PatentDe  


Dokumentenidentifikation EP0682330 09.12.1999
EP-Veröffentlichungsnummer 0682330
Titel Nachweisvorrichtung und Verfahren zum Messen warmer Objekte
Anmelder Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka, JP
Erfinder Yoshiike, Nobuyuki, Ikoma-shi, Nara 630-01, JP;
Hashimoto, Kazuhiko, Moriguchi-shi, Osaka 570, JP;
Morinaka, Katsuya, Hirakata-shi, Osaka 561, JP
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69513078
Vertragsstaaten DE, FR, GB
Sprache des Dokument En
EP-Anmeldetag 08.05.1995
EP-Aktenzeichen 951069152
EP-Offenlegungsdatum 15.11.1995
EP date of grant 03.11.1999
Veröffentlichungstag im Patentblatt 09.12.1999
IPC-Hauptklasse G08B 13/16

Beschreibung[en]

The present invention relates to an apparatus and a method for detecting a warm object by utilizing ultrasonic waves and infrared rays.

In security and air-conditioning control, recently, there is a mounting demand for a measuring apparatus capable of detecting presence or absence or behavior of people existing in a room.

As the prior art, a method of detecting a human body by measuring the temperature distribution in the space by using infrared rays, and a method of judging presence or absence of human body from image information by a CCD visible camera have been proposed among others.

On the other hand, a method is known of judging a human body from the information obtained from an infrared ray sensor and an ultrasonic sensor. Or, as the method of determining the spatial temperature distribution by using a pyroelectric sensor, as disclosed in Japanese Laid-out Patent Nos. 64-88391, 57-185695, 2-183752, 2-196932, and others, using a single pyroelectric sensor, methods of determining temperature distribution by detecting input energy in each direction by scanning the pyroelectric sensor mechanically in the longitudinal direction and lateral direction have been known.

In the method of detecting a human body by measuring the temperature distribution in the space by using infrared rays, however, when a simplified two-dimensional infrared ray sensor is used, if there is an object having a temperature similar to that of a human body, it is hard to distinguish from the human body, and an error may be caused, and the judging precision is poor. In the infrared ray camera using a quantum type sensor, although the measured temperature precision and resolution are high, cooling is required in the sensor unit, and it is expensive and not suited to use in household appliances. Moreover, judgement of presence or absence of a human body by a CCD visible camera is technically possible, but it is complicated to extract a human body from the image, and the apparatus becomes expensive. An apparatus having the features of the preamble of claim 1 is known from JP-A-02 171 894.

The invention is devised in the light of the above problems, and it is hence a primary object thereof to present a warm object detecting apparatus of low cost, small size, and high reliability and a corresponding method for judging a warm object at high precision, by using an infrared ray array sensor and an ultrasonic sensor.

This object is solved by the apparatus of claim 1 and the method of claim 9.

The invention comprises means for synchronizing and driving thermal image detecting means by an infrared ray array sensor disposing a plurality of infrared ray detecting units in an array, and object recognizing means by an ultrasonic sensor, and means for comparing and processing to judge a warm object by performing object recognition and thermal image recognition simultaneously.

In this constitution, by rotating and operating by a simple rotary drive source, the object is recognized and the thermal image is detected accurately, and by comparing and processing, the warm object can be detected precisely.

The invention is therefore effective for detecting a warm object existing in the measuring space at high precision.

Fig. 1 is a schematic structural diagram of a warm object detecting apparatus in a first embodiment of the invention.

Fig. 2 is a timing chart for explaining a chopping and sensor measuring direction in the first embodiment.

Fig. 3 is a schematic structural diagram of a warm object detecting apparatus in a second embodiment of the invention.

Fig. 4 is a block diagram of an electric circuit system in the second embodiment.

Fig. 5 is a timing chart for explaining a chopping and sensor measuring direction in the second embodiment.

Fig. 6 is a perspective view for explaining a measuring state in the second embodiment.

Fig. 7 is a pattern diagram showing the result of measurement of the warm object detecting apparatus in the second embodiment.

Fig. 8 is a schematic plan view and front view of a temperature distribution measuring apparatus in a third embodiment of the invention.

Fig. 9 is a schematic plan view and front view of a temperature distribution measuring apparatus in a fourth embodiment of the invention.

Fig. 10 is a schematic plan view and front view of a temperature distribution measuring apparatus in a fifth embodiment of the invention.

Referring now to the drawings, some of the embodiments of the invention are described in detail below.

(Embodiment 1)

Fig. 1 schematically shows the structure of a warm object detecting apparatus in a first embodiment of the invention, in which a pyroelectric type infrared ray sensor 1 is an array sensor having a plurality of (for example, N) infrared receptors disposed in a line in the vertical direction. This infrared ray sensor 1 and an infrared ray lens 2 disposed at the front side of the array sensor for focusing the infrared ray into the infrared ray sensor 1 are integrated into one body, and a cylindrical chopper 4 is provided at the front side of the lens 2 for intermittently shutting off the infrared ray entering the lens 2. The integrated infrared ray sensor 1 and infrared ray lens 2 are constituted so as to be free to rotate and scan in the horizontal direction by means of infrared ray sensor rotary means 3. The chopper 4 is also connected mechanically to the infrared ray sensor rotary means 3 through a transmission or the like, and is designed to rotate at a constant speed. Accordingly, the rotary scanning of the infrared ray sensor 1 and the chopper 4 are synchronously driven in a specific period.

On the other hand, an ultrasonic sensor 5 having an ultrasonic vibrator for intermittently transmitting ultrasonic pulse signals and receiving reflected waves from objects or human body is disposed so as to be rotated and scanned horizontally by ultrasonic sensor rotary means 6. A control device 7 rotates and scans the infrared ray sensor 1 and ultrasonic sensor 5, and processes signals from the sensors.

Suppose the infrared ray sensor rotary means 3 and ultrasonic sensor rotary means 6 are simultaneously started by a signal from the control device 7, then rotary scanning is done at the timing shown in Fig. 2. That is, the infrared ray sensor 1 continuously rotates horizontally by ql degrees in tl seconds, and open/close chopping is done once by the cylindrical chopper 4. As a result, an average thermal image (for example, N*l) in the horizontal direction over a range of start position 0 degree to which the infrared ray sensor 1 confronts to ql degrees is measured. At the same time, the ultrasonic sensor 5 rotates horizontally by ql degrees instantly in a step, synchronously with the start signal. The ultrasonic sensor 5 immediately operates after step rotation, and transmits ultrasonic waves in the direction of ql degrees, and receives the reflected waves, thereby measuring the echo data in the direction of ql degrees. By repeating this operation m times, the object can be detected by thermal image and ultrasonic waves in a range of ql*m degrees in the horizontal direction.

The obtained thermal image is a two-dimensional temperature distribution in the vertical direction as seen from the infrared ray sensor 1, and the object image by the ultrasonic echo is a two-dimensional distribution in the horizontal direction. By overlapping the thermal image and object image, a heating-generating object can be detected at high precision.

As the ultrasonic sensor 5, meanwhile, either a same ultrasonic vibrator may be used in the wave transmitting unit and wave receiving unit as in this embodiment, or separate ultrasonic vibrators may be used.

(Embodiment 2)

Fig. 3 shows a schematic structure of a second embodiment of the invention, and Fig. 4 is a block diagram of its drive and signal processing circuit.

In an infrared ray sensor unit 9, a pyroelectric type infrared ray sensor 1 is an array sensor having a plurality of (for example, N) infrared receptors disposed in a line in the vertical direction. This infrared ray sensor 1 and an infrared ray lens 2 disposed at the front side of the array sensor for focusing the infrared ray into the infrared ray sensor 1 are integrated into one body, and fixed. A cylindrical chopper 4 is provided at the front side of the lens 2 for intermittently shutting off the infrared ray entering the lens 2. The chopper 4 is connected mechanically to chopper rotary means 10, and rotates at a constant speed. Reference numeral 8 is a chopping detector composed of photo interrupter and others. The infrared ray sensor unit 9 and ultrasonic sensor 5 are integrated, and mounted on sensor rotary means 11, so as to be free to rotate and scan in the horizontal direction. A control device 7 rotates and scans the sensors, and processes signals from the sensors.

The chopper rotary means 10 is started by a signal from the control device 7 through a motor drive circuit (1) 23, and measurement is started. The chopping speed is driven, for example, at 1 to 100 Hz. The chopping detector 8 senses the open/closed state of the chopper 4, and sends a low/high signal to the control device 7.

The control device 7 receives the low/high signal from the chopping detector 8, and drives sensor rotary means 11 through motor drive circuit (2) 24. The sensor rotary means 11 rotates the integrated sensor in steps in synchronism with open/close rotation of the chopper 4 in a specific period, at the timing shown in Fig. 5. That is, the infrared ray sensor 1 and ultrasonic sensor 5 instantly rotate horizontally in a step from start position to ql degrees, simultaneously with opening of the chopper, and stop once. At this time, by the cylindrical chopper 4, open/close chopping is done once. Consequently, the thermal image (for example, N*l) in the direction of ql degrees from the start position to which the infrared ray sensor 1 confronts is measured through a signal processing circuit 21, and the information is transmitted to the CPU 26. At the same time, the ultrasonic sensor 5 immediately operates, and transmits ultrasonic waves in the direction of ql degrees, and receives reflected waves, thereby measuring the echo data in the direction of ql degrees, and the result of measurement is transferred to a CPU 26 through a signal processing circuit 22.

By repeating this operation m times, measurement is done in a range of ql*m degrees in the horizontal direction, and by processing the measured data in the CPU 26, the object can be detected by two-dimensional thermal image and ultrasonic waves. Supposing the horizontal rotary scanning angle to be 120 degrees, in the case of ql = 1.5 degrees, it follows that m = 80, and when the chopping speed is, for example, 10 to 100 Hz, N*80 pixels of thermal image and object image are obtained in 8 to 0.8 seconds. The obtained thermal image is a two-dimensional temperature distribution in the vertical direction as seen from the infrared ray sensor 1, and the object image by the ultrasonic echo is a two-dimensional distribution in the horizontal direction. The thermal image and object image are data of which pixels are in the same direction, and can be easily compared. Therefore, by overlapping them, a heat-generating object can be detected precisely. After completing measurement in the final confronting direction, by rotating the motor reversely in a stroke, it is returned to the initial confronting direction, thereby making it possible to measure repeatedly.

Fig. 6 shows a mode of measurement. In the room shown in Fig. 6, a closet 33 and a sofa 32 are installed, and a sensor unit 31 of the warm object detecting apparatus of the invention is mounted on the wall. Suppose the condition in which the sunlight enters from outside and the sofa 32 in the room is warmed.

First, by the ultrasonic sensor 5, the echo pattern of a deserted room is measured. Then a man carrying a baggage enters the room, and the sensors are actuated, thereby measuring a two-dimensional thermal image by the infrared ray sensor 1 and an object echo pattern by the ultrasonic sensor 5. The echo pattern extracts a newly entering object image by the difference from the echo pattern in the initial state measured in advance. Therefore, the closet 33 and sofa 32 are not issued as object image because they exist from the beginning. The result is shown in Fig. 7 together with the thermal image. The solid black portion indicates the thermal image, and the shaded area is the echo pattern. The thermal image is recognized near the position of the man 34 and the sofa 32, and the position of the man 34 and the position of the baggage 36 are recognized in the echo pattern.

When detecting the invading man 34, when judged by the thermal image only, it is judged that two people are present at the position of the actual man 34 and at the position of the sofa 32, or when judged by the data of the ultrasonic sensor 5 only, invading objects are recognized at the position of the actual man 34 and at the position of the baggage 36, and hence it is also judged that two people are newly present. However, by overlapping the thermal image and object detection, supposing what is overlapped with the thermal image by a newly invading object to be a human body, one human body was judged, and the human body was detected at high precision.

When there are plural human bodies, if there is a man nearby or if there are plural people in one remote place, it is difficult to judge by one measured temperature distribution, but it was possible to judge empirically by the time-course changes of the take-in temperature distribution. It was moreover possible to judge further precisely by introducing the fuzzy stochastics using membership function in judgement.

(Embodiment 3)

A third embodiment is shown in Fig. 8, in which (a) is a plan view, and (2) is a front view. An infrared ray sensor 1 and an ultrasonic sensor 5 are rotated and scanned through a belt 42 for rotation by one stepping motor 41. As the means of transmitting rotations of the stepping motor 41, a gear mechanism may be used aside from the belt 42 for rotation. In this constitution, the apparatus can be reduced in thickness.

(Embodiment 4)

A fourth embodiment is shown in Fig. 9, in which (a) is a plan view, and (b) is a front view. On sensor rotary means 11 using a stepping motor, infrared ray detecting means composed of a pyroelectric element fixing unit 61 fixing a pyroelectric element, an infrared ray lens 2, and a chopper 4, and an ultrasonic sensor 5 composed of an ultrasonic detecting unit 51 and a horn 52 are mounted, and are rotated and scanned. The ultrasonic detecting unit 51 has a function of both transmitter and receiver. In this case, the stepping motor may be directly connected mechanically to the rotary means, or it may be driven indirectly by using a belt for rotation as means for transmitting rotations. In such constitution, the apparatus can be reduced in thickness.

(Embodiment 5)

A fifth embodiment is shown in Fig. 10, in which (a) is a plan view, and (b) is a front view. On sensor rotary means 11 using a stepping motor, infrared ray detecting means composed of a pyroelectric element fixing unit 61 fixing a pyroelectric element, an infrared ray lens 2, and a chopper 4, and object recognizing means are mounted side by side, and the infrared ray detecting means and object recognizing means are rotated and scanned. The object recognizing means is composed of an ultrasonic wave transmitting unit 53 and a horn 52 for transmitting ultrasonic waves, and an ultrasonic wave receiving unit 54 and a horn 52 for receiving the transmitted ultrasonic waves. The stepping motor may be directly connected mechanically to the rotary means, or it may be driven indirectly by using a belt for rotation as means for transmitting rotations. In such constitution, the apparatus can be reduced in thickness.

(Embodiment 6)

The sensors in embodiment 3 were mounted on a television set, and it was attempted to measure intermittently, that is, when the television is in ON state. By comparison between the signal from the ultrasonic sensor in each measurement, and the two-dimensional background object position information in a deserted room with a television set (for example, in the midnight) recorded previously, a new object is detected. Furthermore, by comparing and processing the detected new object and the two-dimensional thermal image by the signal from the infrared ray detecting means, a new warm object is detected. That is, by the signal from the infrared detecting means, a two-dimensional thermal image is created, and by the signal from the object recognizing means, a two-dimensional object position image is created. By overlapping the created two-dimensional thermal image and object position image, and judging the warm object as a human body, the number of people actually watching the television could be accurately detected.


Anspruch[de]
  1. Vorrichtung zur Erkennung eines warmen Objektes mit einem Mittel zur Erkennung von Infrarotstrahlung, das einen Infrarotstrahlungssensor (1) des pyroelektrischen Typs hat, einem Rotationsmittel (3) für einen Infrarotstrahlungssensor zur Rotation der Konfrontationsrichtung des Infrarotstrahlungssensors (1), einem Mittel zur Objekterkennung, welches einen Ultraschallsensor (5) zur Übertragung von Ultraschallwellen und zum Empfang von reflektierten Wellen verwendet, einem Rotationsmittel (6) für einen Ultraschallsensor zur Rotation der Konfrontationsrichtung des Ultraschallsensors (5) und einem Mittel (7) zum Vergleichen und Verarbeiten der Signale von dem Mittel zur Erkennung der Infrarotstrahlen und dem Mittel zur Objekterkennung,

    dadurch gekennzeichnet, dass

    der Infrarotstrahlungssensor (1) mehrere Detektionseinheiten umfasst, die in einem Array angeordnet sind, dass eine Infrarotstrahlungsfokussierungslinse (2) zur Fokussierung der Infrarotstrahlen, die auf den Infrarotstrahlungssensor (1) einfallen, und ein Zerhackungsmittel (4) zum intermittierenden Unterbrechen der Infrarotstrahlen vorhanden sind, dass das Mittel zur Erkennung der Infrarotstrahlen eine zweidimensionale thermische Bildinformation erkennt durch Verwendung des Rotationsmittels (3) für einen Infrarotstrahlungssensor zur kontinuierlichen Rotation der Konfrontationsrichtung des Infrarotstrahlungssensors (1), und dass das Mittel zur Objekterkennung eine zweidimensionale Objektinformation erkennt durch Verwendung des Rotationsmittels (6) für einen Ultraschallsensor zur kontinuierlichen Rotation der Konfrontationsrichtung des Ultraschallsensors (5).
  2. Vorrichtung zur Erkennung eines warmen Objektes gemäß Anspruch 1,

    dadurch gekennzeichnet, dass

    das Rotationsmittel (3) für einen Infrarotstrahlungssensor und das Rotationsmittel (6) für einen Ultraschallsensor in einer spezifischen Periode mit dem Zerhackungsmittel (4) synchronisiert ist, und ein Öffnen-Schließen Zerhacken zumindest mehrmals ausgeführt wird, jedesmal, wenn die Sensorkonfrontationsflächen eine schrittweise Rotation durchführen.
  3. Vorrichtung zur Erkennung eines warmen Objektes gemäß Anspruch 1,

    dadurch gekennzeichnet, dass

    das Rotationsmittel (3) für einen Infrarotstrahlungssensor und das Rotationsmittel (6) für einen Ultraschallsensor gemeinsam benutzt werden und ein Schrittmotor (41) verwendet wird zum Antreiben der Rotationsmittel (3, 6).
  4. Vorrichtung zur Erkennung eines warmen Objektes gemäß Anspruch 2,

    dadurch gekennzeichnet, dass

    der Betrieb des Zerhackungsmittels (4) und jedes Sensorrotationsmittels (3, 6) durch ein Signal von einem extemen Regelmittel (7) kontrolliert ist.
  5. Vorrichtung zur Erkennung eines warmen Objektes gemäß Anspruch 2,

    dadurch gekennzeichnet, dass

    ein Zerhackungssignaldetektor (8) zum Erkennen des Antriebszustandes des Zerhakkungsmittels (4) vorhanden ist und ein Schrittmotor (41) durch ein Signal angetrieben wird, das ausgelöst wird, nachdem zumindest ein Signal von dem Zerhackungssignaldetektor 8 bereitgestellt wird, wodurch der Infrarotstrahlungsarraysensor (1) und der Ultraschallsensor (5) angetrieben sind.
  6. Vorrichtung zur Erkennung eines warmen Objektes gemäß Anspruch 3,

    dadurch gekennzeichnet, dass

    das Mittel zur Erkennung der Infrarotstrahlen neben dem Ultraschallsensor (5) bereitgestellt ist und ihre Konfrontationsrichtung wie für einen Körper rotiert wird.
  7. Vorrichtung zur Erkennung eines warmen Objektes gemäß Anspruch 3,

    dadurch gekennzeichnet, dass

    der Ultraschallsensor (5) aus einer Übertragungseinheit (53) zur Übertragung von Ultraschallwellen und einer Empfangseinheit (54) zum Empfangen von reflektierten Wellen zusammengesetzt ist und das Mittel zum Erkennen der Infrarotstrahlen zwischen der Übertragungseinheit (53) und der Empfangseinheit (54) angeordnet ist.
  8. Vorrichtung zur Erkennung eines warmen Objektes gemäß Anspruch 1,

    dadurch gekennzeichnet, dass

    das Rotationsmittel (3) für einen Infrarotstrahlungssensor und das Rotationsmittel (6) für einen Ultraschallsensor mechanisch mit einem Schrittmotor (41) über einen Rotationsgurt (42) verbunden sind, wodurch sie synchron rotiert und schrittweise bewegt werden.
  9. Verfahren zur Erkennung eines warmen Objektes zur Beurteilung eines warmen Objektes durch
    • Beurteilen eines thermischen Bildes von Signalen von einem Mittel zur Erkennung von Infrarotstrahlen, das ein Infrarotstrahlungssensorarray (1) umfasst, bei dem mehrer Detektionseinheiten in einem Array angeordnet sind, eine Infrarotstrahlungsfokussierungslinse (2) zum Fokussieren von Infrarotstrahlen, die auf den Infrarotstrahlungsarraysensor (1) einfallen, ein Zerhackungsmittel (4) zum intermittierenden Unterbrechen der Infrarotstrahlen, ein Rotationsmittel (3) für einen Infrarotstrahlungssensor zur Rotation der Konfrontationsrichtung des Infrarotstrahlungsarraysensor (1),
    • Beurteilen eines Bildes einer Objektposition durch Signale von einem Mittel zur Objekterkennung unter Verwendung eines Ultraschallsensors (5) zur Übertragung von Ultraschallwellen und zum Empfang von reflektierten Wellen, ein Rotationsmittel (6) für einen Ultraschallsensor zur Rotation der Konfrontationsrichtung des Ultraschallsensors (5) umfassend, Überlagern des thermischen Bildes und des Bildes der Objektposition,
    • wobei das Mittel zur Erkennung der Infrarotstrahlen eine zweidimensionale thermische Bildinformation detektiert durch Verwendung des Rotationsmittels (3) für einen Infrarotstrahlungssensor zur kontinuierlichen Rotation der Konfrontationsrichtung des Infrarotstrahlungssensors (1), und
    • wobei das Mittel zur Objekterkennung eine zweidimensionale Objektinformation detektiert durch Verwendung des Rotationsmittels (6) für einen Ultraschallsensor zur kontinuierlichen Rotation der Konfrontationsrichtung des Ultraschallsensors (5).
Anspruch[en]
  1. A warm object detecting apparatus comprising an infrared ray detecting means possessing a pyroelectric type infrared ray sensor (1), an infrared ray sensor rotary means (3) for rotating the confronting direction of the infrared ray sensor (1), an object recognizing means using an ultrasonic sensor (5) for transmitting ultrasonic waves and receiving reflected waves, an ultrasonic sensor rotary means (6) for rotating the confronting direction of the ultrasonic sensor (5) and a means (7) for comparing and processing the signals from the infrared ray detecting means and object recognizing means,

    characterized in that
    • the infrared ray sensor (1) comprises a plurality of detecting units arranged in an array and in that an infrared ray focusing lens (2) for focusing the infrared rays entering the infrared ray sensor (1) and a chopping means (4) for intermittently shutting off the infrared rays are provided, and in that
    • the infrared ray detecting means detects a two-dimensional thermal image information by using the infrared ray sensor rotary means (3) for rotating the confronting direction of the infrared ray sensor (1) continuously,
    • the object recognizing means detects a two-dimensional object information by using the ultrasonic sensor rotary means (6) for rotating the confronting direction of the ultrasonic sensor (5) continuously.
  2. A warm object detecting apparatus of claim 1, wherein

       the infrared ray sensor rotary means (3) and ultrasonic sensor rotary means (6) are synchronized with the chopping means (4) in a specific period, and open/close chopping of at least multiple times is done every time the sensor confronting surfaces make one step rotation.
  3. A warm object detecting apparatus of claim 1, wherein the infrared ray sensor rotary means (3) and ultrasonic sensor rotary means (6) are shared, and a stepping motor (41) is used in driving of the rotary means (3, 6).
  4. A warm object detecting apparatus of claim 2, wherein the operation of the chopping means (4) and each sensor rotary means (3, 6) is controlled by a signal from external control means (7).
  5. A warm object detecting apparatus of claim 2, wherein a chopping signal detector (8) for detecting the driving state of the chopping means (4) is provided, and a stepping motor (41) is driven by a signal that is triggered after at least one signal from the chopping signal detector is provided, thereby driving the infrared ray array sensor (1) and ultrasonic sensor (5).
  6. A warm object detecting apparatus of claim 3, wherein the infrared ray detecting means is provided beside the ultrasonic sensor (5), and its confronting direction is rotated as one body.
  7. A warm object detecting apparatus of claim 3, wherein the ultrasonic sensor (5) is composed of a transmitting unit (53) for transmitting ultrasonic waves and a receiving unit (54) for receiving reflected waves, and the infrared ray detecting means is disposed between the transmitting unit (53) and the receiving unit (54).
  8. A warm object detecting apparatus of claim 1, wherein the infrared ray sensor rotary means (3) and ultrasonic sensor rotary means (6) are mechanically connected to one stepping motor (41) through a rotary belt (42), thereby rotating and scanning synchronously.
  9. A warm object detecting method for judging a warm object by
    • judging a thermal image from signals from infrared ray detecting means comprising an infrared ray array sensor (1) disposing a plurality of detecting units in an array, an infrared ray focusing lens (2) for focusing infrared rays entering the infrared ray array sensor (1), chopping means (4) for intermittently shutting off the infrared rays, an infrared ray sensor rotary means (3) for rotating the confronting direction of the infrared ray array sensor (1);
    • judging an object position image by signals from object recognizing means using an ultrasonic sensor (5) for transmitting ultrasonic waves and receiving reflected waves comprising an ultrasonic sensor rotary means (6) for rotating the confronting direction of the ultrasonic sensor (5),
    • overlapping the thermal image and the object position image,
    • wherein the infrared ray detecting means detects a two-dimensional thermal image information by using the infrared ray sensor rotary means (3) for rotating the confronting direction of the infrared ray sensor (1) continuously, and
    • the object recognizing means detects a two-dimensional object information by using the ultrasonic sensor rotary means (6) for rotating the confronting direction of the ultrasonic sensor (5) continuously.
Anspruch[fr]
  1. Dispositif de détection d'objets chauds comportant des moyens de détection infrarouges possédant un capteur infrarouge du type pyroélectrique (1), des moyens de rotation de capteur infrarouge (3) pour faire tourner la direction de confrontation du capteur infrarouge (1), des moyens de reconnaissance d'objet utilisant un capteur à ultrasons (5) pour émettre des ondes ultrasonores et recevoir des ondes réfléchies, des moyens de rotation de capteur à ultrasons (6) pour faire tourner la direction de confrontation du capteur à ultrasons (5) et des moyens (7) pour comparer et traiter les signaux provenant des moyens de détection infrarouges et des moyens de reconnaissance d'objet,

       caractérisé en ce que
    • le capteur infrarouge (1) comporte une pluralité d'unités de détection agencées dans un réseau et en ce qu'une lentille de focalisation d'infrarouges (2) destinée à focaliser les infrarouges entrant dans le capteur infrarouge (1) et des moyens de découpage (4) pour interrompre de manière intermittente les infrarouges sont fournis, et en ce que
    • les moyens de détection infrarouges détectent une information d'image thermique bidimensionnelle en utilisant les moyens de rotation de capteur infrarouge (3) destinés à faire tourner en continu la direction de confrontation du capteur infrarouge (1),
    • les moyens de reconnaissance d'objet détectent une information d'objet bidimensionnelle en utilisant les moyens de rotation de capteur à ultrasons (6) destinés à faire tourner en continu la direction de confrontation du capteur à ultrasons (5).
  2. Dispositif de détection d'objets chauds selon la revendication 1, dans lequel

       les moyens de rotation de capteur infrarouge (3) et les moyens de rotation de capteur à ultrasons (6) sont synchronisés aux moyens de découpage (4) dans une période spécifique, et un découpage ouvert/fermé d'au moins plusieurs fois est effectué à chaque fois que les surfaces de confrontation du capteur font une rotation d'un pas.
  3. Dispositif de détection d'objets chauds selon la revendication 1, dans lequel les moyens de rotation de capteur infrarouge (3) et les moyens de rotation de capteur à ultrasons (6) sont partagés, et un moteur pas-à-pas (41) est utilisé pour entraîner les moyens de rotation (3, 6).
  4. Dispositif de détection d'objets chauds selon la revendication 2, dans lequel l'opération des moyens de découpage (4) et de chacun des moyens de rotation de capteur (3, 6) est commandée par un signal provenant de moyens de commande externes (7).
  5. Dispositif de détection d'objets chauds selon la revendication 2, dans lequel est agencé un détecteur de signal de découpage (8) pour détecter l'état d'entraînement des moyens de découpage (4), et un moteur pas-à-pas (41) est entraîné par un signal qui est déclenché après au moins un signal provenant du détecteur de signal de découpage, de manière à entraîner le capteur infrarouge (1) et le capteur à ultrasons (5).
  6. Dispositif de détection d'objets chauds selon la revendication 3, dans lequel les moyens de détection infrarouges sont agencés à côté du capteur à ultrasons (5), et sa direction de confrontation est tournée en un seul bloc.
  7. Dispositif de détection d'objets chauds selon la revendication 3, dans lequel le capteur à ultrasons (5) est constitué d'une unité d'émission (53) pour émettre des ondes ultrasonores et d'une unité de réception (54) pour recevoir des ondes réfléchies, et les moyens de détection infrarouges sont disposés entre l'unité d'émission (53) et l'unité de réception (54).
  8. Dispositif de détection d'objets chauds selon la revendication 1, dans lequel les moyens de rotation de capteur infrarouge (3) et les moyens de rotation de capteur à ultrasons (6) sont reliés mécaniquement à un moteur pas-à-pas (41) par l'intermédiaire d'une courroie rotative (42), de manière à effectuer une rotation et un balayage de manière synchrone.
  9. Procédé de détection d'un objet chaud pour juger un objet chaud par les étapes consistant à :
    • juger une image thermique à partir de signaux provenant de moyens de détection infrarouges comportant un capteur infrarouge en réseau (1) disposant d'une pluralité d'unités de détection en réseau, une lentille de focalisation d'infrarouges (2) pour focaliser des infrarouges entrant dans le capteur infrarouge en réseau (1), des moyens de découpage (4) pour interrompre de manière intermittente les infrarouges, des moyens de rotation de capteur infrarouge (3) pour faire tourner la direction de confrontation du capteur infrarouge en réseau (1),
    • juger une image de position d'objet par des signaux provenant de moyens de reconnaissance d'objet en utilisant un capteur à ultrasons (5) destiné à émettre des ondes ultrasonores et à recevoir des ondes réfléchies comportant des moyens de rotation de capteur à ultrasons (6) pour faire tourner la direction de confrontation du capteur à ultrasons (5),
    • superposer l'image thermique et l'image de position d'objet,
    • dans lequel les moyens de détection infrarouges détectent une information d'image thermique bidimensionnelle en utilisant les moyens de rotation de capteur infrarouge (3) destinés à faire tourner en continu la direction de confrontation du capteur infrarouge (1), et
    • les moyens de reconnaissance d'objet détectent une information d'objet bidimensionnelle en utilisant les moyens de rotation de capteur à ultrasons (6) destinés à faire tourner en continu la direction de confrontation du capteur à ultrasons (5).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com