed control device in which, at the present time instant i, a motor position y(i-K) which was provided K•Ts before (where K≥0, and Ts is the sampling period) is detected to provide a detection signal, and feedback control is carried out with a motor speed feedback signal vfb which is calculated from the detection signal, which, according to the invention, comprises:

  • means for calculating a torque command u(i) from a speed command and the motor feed back signal vfb;
  • means for calculating a speed v(i-K) from the position y(i-K);
  • means for storing the speed v(i-m) (where m=K, ..., M') which occurs from a past M'-th sampling to a time instant i-K;
  • a predictor for obtaining a speed prediction value v*(i+m) (where m = -K+1, ... , M) at a future M-th sampling from a motor's dynamic characteristic model, the torque command u(i) and the position y(i-K); and
  • means for calculating the speed feedback signal from the following formula:

With the above-described means, a speed feedback signal which is less deteriorated in accuracy, and has no phase lag is obtained. Hence, the feedback loop gain is high, and the speed control system is high in response frequency.

BRIEF DESCRIPTION OF THE DRAWINGS

  • FIG. 1 is a block diagram showing a specific embodiment of the invention;
  • FIG. 2 is an internal block diagram showing the arrangement of an example of a predictor of the invention;
  • FIG. 3 is an internal block diagram showing the arrangement of another example of a predictor of the invention;
  • FIG. 4 is an internal block diagram showing the arrangement of an example of a control calculator of the invention; and
  • FIG. 5 is a block diagram showing another embodiment of the invention.

BEST MODE FOR CARRYING OUT THE INVENTION

First, an example of a motor speed control device, which constitutes a first embodiment of the invention, will be described.

In FIG. 1, reference numeral 5 designates a control calculator which receives a speed command and a feedback signal vfb, and outputs a torque command u; and 6, a unit including a torque controller, a motor, and a position detector. The unit 6 receives a torque instruction u(i) at the present time instant i, and outputs a motor position detection value y(i-K) which is obtained K•Ts before (K≥0, and Ts: sampling period). Reference numeral 1 designates a predictor which obtains a speed prediction value v*(i+m) (where m = -K+1, ... , M) at a future M-th sampling from a motor's dynamic characteristic model, torque command u, and a position y. Reference numeral 4 designates a calculator which calculates a speed v(i-K) from a position y(i-K) according to v(i-K) = Δy(i-K)/Ts (Δ represents an increment value during a sampling period Ts). Reference numeral 3 denotes a memory which stores a speed v(i-m) which is provided from a past M'-th sampling till a time instant i-K (where m=K, ..., M'). Reference numeral 2 denotes a calculator which obtains a speed feedback signal vfb according to the following Formula (1), and applies it to the control calculator 5.

With respect to weights Wm and W'm, the average of speeds may be obtained on the basis of Wm=W'm=1/(M+M'+1), or they may be so set as to be one in total by weighting the respective speeds with different weights. M and M' function as follows: The difference M-M' adjusts the phase of the speed feedback signal, the sum M+M' adjusts the speed resolution, and with M≥M', a feedback signal has no phase lag.

Now, concrete examples of the predictor will be described with reference to FIGS. 2 and 3.

In FIG. 2, reference numeral 11 designates the predictor; 13, a memory for storing prediction coefficients Amn and Bmn; 14 and 15, memories for storing past torque command u and past position increment values Δy which occur until the present time instant, respectively, and 16, a differential unit which obtains a position increment value Δy from a position y.

Further in FIG. 2, reference numeral 12 designates a calculator, which calculates and outputs a speed prediction value v*(i+m) according to the following Formulae (2a) and (2b): v*(i+m) = Δy*(i+m)/Ts

In FIG. 3, reference numeral 21 designates the predictor; 23, a memory for storing prediction coefficients Amn and Bmn; 24 and 25, memories for storing past torque instruction increment values Δu and past position increment values Δy which occurs until the present time instant, respectively, and 26 and 27, differential units which obtain increment values.

Further in FIG. 3, reference numeral 22 designates a calculator, which calculates and outputs a speed prediction value v*(i+m) according to the following Formulae (3a) and (3b): v*(i+m) = Δy*(i+m)/Ts

Now, the prediction coefficients in Formulae (2b) and (3b) will be described.

It is assumed that a transfer function model from a torque command u till a position increment value Δy is of a discrete-time system as follows: Gv(z)= (b1z-1+ ... +bNbz-Nb)/(1-a1z-1 - ... -aNaz-Na) Then, its input/output model is as indicated in the following Formula (4):

At the time instant i, the actually measured value Δy(i-n)(n≥K) of the position increment value which is provided until the time instant i-K, is obtained. Hence, prediction is made according to the following Formulae (5a) and (5b) by use of the measured position increment value:

As a result, the position increment value prediction value Δy*(i+m) is represented by Formula (2b), and if it is assumed that a future torque command is u(j)=0 (j>i), then the prediction coefficients Amn and Bmn are as follows: A(-k+1)n = a(n-K+1)    m=-K+1, K≤n≤Na+K-1
B(-k+1)n = b(n-K+1)    m=-K+1, 0≤n≤Nb+K-1

Where, an=0 (n>Na), and bn =0 (n<1 and n>Nb). If u(j)=u(i) (where j>i), then Bmo in Formula (7b) is as follows: Bmo = 0     -K+1<m≤0

In the case where a transfer function model from a torque command increment value Au to a position increment value Δy is Gp(z)=(b1z-1+ ... +bNbZ-Nb)/(1-a1z-1 - ..., -aNaz-Na), then its input and output model is represented by the following Formula (8):

Formula (3b) is obtained by predicting a position increment value similarly as in the case of Formula (5). And if a future torque command increment value is Δu(j)=0 (where j>i), then prediction coefficients Amn and Bmn are as follows: A(-k+1)n = a(n-K+1)    m=-K+1, K≤n≤Na+K-1

B(-k+1)n = b(n-K+1)    m=-K+1, 0≤n≤Nb+K-1
   where an=0 (n>Na), and bn =0 (n<1 and n>Nb).

When, with K=0 and with a continuous transfer function model from torque command to position as 1/JS2, discretion is effected with the zero-th order hold and sampler taken into account, then the coefficients of the model Gv(z) of the predictor shown in FIG. 2 are Na=1, a1=1, Nb=2, b1=b2=b=Ts2/2J and the coefficients of the model Gp(z) of the predictor shown in FIG. 3 are Na=2, a1=2, a2=-1, Nb=2, b1=b2=b=Ts2/2J.

In the case where the predictor shown in FIG. 2 is employed and M=2, the coefficients in Formula (2b) are A10=A20=1, B10=B11=b, B20=3b, and B21=b according to Formulae (6), (7) and (7b').

If, in Formula (1), M'=0, w2=0.5, w1=w'0=0.25, then the following Formula (11) is obtained according to Formulae (1) and (2): vfb(i)=[Δy(i)+b{1.75u(i)+0.75u(i-1)}]/Ts It goes without saying that, in FIG. 1, the predictor 1 and the calculators 2 and 4 are provided as one unit to obtain vfb(i).

In the case where the detection value or prediction value of a disturbance torque ud is obtained, the difference which is obtained by subtracting the disturbance torque ud from the torque command u may be employed as a torque command to obtain the speed prediction value. In the case where, in the control calculator 5, the torque command is determined from an operation which includes PID control and I-P control integration operations, the resultant integration operation value may be employed as the aforementioned disturbance torque prediction value. For instance in the case where, as shown in FIG. 4, the control calculator 5 calculates a torque command by PID operation, the difference obtained by subtracting an integration operation value from a torque instruction; that is, only the PD (proportional and differential) operation value is applied, as a torque command, to the predictor 1.

FIG. 5 is a block diagram for a description of the case where, when a control calculator outputs the PI operation value subjected to primary filtering or n-th order filtering as a torque command u(i) at the next sampling period, the speed feedback signal vfb(i) is obtained according to Formula (11). In the circuit shown in FIG. 5, an integration value provided one period before is employed as a disturbance torque ud; however, it may be subjected to filtering to obtain a disturbance torque ud. A speed v(i) is obtained according to Δy(i)/Ts; however, the invention is not limited thereto or thereby. That is, it may be obtained according to a conventional speed calculating method such as a method of using a speed detector, or a method of calculating the speed by measuring the pulse duration time of an encoder.

As was described above, in the motor speed control device of the invention, the speed feedback signal is employed which is less deteriorated in accuracy when the motor is in a range of low speeds, and has no phase lag. Hence, the motor speed control device is high in feedback loop gain, and high in response characteristic.

INDUSTRIAL APPLICABILITY

The invention is applied to a motor speed control device.


Anspruch[de]
  1. Motorgeschwindigkeits-Regelvorrichtung, bei der, zu dem gegenwärtigen Zeit-Moment i, eine Motorposition y, die als K • Ts zuvor geliefert wurde, wobei K ≥ 0, und Ts eine Abtastperiode ist, erfaßt wird, um ein Erfassungssignal zu liefern, und eine Rückkopplungsregelung mit einem Motorgeschwindigkeits-Rückkopplungssignal Vfb, das aus dem Erfassungssignal berechnet ist, ausgeführt wird, gekennzeichnet dadurch, daß sie aufweist:
    • eine Einrichtung (5) zum Berechnen eines Drehmoment-Befehls u(i) aus einem Geschwindigkeitsbefehl und dem Motorrückkopplungssignal vfb;
    • eine Einrichtung (4) zum Berechnen einer Geschwindigkeit v(i-K) aus der Position y(i-K);
    • eine Einrichtung (3) zum Speichern der Geschwindigkeit v(i-m) (wobei m = K, ..., M'), die von einer vergangenen M'-ten Abtastung zu einem Zeit-Moment i-K auftritt;
    • einen Prädiktor (1) zum Erhalten eines Geschwindigkeitsvorhersagewerts v*(i+m), wobei m = -K+1, ..., M, bei einer zukünftigen M-ten Abtastung von einem dynamischen Charakteristik-Modell eines Motors, des Drehmoment-Befehls u(i) und der Position y(i-K); und
    • eine Einrichtung (2) zum Berechnen des Geschwindigkeits-Rückkopplungssignals aus der nachfolgenden Formel:
      wobei Wm und W'm Gewichtungs-Koeffizienten sind.
  2. Motorgeschwindigkeits-Regelvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Prädiktor aufweist:
    • eine Einrichtung zum Erhalten eines Positions-Inkrement-Werts Δy aus einer Position y, wobei Δ einen Inkrement-Wert für eine Abtastperiode Ts darstellt;
    • eine Einrichtung zum Bestimmen, auf der Basis eines Übertragungs-FunktionsModells, aus einem Drehmoment-Befehl u bis zu einem Positions-Inkrement-Wert Δy, Gv(z) = (b1z-1+ ... +bNbz-Nb)/(1-a1z-1-... -aNaz-Na), von Vorhersage-Koeffizienten Amn und Bmn gemäß den nachfolgenden Formeln: A(-k+1)n = a(n-K+1)    m = -K+1, K≤n≤Na+K-1
      B(-k+1)n = b(n-K+1)    m = -K+1, 0 ≤n ≤Nb+K-1
      wobei an = 0, n > Na, und bn = 0, n < 1 und n > Nb gilt;
    • eine Einrichtung zum Speichern eines vergangenen Drehmoment-Befehls und von Positions-Inkrement-Werten bis zu einem gegenwärtigen Zeit-Moment; und
    • eine Einrichtung zum Erhalten, auf der Basis der Vorhersage-Koeffizienten, eines Drehmoment-Befehls, und von Positions-lnkrement-Werten, des Geschwindigkeits-Vorhersage-Werts gemäß den nachfolgenden Formeln: v*(i+m) = Δy*(i+m)/Ts
  3. Motorgeschwindigkeits-Regelvorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß sie aufweist:
    • eine Einrichtung zum Anwenden, wie für dieses Bmo, der nachfolgenden Formeln: Bmo = 0    -K+1 < m ≤ 0
  4. Motorgeschwindigkeits-Regelvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Prädiktor aufweist:
    • eine Einrichtung zum Erhalten von Positions-lnkrement-Werten Δy und eines Drehmoment-Befehl-Inkrement-Werts Δu aus einer Position y und einem Drehmoment-Befehl u;
    • eine Einrichtung zum Bestimmen, auf der Basis eines Übertragungs-Funktions-Modells, aus einem Drehmoment-Inkrement Δu bis zu einem Positions-Inkrement-Wert Δy, Gv(z) = (b1z-1+ ... +bNbz-Nb)/(1-a1z-1-... -aNaz-Na), von VorhersageKoeffizienten Amn und Bmn gemäß den nachfolgenden Formeln, und Speichern der Vorhersage-Koeffizienten, die so bestimmt sind: A(-k+1)n = a(n-K+1)    m = -K+1, K ≤ n ≤ Na+K-1
      B(-k+1)n = b(n-K+1)    m = -K+1, 0 ≤ n ≤Nb+K-1
      wobei an= 0, n > Na, und bn = 0, n < 1 und n > Nb gilt;
    • eine Einrichtung zum Speichern vergangener Drehmoment-Befehl-lnkrement-Werte und von Positions-Inkrement-Werten bis zu einem gegenwärtigen Zeit-Moment; und
    • eine Einrichtung zum Erhalten, auf der Basis der Vorhersage-Koeffizienten, von Drehmoment-Befehl-lnkrement-Werten, und von Positions-lnkrement-Werten, des Geschwindigkeits-Vorhersage-Werts gemäß den nachfolgenden Formeln: v*(i+m) = Δy*(i+m)/Ts
  5. Motorgeschwindigkeits-Regelvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie aufweist:
    • eine Einrichtung zum Erhalten des Erfassungs-Werts oder des Vorhersage-Werts eines Störungs-Drehmomens ud; und
    • eine Einrichtung zum Erhalten eines Geschwindigkeits-Vorhersage-Werts mit der Differenz, die als ein Drehmoment-Befehl betrachtet wird, die durch Subtrahieren des Störungs-Drehmoments ud von der Drehmoment-Instruktion u erhalten ist.
  6. Motorgeschwindigkeits-Regelvorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß
    • in dem Fall, wo ein Drehmoment-Befehl durch eine Operation bestimmt wird, die eine PID-Regelung oder eine I-P-Regel-Integrations-Operation umfaßt, ein Integrations-Operations-Wert als das Störungs-Drehmoment ud eingesetzt wird.
Anspruch[en]
  1. A motor speed control device in which, at present time instant i, a motor position y which was provided K•Ts before, where K≥0, and Ts is a sampling period, is detected to provide a detection signal, and feedback control is carried out with a motor speed feedback signal vfb which is calculated from said detection signal, CHARACTERIZED by comprising:
    • means (5) for calculating a torque command u(i) from a speed command and said motor feed back signal vfb;
    • means (4) for calculating a speed v(i-K) from said position y(i-K);
    • means (3) for storing said speed v(i-m) (where m=K, ..., M') which occurs from a past M'-th sampling to a time instant i-K;
    • a predictor (1) for obtaining a speed prediction value v*(i+m), where m = -K+1, ... , M, at a future M-th sampling from a motor dynamic characteristic model, said torque command u(i) and said position y(i-K); and
    • means (2) for calculating said speed feedback signal from the following formula:
      where Wm and W'm are weight coefficients.
  2. A motor speed control device as claimed in claim 1, CHARACTERIZED in that said predictor comprises:
    • means for obtaining a position increment value Δy from a position y, where Δ represents an increment value for a sampling period Ts,;
    • means for determining, on the basis of a transfer function model, from a torque command u till a position increment value Δy, Gv(z)= (-b1z-1+ ... +bNbz-Nb)/(1-a1z-1 - ...-aNaz-Na), prediction coefficients Amn and Bmn according to the following formulae A(-k+1)n = a(n-K+1)    m=-K+1, K≤n≤Na+K-1
      B(-k+1)n = b(n-K+1)    m=-K+1, 0≤n≤Nb+K-1
      where an=0, n>Na, and bn=0, n<1 and n>Nb;
    • means for storing past torque command and position increment values until a present time instant; and
    • means for obtaining, on the basis of said prediction coefficients, torque command, and position increment values, said speed prediction value according to the following formulae: v*(i+m) = Δy*(i+m)/Ts
  3. A motor speed control device as claimed in claim 2, CHARACTERIZED by comprising:
    • means for employing, as to said Bmo, the following formulae: Bmo = 0    -K+1<m≤0
  4. A motor speed control device as claimed in claim 1, CHARACTERIZED in that said predictor comprises:
    • means for obtaining a position increment values Δy and a torque command increment value Δu from a position y and a torque command u;
    • means for determining, on the basis of a transfer function model, from a torque increment Δu till a position increment value Δy, Gp(z)= (b1z-1+ ... +bNbz-Nb)/(1-a1z-1 - ...-aNaz-Na), prediction coefficients Amn and Bmn according to the following formulae, and storing said prediction coefficients thus determined: A(-k+1)n = a(n-K+1)    m=-K+1, K≤n≤Na+K-1
      B(-k+1)n = b(n-K+1)    m=-K+1, 0≤n≤Nb+K-1
      where an=0, n>Na, and bn = 0, n<1 and n>Nb;
    • means for storing past torque command increment values and position increment values until a present time instant; and
    • means for obtaining, on the basis of said prediction coefficients, torque command increment values, and position increment values, said speed prediction value according to the following formulae: v*(i+m) = Δy*(i+m)/Ts
  5. A motor speed control device as claimed in claim 1, CHARACTERIZED by comprising:
    • means for obtaining the detection value or prediction value of a disturbance torque ud; and
    • means for obtaining a speed prediction value with the difference regarded as a torque command which is obtained by subtracting said disturbance torque ud from said torque instruction u.
  6. A motor speed control device as claimed in claim 5, CHARACTERIZED in that
    • in the case where a torque command is determined by an operation including a PID control or I-P control integration operation, an integration operation value is employed as said disturbance torque ud.
Anspruch[fr]
  1. Dispositif de contrôle de vitesse de moteur dans lequel, à un instant présent i, une position du moteur y qui existait K.Ts auparavant, où K ≥ 0, et Ts étant une période d'échantillonnage, est détectée pour fournir un signal de détection et une commande de rétroaction est effectuée à l'aide d'un signal de rétroaction de vitesse du moteur Vfb qui est calculé à partir dudit signal de détection, caractérisé en ce qu'il comporte :
    • des moyens (5) pour calculer une commande de couple u(i) à partir d'une commande de vitesse et dudit signal de rétroaction de moteur Vfb ;
    • des moyens (4) pour calculer une vitesse v(i-K) à partir de ladite position y(1-K) ;
    • des moyens (3) afin de mémoriser ladite vitesse v(i-m) (où m = K, ..., M') qui apparaît entre un M'-ième échantillonnage passé jusqu'à un instant i-K ;
    • un prédicteur (1) pour obtenir une valeur de prédiction de vitesse v*(i+m), où m = -K+1, ..., M, à un M-ième échantillonnage futur à partir d'un modèle caractéristique dynamique du moteur, de ladite commande de couple u(i) et de ladite position y(i-K) ; et
    • des moyens (2) pour calculer ledit signal de rétroaction de vitesse à partir de la formule suivante :
      où Wm et W'm sont des coefficients de pondération.
  2. Dispositif de contrôle de vitesse de moteur selon la revendication 1, caractérisé en ce que ledit prédicteur comporte :
    • des moyens pour obtenir une valeur d'incrément de position Δy à partir d'une position y, où Δ représente une valeur d'incrément pour une période d'échantillonnage Ts ;
    • des moyens pour déterminer, en fonction d'un modèle de fonction de transfert, à partir d'une commande de couple u jusqu'à une valeur d'incrément de position Δy, Gv(z) = (b1z-1 + ... + bNbz-Nb)/(1-a1z-1 - ... - aNaz-Na), des coefficients de prédiction Amn et Bmn selon les formules suivantes A(-k+1)n = a(n-K+1)    m = -K + 1 ≤ n ≤ Na + K - 1
      B(-k+1)n = b(n-K+1)    m = -K + 1, 0 ≤ n ≤ Nb + K - 1
      où an = 0, n > Na, et bn = 0, n < 1 et n > Nb ;
    • des moyens pour mémoriser des valeurs de commande de couple et d'incrément de position passées jusqu'à un instant présent ; et
    • des moyens pour obtenir, en fonction desdits coefficients de prédiction, des valeurs de commande de couple et d'incrément de position, ladite valeur de prédiction de vitesse selon les formules suivantes : v*(i + m) = Δy*(i + m)/Ts
  3. Dispositif de contrôle de vitesse de moteur selon la revendication 2, caractérisé en ce qu'il comporte :
    • des moyens pour utiliser, en tant que ladite grandeur Bm0, les formules suivantes : Bm0 =0    - K + 1 < m ≤ 0
  4. Dispositif de contrôle de vitesse de moteur selon la revendication 1, caractérisé en ce que ledit prédicteur comporte :
    • des moyens pour obtenir une valeur d'incrément de position Δy et une valeur d'incrément de commande de couple Δu à partir d'une position y et d'une commande de couple u;
    • des moyens pour déterminer, en fonction d'un modèle de fonction de transfert, à partir d'un incrément de couple Δu jusqu'à une valeur d'incrément de position Ay, Gp(z) = (b1z-1 + ... + bNbz-Nb)/(1-a1z-1 - ... - aNaz-Na), des coefficients de prédiction Amn et Bmn selon les formules suivantes, et mémoriser lesdits coefficients de prédiction ainsi déterminés : A(-k+1)n = a(n-K+1)    m = -K + 1, K ≤ n ≤ Na + K - 1
      B(-k+1)n = b(n-K+1)    m = -K + 1, 0 ≤ n ≤ Nb + K - 1
      où an = 0, n > Na, et bn = 0, n < 1 et n > Nb ;
    • des moyens pour mémoriser des valeurs d'incrément de commande de couple et des valeurs d'incrément de position passées jusqu'à un présent instant ; et
    • des moyens pour obtenir, en fonction de coefficients de prédiction, desdites valeurs de commande de couple, et des commandes d'incrément de position, ladite valeur de prédiction de vitesse selon les formules suivantes: v*(i + m) = Δy*(i + m)/Ts
  5. Dispositif de contrôle de vitesse de moteur selon la revendication 1, caractérisé en ce qu'il comporte :
    • des moyens afin d'obtenir la valeur de détection ou la valeur de prédiction d'un couple parasite ud : et
    • des moyens pour obtenir une valeur de prédiction de vitesse avec la différence considérée comme une commande de couple qui est obtenue par soustraction dudit couple parasite ud de ladite instruction de couple u.
  6. Dispositif de contrôle de vitesse de moteur selon la revendication 5, caractérisé en ce que, dans le cas où une commande de couple est déterminée par une opération comprenant une commande PID ou une opération d'intégration de contrôle I-P, une valeur d'opération d'intégration est utilisée en tant que ledit couple parasite ud.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com