PatentDe  


Dokumentenidentifikation EP0466116 26.10.2000
EP-Veröffentlichungsnummer 0466116
Titel Informationsverarbeitungsanlage mit optischer Einstellmöglichkeit der Synapsengewichts-Matrix
Anmelder Mitsubishi Denki K.K., Tokio/Tokyo, JP
Erfinder Isoda, Satoru, Amagasaki-shi, Hyogo-ken, JP;
Hanazato, Yoshio, Amagasaki-shi, Hyogo-ken, JP
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69132418
Vertragsstaaten DE, FR, GB
Sprache des Dokument EN
EP-Anmeldetag 09.07.1991
EP-Aktenzeichen 911114338
EP-Offenlegungsdatum 15.01.1992
EP date of grant 20.09.2000
Veröffentlichungstag im Patentblatt 26.10.2000
IPC-Hauptklasse G06F 15/80

Beschreibung[en]

The present invention relates to an information processing devices in which a synapse strength matrix (Tij) representing inter-neuron wiring in neural information processing can be written by rays of light from light-emitting elements formed in the device.

Fig. 1 is a diagram showing an integrated circuit in an information processing device simulating a neural circuit network which is shown, for example, on page 625 of "Science", 233, by J.J. Hopfield et al (1986). In the drawing, the reference numeral 1 indicates a unit of neurons each of which includes a resistor 2, a capacitor 3 and an amplifier 4. The reference numeral 5 indicates a Tij indicative of a level of interaction between neurons. The reference numerals 6 and 7 respectively, indicate an input line connected to the neuron 1 and an output line extending therefrom.

The operation of this integrated circuit will now be described. Information carried by an external signal is supplied, as an input to the processing device, to the neuron 1 in the form, for example, of electric current, through the input line 6. The input line 6 crosses the output line 7 of another neuron at the Tij portions 5 before the input line 6 reaches the neuron 1, the current input to the neuron 1 is affected by the output line 7. The Tij portions 5 generally consist of a fixed resistor formed within the information processing device when that device is manufactured. In the neuron 1, the resistor 2 and the capacitor 3 convert the input current value to a voltage value, which is amplified by the amplifier 4, whereby an output of firing (+V) or suppression (-V) is emitted. When the respective outputs of the neurons of the entire network have attained stability, optimum target information is obtained among these output values.

A conventional information processing device being constructed such as described above, neurons, wiring lines and Tij portions have to be previously formed in the device. As a result, the number of neurons that can be integrated in the device is limited. In addition, the value of Tij portions cannot be changed.

Document OPTIC LETTERS, vol. 14, no. 16, 15 August 1989, WASHINGTON, US, pages 844 - 846, OHTA 'GaAs / AlGa As optical synaptic interconnection device for neural networks' discloses a device for coupling neurons via a light emitting element and a photo electrical element. In D1 the output signal of one neuron generates light which in turn is received by the photo electrical element connected to the input wiring of another neuron, i.e. an opto-opto-coupling device. The coupling strength is modified by an intermediate layer between the light emitting and the photoelectric element, e.g. by its thickness, transparency, etc.

The present invention has been made with a view to solving the above problems. It is accordingly an object of the invention to provide an information processing device which is capable of enhancing the degree of integration of neurons and to allow Tij values to be rewritten with ease.

The invention relates to information processing devices as set out in independent claims 1 and 4.

In accordance with an embodiment of the invention, there is provided an information processing device comprising a semiconductor integrated circuit section simulating a neuronic function of a neural network; a photoelectric section including a heterozygous molecular film having a photoelectric function and placed between electrodes; and a light emitting section, both photoelectric and light emitting sections being provided on the integrated curcuit section; wherein Tij signals from the light emitting section can be written in the photoelectric section.

In accordance with another embodiment of the invention, there is provided an information processing device in which the photoelectric section and the light emitting section are formed in a multilayer structure on the semiconductor integrated circuit section in which neuronic circuit regions are arranged in matrix.

According to the device of the present invention, Tij portions coupling the neuronic circuit regions to each other comprise a photoelectric heterogeneous molecular film provided on the semiconductor circuit section in which neural circuit regions are provided, and electrodes formed on both sides of the molecular film. Coupling strength between the neurons is input by means of light from a matrix-like light-emitting device which comprises electrodes and a light-emitting heterozygous molecular film placed therebetween. This structure allows the coupling between the neurons to be changed. Further, in accordance with the device of the invention, the photoelectric section and the light emitting section both comprising electrodes and a heterogeneous molecular film placed therebetween may be built three-dimensionally on the semiconductor integrated circuit section, whereby the number of neurons that can be integrated per unit area can be increased substantially.

Further, in the device of the present invention, the photoelectric section may be built in a multilayer structure on the semiconductor integrated circuit in which the neuronic circuit regions are arranged in matrix, whereby the number of wiring lines for forming the Tij couplings can be reduced, thereby making it possible to increase the number of neurons that can be integrated.

  • Fig. 1 is a circuit diagram showing a conventional information processing device;
  • Figs. 2(a) and 2(b) are diagrams showing a plan view of a Tij matrix wiring pattern in an information processing device in accordance with an embodiment of the device of the present invention and a partial sectional view of the same;
  • Figs. 3(a) to 3(c) are diagrams showing a plan view of a neuron connecting pattern in an information processing device in accordance with another embodiment of the device of the present invention and partial sectional views of the same; and
  • Fig. 4 is a chart showing a voltage-current characteristic of a molecular film obtained by heterogeneous accumulation.

An embodiment of the present invention will now be described with reference to the accompanying drawings.

Fig. 2(a) is a wiring diagram showing the construction of an information processing device in accordance with an embodiment of this invention and Fig. 2(b) is a sectional view taken along the line A-A' of Fig. 2(a). The device shown includes neurons 11, a molecular film 12 having a photoelectric function, input wiring lines 13, output wiring lines 14, synaptic junction sections 16, a silicon substrate 17, an insulating film 18, electrodes 31 for light-emitting elements, a molecular film 32 having a light emitting function, a transparent electrode 33 for the light-emitting elements, a transparent insulating layer 34, and lead wires 35 for the electrodes 31.

A method of producing the device of this embodiment will be described next.

The neurons 11 which are formed as analog or digital circuits so as to simulate a neuronic operation of a living body are arranged in columns in the silicon substrate 17 using integrated circuit technologies. Then, the input wiring lines 13 are formed on one surface of the integrated circuit by vacuum evaporation of aluminum. The other surface of the integrated circuit (where no input wiring lines 13 are formed) are covered by an insulating film, such as an SiO2 film 18, thus leveling the surface of the integrated circuit. On this wafer on which the integrated circuit and the wiring lines have been formed, several layers of porphyrin derivative are deposited by the Langmuir-Blodgett method and, then, several layers of flavin derivative are deposited thereon, thereby forming the heterogeneous molecular film 12.

This molecular film 12 has a property of changing a current flowing between the electrodes in accordance with the intensity of light impinging thereto.

Then, the output wiring lines 14 are formed on the molecular film 12 by vacuum evaporation of aluminum, ITO, SnO2, etc. such that they overlap the Tij portions 16. In this process, the Tij portions 16 should be transparent so as to allow light to be transmitted to the molecular films.

Subsequently, the transparent insulating layer 34 is formed on the molecular film 12 and the output wiring lines 14 by using SiO2, a high molecular substance, etc., and, on this layer 34, the transparent electrode 33 is formed of such material as ITO, SnO2 and aluminum.

Then, an amine-type material, such as TPD [N, N'-diphenyl-N, N'-(3-methyl phenyl)-1, 1'-byphenyl-4, 4'-diamine], is deposited as a hole transporting film on the transparent electrode 33 by the cluster ion beam (ICB) method and, then, an emitter material such as anthracene is deposited on this hole transporting film by the ICB method, and, on this emitter material layer, a perylene tetracarboxylic acid derivative is deposited as an electron transporting film by the ICB method, thus forming the molecular film 32 having a light emitting function.

Finally, formed on the electron transporting film are Mg electrodes which serve as the electrodes 31. The wiring leads 35 are formed by vacuum evaporation of a metal such as aluminum and are connected to the Mg electrodes.

Next, the operation of the above device will be described. In a neural network, a signal input to a neuron is coupled to a signal output from another neuron before the input signal is supplied to that neuron. Such a coupling affects an input condition for the neuron to which the input signal is supplied. However, it does not follow that the outputs of all the neurons affect one neuron. By determining the manner in which the output of a neuron affects an input to another neuron in accordance with the information to be processed, the input information can be processed at high speed and with high efficiency. This embodiment utilizes the photoconductivity of the molecular film 12 and the light emitting function of the molecular film 32. That is, light signals from the molecular film 32 are received by the molecular film 12, and the Tij portions 16 transmit signal output from the neurons 11 based on a change in conductivity of the molecular film 12. In other words, since the output wiring lines 14 on the molecular film 12 and the input wiring lines 13 therebelow are inter-connected, by applying a light pattern on the molecular film 32 to the Tij portions 16 as a matrix signal, a high efficiency information processing as mentioned above can be realized. Further, in the Tij portions 16, currents flowing between the input wiring lines 13 and the output wiring lines 14 can be controlled in accordance with the intensity of light. That is, the resistance in the Tij portions 16 can be changed according to the intensity of light, so that, in addition to an ON/OFF digital pattern formed by the matrix section 32, changes in voltage applied between the electrodes 31 and 33 can be utilized as optical signals to be supplied to the Tij portions 16, thereby making it possible to realize an information processing which is still more efficient than in the case where binary Tij values are used. Further, since a Tij pattern is prepared by optical writing as described above, the rewriting of Tij pattern can be achieved, thus making it possible to realize an information processing of a higher level than in the case where a Tij pattern is fixed.

By changing a Tij pattern and Tij resistance in accordance with output signals, it is also possible to impart a learning function to information processing.

Fig. 3(a) is a wiring diagrams showing an information processing device in accordance with another embodiment of the present invention, and Figs. 3(b) and 3(c) are sectional views taken along the lines A-A' and B-B' of Fig. 3(a). In the drawings, the components which are identical with or equivalent to those of Figs. 2(a) and 2(b) are referred to by the same reference numerals and a description of such components is omitted here. The device shown includes output electrodes 20, input electrodes 21, and wiring lines 22 and 23 on the first layer of molecular film 12. The wiring lines 22 are positioned above the output electrodes 20, and the wiring lines 23 are positioned above the input electrodes 21. The reference numerals 24 and 24' indicate wiring lines on the second layer of molecular film 12'; the reference numerals 25 through 28 indicate positions to be irradiated with light; and 29 indicates a neuron spaced away from the neuron 11.

Next, a method of producing the device of this embodiment will be described.

Neurons 11 and 29 which consist of analog or digital circuits formed so as to simulate a neural operation in a living body, are arranged in matrix form on one surface of a silicon substrate 17 by the integrated circuit technique. Then, by vacuum evaporation of a metal such as aluminum, the input and output electrodes 20 and 21 of the neurons are formed on the integrated circuit. The remaining portions of the surface of the integrated circuit where no electrodes are formed are covered with an insulating film such as the SiO2 film 18, thereby leveling the circuit surface. On this wafer thus formed, the first layer of molecular film 12 having heterojunction is formed by the Langmuir-Blodgett method in the same manner as in the embodiment shown in Figs. 2(a) and 2(b). Semitransparent aluminum wiring lines 22 and 23 are formed on this first layer of molecular film 12 such as to respectively extend just above the output electrodes 20 and the input electrodes 21 of the neurons 11 aligned in lateral rows. Afterwards, the second layer of molecular film 12' is formed in the same manner as the first layer of molecular film 12. Then, semiconductor aluminum electrodes 24 and 24' are formed, two for each neuron, on the second layer of molecular film 12' such as to extend above the neurons 11 aligned in longitudinal rows but not to overlap the output and input electrodes 20 and 21 of these neurons. The elements of the light-emitting sections 31 through 35 are formed in the same manner as in the case of the device shown in Figs. 2(a) and 2(b).

Next, the operation of the above device will be described. For example, the output of the neuron 11 in the upper left corner and the input of the neuron 29 in the right bottom corner of Fig. 3(a) are interconnected in the following manner. A plurality of rays of light irradiate those sections of the device shown in Fig. 3(a) where neuron electrodes and wiring lines cross each other. When, for example, an intersection point 25 of the output electrode 20 of the upper left neuron 11 and one of the wiring lines 22 formed on the first layer of molecular film 12, this output electrode 20 and this wiring line 22 are electrically interconnected, thus transferring an electrical signal on the output electrode 20 to the wiring line 22. Then, when an intersection point 26 of the wiring line 22 and one of the wiring lines 24 formed on the second layer of molecular film 12' is irradiated with light, the above wiring line 22 and this wiring line 24 are electrically interconnected, thus transferring the electrical signal on the output electrode 20 of the neuron 11 to the wiring line 24. When an intersection point 27 of the wiring line 24 and the wiring line 23 which is on the first film layer of molecular 12 and extends above the input electrode 21 of the neuron 29 is irradiated with light, the wiring line 24 and this wiring line 23 are electrically interconnected, thereby transferring the electrical signal from the output electrode 20 of the neuron 11 to this wiring line 23. Finally, when an intersection point 28 of the wiring line 23 and the input electrode 21 of the neuron 29 is irradiated with light, the wiring line 23 and this input electrode 21 are electrically interconnected, thus allowing the electrical signal from the output electrode 20 of the neuron 11 to be transferred to the input electrode 21 of the neuron 29.

Thus, by simultaneously irradiating the four points of intersection 25, 26, 27 and 28 with light, the output of the neuron 11 can be coupled to the input of the neuron 29. Such a coupling relationship can be applied to other neurons, thus making it possible to express all the input/output couplings between the neurons.

Fig. 4 is a characteristic chart showing an example of the photoconductivity of the molecular film 12 and 12'.

Thus, an information processing device of this invention comprises a semiconductor integrated circuit section simulating a neural function of a neural network, and a molecular film device provided on the integrated circuit section and having a photoelectric function, Tij portions of a plurality of neural circuit regions provided on the integrated circuit section being written by light. Due to this construction, the writing of the Tij matrix can be performed arbitrarily, and the number of wiring lines can be reduced. Accordingly, an information processing device can be obtained which performs information processing with high efficiency and provides a high level of integration of neurons.


Anspruch[de]
  1. Informationsverarbeitungsvorrichtung mit neuronalen Netzwerkfunktionen zur Durchführung der Informationsverarbeitung, welche aufweist:
    • einen integrierten Halbleiterschaltungsabschnitt enthaltend mehrere neuronale Schaltungsbereiche (11) mit einer neuronalen Funktion,
    • mehrere Eingangsverdrahtungsleitungen (13) der mehreren neuronalen Schaltungsbereiche (11),
    • mehrere Ausgangsverdrahtungsleitungen (14) der mehreren neuronalen Schaltungsbereiche (11), wobei die Eingangsverdrahtungsleitungen (13) und die Ausgangsverdrahtungsleitungen (14) mehrere von X synaptischen Verbindungsabschnitten (16) an ihren Kreuzungspunkten bilden,
    • einen ersten molekularen Film (12), der zwischen den Eingangsverdrahtungsleitungen (13) und den Ausgangsverdrahtungsleitungen (14) vorgesehen ist und mehrere von X Eingangselementen mit einer fotoelektrischen Funktion enthält, und
    • einen zweiten molekularen Film (32) enthaltend mehrere von X Signalausgangselementen mit einer Lichtemissionsfunktion;

      dadurch gekennzeichnet,

      daß

      die X Signalausgangselemente X Signale als Matrixlicht-Emissionsmuster zu den X Eingangselementen des ersten molekularen Films (12) ausgeben, wodurch optisch Kopplungsstärkepegel der synaptischen Verbindungsabschnitte (16) zwischen neuronalen Schaltungsbereichen (11) zu den X Eingangselementen durch die X Signalausgangselemente geschrieben werden, um eine Kopplung zwischen den mehreren neuronalen Schaltungsbereichen (11) entsprechend den zu den X-Eingangselementen geschriebenen Kopplungsstärkepegeln zu realisieren.
  2. Visuelle Informationsverarbeitungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zumindest einer der molekularen Filme ein organisches Material aufweist.
  3. Visuelle Informationsverarbeitungsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der erste molekulare Film eine erste Schicht enthaltend Porphyrinderivate und eine zweite Schicht enthaltend Flavinderivate aufweist.
  4. Informationsverarbeitungsvorrichtung, welche aufweist:
    • einen integrierten Halbleiterschaltungsabschnitt enthaltend N x M neuronale Schaltungsbereiche (11), die in einer NxM-Matrix angeordnet sind;
    • einen ersten molekularen Film (12), der auf dem integrierten Halbleiterschaltungsabschnitt vorgesehen ist und eine fotoelektrische Funktion besitzt;
    • 2N erste transparente oder halbtransparente Verdrahtungsleitungen (22, 23), die so angeordnet sind, daß sie sich in einer ersten Richtung auf dem ersten molekularen Film (12) in der Weise erstrecken, daß sie sich oberhalb der Ausgangselektroden (20) und der Eingangselektroden (21) von M neuronalen Schaltungsbereichen (11) erstrecken;
    • einen zweiten molekularen Film (12'), der auf dem ersten molekularen Film (12) vorgesehen ist und eine fotoelektrische Funktion besitzt;
    • 2M zweite transparente oder semitransparente Verdrahtungsleitung (24, 24'), die so angeordnet sind, daß sie sich in einer zweiten Richtung auf dem zweiten molekularen Film (12') derart erstrecken, daß sich zwei benachbarte von ihnen über N neuronalen Schaltungsbereichen (11) erstrecken, ohne sich über die Ausgangs- (20) und Eingangselektroden (21) dieser neuronalen Schaltungsbereiche (11) zu erstrecken;
    • eine transparente Isolierschicht (34), die auf dem zweiten molekularen Film (12') und den zweiten transparenten oder semitransparenten Verdrahtungsleitungen (24, 24') vorgesehen ist;
    • eine auf der transparenten Isolierschicht (34) vorgesehene transparente Elektrode (33);einen dritten molekularen Film (34), der auf der transparenten Elektrode (33) vorgesehen ist und eine Lichtemissionsfunktion besitzt; 4xMxN Elektroden (31), die auf dem dritten molekularen Film (32) an Schnittpunkten der Ausgangs- (20) und Eingangselektroden (21) der neuronalen Schaltungsbereiche (11) und der ersten transparenten oder semitransparenten Verdrahtungsleitungen (22, 23) und an Schnittpunkten der ersten transparenten oder semitransparenten Verdrahtungsleitungen (22, 23) und der zweiten transparenten oder semitransparenten Verdrahtungsleitungen (24, 24') vorgesehen sind; und
    • Leitungsdrähte (34), die mit den Elektroden verbunden sind;

      worin Licht von dem dritten molekularen Film (32) die Schnittpunkte der Ausgangs- (20) oder Eingangselektroden (21) der neuronalen Schaltungsbereiche (11) und der ersten transparenten oder semitransparenten Verdrahtungsleitungen (22, 23) und die Schnittpunkte der ersten transparenten oder semitransparenten Verdrahtungsleitungen (22, 23 und der zweiten transparenten oder semitransparenten Verdrahtungsleitungen (24, 24') bestrahlt, wodurch eine Kopplungsstärke zwischen dem N x M neuronalen Schaltungsbereich (11) entsprechend der Bestrahlung verändert werden kann.
  5. Visuelle Informationsverarbeitungsvorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß zumindest einer der molekularen Filme ein organischen Material aufweist.
  6. Visuelle Informationsverarbeitungsvorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der erste und/oder zweite molekulare Film eine erste Schicht enthaltend Porphyrinderivate und eine zweite Schicht enthaltend Flavinderivate aufweisen.
Anspruch[en]
  1. An information processing device having neural network functions for performing information processing, comprising:
    • a semiconductor integrated circuit section including a plurality of neural circuit regions (11) having a neural function,
    • a plurality of input wiring lines (13) of said plurality of neural circuit regions (11),
    • a plurality of output wiring lines (14) of said plurality of neural circuit regions (11), said input wiring lines (13) and said output wiring lines (14) forming a plurality of X synaptic junction sections (16) at their crossing-points,
    • a first (12) molecular film provided between said input wiring lines (13) and said output wiring lines (14) and including a plurality of X input elements having a photoelectric function, and
    • a second molecular film (32) including a plurality of X signal output elements having a light emitting function;

      characterized in that

      the X signal output elements output X signals as matrix light emission patterns to the X input elements of said first molecular film means (12) thereby optically writing coupling strength levels of the synaptic junction sections (16) between neural circuit regions (11) to the X input elements by the X signal output elements to realize coupling between said plurality of neural circuit regions (11) according to the coupling strength levels written to the X input elements.
  2. A visual information processing device according to claim 1,

       characterized in that at least one of the molecular films comprises organic material.
  3. A visual information processing device according to claim 1 or 2,

       characterized in that the first molecular film comprises a first layer containing porphyrin derivatives and a second layer containing flavin derivatives.
  4. An information processing device comprising
    • a semiconductor integrated circuit section including N x M neural circuit regions (11) arranged in a N x M matrix;
    • a first molecular film (12) provided on said semiconductor integrated circuit section and having a photoelectric function;
    • 2N first transparent or semitransparent wiring lines (22, 23) arranged to extend in a first direction on said first molecular film (12) such as to extend above the output electrodes (20) and the input electrodes (21) of M neural circuit regions (11);
    • a second molecular film (12') provided on said first molecular film 812) and having a photoelectric function;
    • 2M second transparent or semitransparent wiring lines (24, 24') arranged to extend in a second direction on said second molecular film (12') such that adjacent two of them extend above N neural circuit regions (11) without extending above the output (20) and input (21) electrodes of these neural circuit regions (11);
    • a transparent insulating layer (34) provided on said second molecular film (12') and said second transparent or semitransparent wiring lines (24, 24');
    • a transparent electrode (33) provided on said transparent insulating layer (34);
    • a third molecular film (32) provided on said transparent electrode (33) and having a light emitting function;
    • 4xMxN electrodes (31) provided on said third molecular film (32) at intersections of the output (20) and input (21) electrodes of said neural circuit regions (11) and said first transparent or semitransparent wiring lines (22, 23) and at intersections of said first transparent or semitransparent wiring lines (22, 23) and said second transparent or semitransparent wiring lines (24, 24'); and
    • lead wires (35) connected to said electrodes;

      wherein light from said third molecular film (32) irradiates the intersections of said output (20) or said input (21) electrodes of said neural circuit regions (11) and said first transparent or semitransparent wiring lines (22, 23) and the intersections of said first transparent or semitransparent wiring lines (22, 23) and said second transparent or semitransparent wiring lines (24, 24'), whereby a coupling strength between said N x M neural circuit regions (11) can be varied according to said irradiation.
  5. A visual information processing device according to claim 4,

       characterized in that at least one of the molecular films comprises organic material.
  6. A visual information processing device according to claim 4 or 5,

       characterized in that the first and/or second molecular film comprise a first layer containing porphyrin derivatives and a second layer containing flavin derivatives.
Anspruch[fr]
  1. Dispositif de traitement d'informations comportant des fonctions de réseau neuronal pour exécuter un traitement d'informations, comprenant :
    • une section de circuit intégré à semiconducteurs comprenant une pluralité de régions (11) de circuits neuronaux, ayant une fonction neuronale,
    • une pluralité de lignes de câblage d'entrée (13) de ladite pluralité de régions (11) de circuits neuronaux,
    • une pluralité de lignes de câblage de sortie (14) de ladite pluralité de régions (11) de circuits neuronaux, lesdites lignes de câblage d'entrée (13) et lesdites lignes de câblage de sortie (14) formant une pluralité de X sections de jonction synaptiques (16) au niveau de leurs points d'intersection,
    • un premier film moléculaire (12) prévu entre lesdites lignes de câblage d'entrée (13) et lesdites lignes de câblage de sortie (14) et comprenant une pluralité de X éléments d'entrée ayant une fonction photoélectrique, et
    • un second film moléculaire (32) comprenant une pluralité de X éléments de sortie de signaux, ayant une fonction d'émission de lumière;

      caractérisé en ce que

      les X éléments de sortie de signaux délivrent X signaux sous la forme de réseaux matriciels d'émission de lumière aux X éléments d'entrée desdits premiers moyens formant film moléculaire (12), ce qui a pour effet que des niveaux d'intensité de couplage d'écriture optique des sections de jonction synaptiques (16) entre des régions (11) de circuits neuronaux aux X éléments d'entrée par les X éléments de sortie de signaux réalisent un couplage entre ladite pluralité de régions (11) de circuits neuronaux conformément aux niveaux d'intensité de couplage écrits dans les X éléments d'entrée.
  2. Dispositif de traitement d'informations visuelles selon la revendication 1,

    caractérisé en ce qu'au moins l'un des films moléculaires comprend un matériau organique.
  3. Dispositif de traitement d'informations visuelles selon la revendication 1 ou 2,

    caractérisé en ce que ledit premier film moléculaire comprend une première couche contenant des dérivés de porphyrine et une seconde couche contenant des dérivés de flavine.
  4. Dispositif de traitement d'informations comprenant
    • une section de circuits intégrés à semiconducteurs comprenant N x M régions (11) de circuits neuronaux disposées selon une matrice N x M;
    • un premier film moléculaire (12) prévu sur ladite section de circuits intégrés à semiconducteurs et possédant une fonction photoélectrique;
    • 2N premières lignes de câblage transparentes ou semi-transparentes (22,23) agencées de manière à s'étendre dans une première direction sur ledit premier film moléculaire (12) de manière à s'étendre au-dessus des électrodes de sortie (20) et des électrodes d'entrée (21) de M régions (11) de circuits neuronaux;
    • un second film moléculaire (12') prévu sur ledit premier film moléculaire (812) et possédant une fonction photoélectrique;
    • 2M lignes de câblage transparentes ou semi-transparentes (24,24') agencées de manière à s'étendre dans une seconde direction sur ledit second film moléculaire (12') de telle sorte que deux lignes adjacentes parmi ces lignes s'étendent au-dessus de N régions (11) de circuits neuronaux sans s'étendre au-dessus des électrodes de sortie (20) et d'entrée (21) de ces régions (11) de circuits neuronaux;
    • une couche isolante transparente (34) prévue sur ledit second film moléculaire (12') et sur lesdites secondes lignes de câblage transparentes et semi-transparentes (24,24');
    • une électrode transparente (33) prévue sur ladite couche isolante transparente (34);
    • un troisième film moléculaire (32) prévu sur ladite électrode transparente (32) et possédant une fonction d'émission de lumière;
    • 4xMxN électrodes (31) prévues sur ledit troisième film moléculaire (32) au niveau d'intersections des électrodes de sortie (20) et d'entrée (21) desdites régions (11) de circuits neuronaux et desdites premières lignes de câblage transparentes ou semi-transparentes (22,23) et au niveau d'intersections desdites premières lignes de câblage transparentes ou semi-transparentes (22,23) et desdites secondes lignes de câblage transparentes ou semi-transparentes (24,24'); et
    • des fils conducteurs (35) connectés auxdites électrodes;

      dans lequel une lumière provenant dudit troisième film moléculaire (32) irradie les intersections desdites électrodes de sortie (20) ou d'entrée (21) desdites régions (11) de circuits neuronaux et desdites premières lignes de câblage transparentes ou semi-transparentes (22,23) et les intersections desdites premières lignes de câblage transparentes ou semi-transparentes (22,23) et desdites secondes lignes de câblage transparentes ou semi-transparentes (24,24'), ce qui a pour effet qu'une intensité de couplage entre lesdites N x M régions de circuits neuronaux peut varier en fonction de ladite irradiation.
  5. Dispositif de traitement d'informations visuelles selon la revendication 4,

    caractérisé en ce qu'au moins l'un des films moléculaires comprend un matériau organique.
  6. Dispositif de traitement d'informations visuelles selon la revendication 4 ou 5,

    caractérisé en ce que le premier et/ou le second film moléculaire comprennent une première couche contenant des dérivés de porphyrine et une seconde couche contenant des dérivés de flavine.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com