PatentDe  


Dokumentenidentifikation EP0570444 24.02.2000
EP-Veröffentlichungsnummer 0570444
Titel FREQUENZSYNTHETISIERER
Anmelder Cambridge Silicon Radio Ltd., Cambridge, GB
Erfinder RICHARDS, John, Matthew, Highgate, London N6 4PA, GB;
COLLIER, Digby, James, Wilburton, Cambridge CB6 3PZ, GB
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69230581
Vertragsstaaten DE, FR, GB, SE
Sprache des Dokument EN
EP-Anmeldetag 04.02.1992
EP-Aktenzeichen 929041630
WO-Anmeldetag 04.02.1992
PCT-Aktenzeichen GB9200203
WO-Veröffentlichungsnummer 4218
WO-Veröffentlichungsdatum 20.08.1992
EP-Offenlegungsdatum 24.11.1993
EP date of grant 19.01.2000
Veröffentlichungstag im Patentblatt 24.02.2000
IPC-Hauptklasse G06J 1/00
IPC-Nebenklasse H03B 28/00   

Beschreibung[en]

The invention relates to a frequency synthesiser for generating a sinusoidal analogue signal, and in particular direct digital synthesisers (DDS) or numerically controlled oscillators.

JP-A-61-269405 illustrates a frequency synthesiser in which an arithmetic circuit adds a preset prescribed level value to the preceding level value negatively or positively. When the absolute value of the added result exceeds a preset maximum setting value, the level value is added in opposite direction and then the polarity of the addition is made inverse after that point of time. The time series digital data group obtained as the result of operation is converted into an analogue quantity by a digital-analogue converter in real time, the result passes through a proper filter system such as a band-pass filter to decrease or reject the odd number order harmonics and an object sinusoidal wave is obtained at an output terminal.

US-A-3763414 illustrates a reversible counter used in conjunction with a number of gates and an impedance network to develop a staircase output having a phase corresponding to the count initially registered. This output is then converted into an AC signal.

US-A-4524326 describes an electrical circuit and method for multiplying an analogue input signal by a sinusoidal function having an instantaneous phase specified by a number signalled in binary format.

A problem which can arise in conventional DDS systems is that since the output signal is quantised (it can only change amplitude at integer multiples of the clock period) it effectively comprises a true sinewave plus an error signal. For practical reasons, the DAC resolution of DDS systems is limited and the digital sinewave (which can be very finely quantised and so have very little error) is truncated. The conventional truncation process completely loses the electrical information present in the least significant bits (LSB) and introduces errors in the form of non-harmonic, spurious tones which limit the dynamic range.

In accordance with the present invention, a frequency synthesiser for generating a sinusoidal analogue signal comprises means for generating a triangular digital signal, each value of which has M bits; an adder to one input of which is fed the digital signal from the digital signal generating means; and a digital-to-analogue converter which receives the N most significant bits output by the adder and generates in response an analogue sinewave signal, wherein M-N least significant bits from the adder are fed back to be added by the adder to the next succeeding value of the digital signal.

In this new approach, the information normally lost in truncation when the digital value is fed to the DAC is retained by adding that information to the next data sample before truncation. A significant benefit is obtained from the extra information available in the LSBs and it has been found that this changes the type of error to a more acceptable form.

Preferably, the digital-to-analogue converter has a non-linear transfer function shaped such that a sinusoidal analogue signal is generated.

In this approach, a DAC with a non-linear transfer function is used. This has the advantage that a fast PROM required in other approaches is no longer needed so saving chip area and cost.

Preferably, the non-linear transfer function generates a piece-wise linear approximation to a sinewave. The piece-wise linear approximation can be analysed as the sum of triangular pulse trains. For four segments there are four equations in cos(wt) so harmonics can be cancelled up to ninth order above which they will be small. Furthermore, as a sinewave moves from the zero crossing to the peak its slew rate decreases and the accuracy required reduces. This allows the complexity of the DAC to be reduced compared to a linear DAC improving yield and reducing chip area.

Preferably, the DAC comprises a number of subsidiary DACs; and control means responsive to the DAC input signal to activate different groups of the subsidiary DACs dependent on the segment of the sinewave being generated. This has the advantage that the individual segments or pieces can be trimmed by adjusting only the reference resistors of the subsidiary DACs, which is not interactive and should be easy to do in production. Furthermore, once the segments have been trimmed, monotonicity is guaranteed. In addition, it is very simple to interconnect DACs of differing resolution which is what is required for waveform synthesis.

In the preferred example, each subsidiary DAC comprises a conventional DAC with an additional switch so that the normally dumped current can be utilised. This is particularly advantageous since only standard, binary DACs are required.

In the preferred example, the components of the frequency synthesiser according to the invention are fabricated on a single integrated circuit although this is not essential.

Some examples of frequency synthesisers according to the present invention will now be described and contrasted with known examples with reference to the accompanying drawings, in which:-

  • Figure 1 is a block diagram of a conventional direct digital synthesiser;
  • Figure 2 is a block diagram of a synthesiser according to one example of the invention;
  • Figure 3 is a block diagram of a digital triangle wave generator;
  • Figure 4 is a block diagram of the DAC shown in Figure 2;
  • Figures 5A and 5B illustrate a standard binary DAC and a modified binary DAC for use in the Figure 4 circuit;
  • Figure 6 illustrates part of a sinewave output by the DAC shown in Figure 2;
  • Figure 7 is a Fourier transform of the output from a conventional direct digital synthesiser;
  • Figure 8 illustrates an adder for insertion into the circuit shown in Figure 2; and,
  • Figure 9 is a Fourier transform of the output from the circuit of Figure 2 including the adder of Figure 8.

Figure 1 illustrates a conventional direct digital synthesiser DDS which comprises a digital triangle wave generator 1 whose output, digital triangle wave is fed to a look up table in the form of a PROM 2. The output from the PROM 2 is fed to a DAC 3 having a linear transfer function which generates an analogue sinewave 4.

Figure 2 illustrates a DDS according to one example of the invention. In this example, the digital triangle wave generator 1 is provided as before but this time the output from the generator feeds directly to a DAC 5 having a non-linear transfer function. In this context, "directly" means that no pre-shaping of the output from the generator 1 takes place before feeding to the DAC 5 although this must be understood in the context of the modification to be described below and in Figure 8 in accordance with the present invention. The output from the DAC 5 is a piece-wise linear sinewave 6.

The construction of the digital triangle wave generator 1 is conventional and is shown schematically in Figure 3. The generator essentially comprises a counter having an adder 7 whose 24 bit output is fed to a latch 8 forming a delay circuit. The output from the latch 8 is fed back to the adder 7 where it is added to a constant value. Consequently, the output from the latch 8 regularly increments by an amount corresponding to the constant value and by switching the sense of the output depending on the value of the most significant bit, a triangle wave is formed.

The construction of the DAC 5 is shown in Figure 4. This will not be explained in detail but it can be seen that the DAC 5 comprises five sets of components 9-13 corresponding to the five segments or pieces of the sinewave which are generated in a half cycle. Each set of components comprises a latch 14-18 and a DAC 19-23 respectively. The construction of each DAC 19-23 is shown generally in Figure 5B. Figure 5A illustrates a conventional binary DAC where it will be seen that provision is made to dump the so-called "idump" output to ground. In the modified DAC (Figure 5B) an additional switch is provided to enable the idump current itself to be switched to the output of the DAC.

The operation of the DAC shown in Figure 4 will now be described in connection with the first two sets of components 9, 10, the operation of the remainder of the components 11-13 being self-explanatory.

The seven MSBs from the generator 1 are fed to the DAC 5 and, as can be seen in Figure 6, since at this point 36 the curve is relatively shallow, the least significant of these bits is ignored and the next three bits D1-D3 are fed to the latch 14. The remaining three bits are fed to a NOR gate 25.

The output from the NOR gate 25 initially enables the latch 14 so that the data bits D1-D3 pass through the latch to the DAC 19. The output from the NOR gate 25 is also inverted by an inverter 26 so that the idump output is non-enabled.

Initially, the databits D1-D3 are all zero with the result that the output current i0 is zero. As the bits D1-D3 begin to increment a corresponding increase in current i0 occurs until all three bits are "1". At the next clock cycle bit D0 will change to a 1 and no different action will take place. At the next clock cycle, however, bit D4 will change state to a "1" with the result that the output from the NOR gate 25 changes to a "0" thus deactivating the latch 14 and holding the values at Q0-Q2 at "1". In addition, the idump current is activated to flow from the i0 output of the DAC 19. The analogue sinewave has thus reached the point 27 (Figure 6).

Upon the bit D4 switching to a "1" the component 10 becomes active. This is because the bit D4 is fed through an inverter 28 to a NOR gate 29 thus enabling the latch 15 while the bits D5, D6 are fed through an OR gate 30 to the idump input of the DAC 20. These two bits will remain "0" so that the idump current does not flow. Since at this part of the sinewave cycle the slope is relatively steep, the effect of the least significant bit is taken into account so that bits D0-D3 are fed to the latch 15. At the point where D4 switches to a "1" the bits D0-D3 will all be zero so that the final increment in current is due to the DAC 19 when idump is output. At the next clock cycle, D0 changes to a 1 and this is passed through the latch 15 to the DAC 20 causing its i0 output to increase above zero and hence be added to the output from the DAC 19 and so be output from the DAC 5 at the beginning of the next segment of the cycle. This then continues as before with the output current increasing until the output from DAC 20 is latched at the idump value whereupon the components 11 come into play. This continues until the input value becomes 1111111 and then the digital values will begin to decrease and the reverse operation will take place.

Figure 6 illustrates the different portions of the sinewave curve and the DACs 19-23 involved.

As will be appreciated from the previous discussion, the output from the generator 1 is truncated and this leads to significant quantisation of the finally output analogue signal. Furthermore, the digital signal provided by the generator 1 is itself quantised and if the constant value (Figure 3) is not an integer factor of the highest count value then the generator will itself exhibit a degree of jitter which should be minimised.

Figure 7 is a fast Fourier transform of the output signal from a conventional DDS such as that shown in Figure 1 and it will be seen that there are significant frequencies present on either side of the primary frequency.

To reduce this problem, it is proposed to insert an adder 31 between the generator 1 and DAC 5 (Figure 8). The input to the adder 31 is a 24 bit digital value from the generator 1 as shown at 32 while the eight MSBs shown at 33 are fed to the DAC 5. The sixteen LSBs output by the adder 31 are fed back through a delay circuit 34 to the input of the adder 31 where they are added to the corresponding sixteen LSBs of the next digital value.

Figure 9 illustrates a typical frequency plot of the output from such a modified synthesiser showing that the nature of the error has been spread into a densely sloping noise floor, increasing the dynamic range to 70dB for a similar example to that above.


Anspruch[de]
  1. Frequenzsynthesizer zum Erzeugen eines sinusförmigen Analogsignals, der Elemente (1) zum Erzeugen eines digitalen Dreieckssignals umfaßt, deren Wert jeweils M Bits beträgt; ein Addierglied (31), zu dessen einem Eingang das von einem digitalen Signalgeber (1) generierte digitale Signal (32) geführt wird; und eitlen D/A-Wandler (5), zu dem die vom Addierglied (31) ausgegebenen N höchstwertigen Bits (33) geführt werden und der in Antwort darauf ein sinusförmiges Analogsignal generiert, wobei die M-N niedrigstwertigen Bits vorn Ausgang des Addierglieds (31) rückgekoppelt werden, um vom Addierglied zum nächstfolgenden Wert des digitalen Signals (32), welches vom digitalen Signalgeber (1) generiert wurde, hinzugefügt zu werden,
  2. Frequenzsynthesizer entsprechend Anspruch 1, gekennzeichnet dadurch, daß der D/A-Wandler (5) über eine nichtlineare Transferfunktion verfügt, die so gestaltet ist, daß ein sinusförmiges Analogsignal generiert wird.
  3. Frequenzsynthesizer entsprechend Anspruch 2, gekennzeichnet dadurch, daß die Transferfunktion eine stückweise lineare Annäherung an eine Sinuswelle generiert.
  4. Frequenzsynthesizer entsprechend Anspruch 3, gekennzeichnet dadurch, daß der D/A-Wandler (5) eine bestimmte Anzahl untergeordneter D/A-Wandler (19-23) umfaßt sowie über Kontrollelemente verfügt, die auf das vom Addierglied (31) generierte digitale Signal reagieren, wodurch es in Abhängigkeit von dem jeweils generierten Abschnitt der Sinuswelle zu einer Aktivierung verschiedener Gruppen der untergeordneten Wandler (19-23) kommt.
  5. Frequenzsynthesizer entsprechend Anspruch 4, gekennzeichnet dadurch, daß mindestens einer der untergeordneten Wandler (19-23) mit einem konventionellen D/A-Wandler versehen ist, welcher über einen zusätzlichen Kontakt verfügt, so daß der normalerweise abgeleitete Strom ausgenutzt werden kann.
Anspruch[en]
  1. A frequency synthesiser for generating a sinusoidal analogue signal, the synthesiser comprising means (1) for generating a triangular digital signal, each value of which has M bits; an adder (31) to one input of which is fed the digital signal (32) from the digital signal generating means (1); and a digital-to-analogue converter (5) which receives the N most significant bits (MSBs) (33) output by the adder (31) and generates in response an analogue sinewave signal, wherein M-N least significant bits (LSBs) from the adder (31) output are fed back to be added by the adder to the next succeeding value of the digital signal (32) from the digital signal generating means (1).
  2. A frequency synthesiser according to claim 1, wherein the digital-to-analogue converter (5) has a non-linear transfer function shaped such that a sinusoidal analogue signal is generated.
  3. A frequency synthesiser according to claim 2, wherein the transfer function generates a piece-wise linear approximation to a sinewave.
  4. A frequency synthesiser according to claim 3, wherein the digital-to-analogue converter (5) comprises a number of subsidiary digital-to-analogue converters (19-23), and control means responsive to the digital signal from the adder (31) to activate different groups of the subsidiary converters (19-23) dependent upon the piece of the sinewave being generated.
  5. A frequency synthesiser according to claim 4, wherein at least one of the subsidiary converters (19-23) comprises a conventional digital-to-analogue converter with an additional switch so that the normally dumped current can be utilised.
Anspruch[fr]
  1. Synthétiseur de fréquences destiné à produire un signal analogique sinusoïdal, le synthétiseur comprenant: un moyen (1) servant à produire un signal numérique triangulaire, dont chaque valeur possède M bits; un additionneur (31) à une entrée duquel est fourni le signal numérique (32) venant du moyen générateur de signal numérique (1) ; et un convertisseur numérique-analogique (5) qui reçoit les N bits les plus significatifs (MSB) (33) délivrés par l'additionneur (31) et produit, en réponse, un signal d'onde sinusoïdale analogique, où les M-N bits les moins significatifs (LSB) venant de la sortie de l'additionneur (31) sont renvoyés en réaction pour être ajoutés par l'additionneur à la valeur successive suivante du signal numérique (32) venant du moyen générateur de signal numérique (1).
  2. Synthétiseur de fréquences selon la revendication 1, où le convertisseur numérique-analogique (5) possède une fonction de transfert non linéaire qui est conformée de façon qu'un signal analogique sinusoïdal soit produit.
  3. Synthétiseur de fréquences selon la revendication 2, où la fonction de transfert produit une approximation linéaire par morceaux pour donner une onde sinusoïdale.
  4. Synthétiseur de fréquences selon la revendication 3, où le convertisseur numérique-analogique (5) comprend un certain nombre de convertisseurs numérique-analogique auxiliaires (19-23) et un moyen de commande qui répond au signal numérique venant de l'additionneur (3) en activant des groupes différents des convertisseurs auxiliaires (19-23) en fonction du morceau de l'onde sinusoïdale en train d'être produite.
  5. Synthétiseur de fréquences selon la revendication 4, où au moins un des convertisseurs auxiliaires (19-23) comprend un convertisseur numériqueanalogique classique doté d'un commutateur supplémentaire de sorte que le courant normalement déchargé peut être utilisé.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com