PatentDe  


Dokumentenidentifikation EP0681736 26.10.2000
EP-Veröffentlichungsnummer 0681736
Titel ZELLULÄRES GITTER FÜR RÖNTGENSTRAHLEN
Anmelder Sokolov, Oleg, Danbury, Conn., US
Erfinder Sokolov, Oleg, Danbury, Conn., US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69425957
Vertragsstaaten DE, FR, IT, NL
Sprache des Dokument EN
EP-Anmeldetag 26.01.1994
EP-Aktenzeichen 949073837
WO-Anmeldetag 26.01.1994
PCT-Aktenzeichen US9401111
WO-Veröffentlichungsnummer 9417533
WO-Veröffentlichungsdatum 04.08.1994
EP-Offenlegungsdatum 15.11.1995
EP date of grant 20.09.2000
Veröffentlichungstag im Patentblatt 26.10.2000
IPC-Hauptklasse G21K 1/00

Beschreibung[en]
Technical Field

The present invention relates to cellular X-ray grids which are used in medical X-ray technique. More particularly, it relates to a cellular X-ray grid which can be utilised during examinations conductive with X-rays in medicine as well as in other areas.

Background Art

X-ray grids are known in which a lattice is composed of light-sensitive glass with a plurality of cells separated from one another by specially oriented partitions. Such a cellular X-ray grid is disclosed for example in the Soviet Inventor's Certificate No. 441019. The known grids possess several disadvantages. First of all, the partitions in the known grid are covered with an X-ray non-transmitting layer only over their side surfaces and not coated at their end surfaces. As a result, a certain part of dispersed radiation can be transmitted through the non-protected end sides of the partitions. This somewhat reduces the informative quality of the X-ray sensitive image carriers. Other ways in which the informative quality of the X-ray sensitive image carriers is reduced via the so-called "Compton effect" which results from the secondary radiation of the object being radiographed. Attempts to overcome this problem have been through the use of so-called "secondary diaphragms" and have achieved some degree of success (see US patent 2,824,970 and DE 3 507 340). The cells in the known X-ray grid are filled with a structural material or air which also absorbs a part of the information within long-wave part of the exposing radiation which passes through the grid since a substantial percentage of the long-wave radiation is absorbed. As a result the informative quality of the grid about pathologies which are faintly distinguishable as to their density and sizes is reduced. The orientation of the cells in the known X-ray grid do not provide erasing of the image of the cells on the X-ray sensitive image carrier, which also can lead, to reduction of informative capacity of the X-ray sensitive image carriers. Finally, the end surfaces of the grid are not protected from mechanical actions, such as bending or impact.

It has been proposed to erase the images of the cells on an X-ray sensitive image carrier by moving the X-ray grid in directions selected at a certain angle to the side of the grid, as disclosed for example in Acta Radiologica, Suppl. 120 (1955) from page 85 to the end, in which so-called Mattson formulas are presented to determine the angle of movement of the X-ray grid. While this solution provides the erasure of the image of the cells on the X-ray sensitive image carrier, it is very complicated to move the X-ray grid not rectilinearly but instead at certain angles to its size.

Disclosure of Invention

Accordingly, it is an object of the present invention to provide a cellular X-ray grid, which avoids the disadvantages of the prior art.

More particularly, it is an object of the present invention to provide a cellular X-ray grid as claimed in claim 1.

In keeping with these objects and with others which will become apparent hereinafter, one feature of the present invention resides, briefly stated, in a cellular X-ray grid in which an X-ray absorbing material covers not only the side surfaces of the partitions facing the cells, but also the end surfaces of the partitions so as to form a one-piece X-ray absorbing layer covering all surfaces of the partitions. As a result no scattered radiation is transmitted through the end surfaces of the partitions.

In accordance with a further feature of the present invention, the x-ray-absorbing layer covers also all surfaces of a peripheral portion of the x-ray grid, which forms actually a peripheral frame for the grid. The x-ray absorbing layer therefore covers all surfaces of the partitions and all surfaces of the peripheral portion so as to form a one-piece uninterrupted layer.

In accordance with another feature of the present invention, the end surfaces of the grid are protected by thin x-ray transmitting plates which are connected to the end surfaces of the grid and more particularly to the end surfaces of the x-ray absorbing layer which covers the end surfaces of the partitions and the peripheral portion of the grid. In this construction the impact strength of the grid is substantially increased.

In accordance with a further feature of the present invention, the cells are filled with a gas other than air, for example a gas which is more x-ray transparent than air (such as hydrogen). This gas allows passage to an x-ray radiation recipient (for example x-ray film) of a longer-wave component than that allowed by air.

In accordance with still another feature of the present invention the cells are vacuumed and in this case even a longer-wave component can pass through the cells. As a result, the receiving carriers receive information about substantially less detectable pathological changes of an object under examination. Earlier and more accurate diagnostics of the pathologies is possible.

In accordance with a further feature of the present invention, the cells or more particularly their sides are inclined relative to the direction of movement of the x-ray grid at such an angle that the image of the cells on the x-ray sensitive image carrier during exposing and movement of the grid is completely erased. In this construction, similarly to the proposal of Mattson, the erasure of the image of the cell partitions is obtained; In this way, it is no longer necessary to move the grid not rectilinearly but instead at certain angles. In accordance with the present invention, the grid is moved rectilinearly and the cells in the grid are inclined at certain angles, thus ensuring the eraisure of the image of the cells.

The novel features which are considered as characteristic for the invention are set forth in particular in the appended claims, The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.

Brief Description of the Drawings

  • FIG. 1 is a plan view of a cellular X-ray grid in accordance with the present invention;
  • FIG, 2 is a sectional view of a part of a cellular X-ray grid given as illustrative example only.
  • FIG. 3 is a sectional view of a part of the cellular X-ray grid in accordance with an embodiment of the present invention: and
  • FIG. 4 is a sectional side view of a peripheral portion in accordance with an embodiment of the present invention.

Best Mode of Carrying out the Invention

An x-ray grid in accordance with the present invention has a main body which is formed for example as a plate and identified with reference numeral 1. The main body is composed of an X-ray transmitting material, for example of photosensitive glass. The main body has two end surfaces which is an upper surface 8 and a lower surface 9 of Figs. 2-4, and a peripheral surface 10 which includes left, upper, right and lower partial surfaces of Fig. 1. A left peripheral portion 11 of the peripheral surface of the main body is also shown in Fig. 4. Peripheral surfaces 10 form the sides of grid.

The main body 1 has a plurality of cells which are identified with reference numeral 2 and extend through the main body from one end surface 8 to another end surface 9. the cells 2 are separated from one another by partitions 3. The partitions have side surfaces 12 which face toward the corresponding cells and also to end surfaces which are upper surfaces 8 and lower surfaces 9 in Fig. 2-4. The size of the cells and the partitions are determined in dependence on the predetermined number of cells/cm2.

As can be seen from Figs. 2-4, each of the partitions 3 is covered with an X-ray absorbing layer 5, for example composed of lead. The layer 5 has a thickness which provides complete absorption of scattered radiation which impinges on it. The layer 5 covers all surfaces of each partition, in particular in Figs. 2-4 both side surfaces 12 of each partition which face toward the adjacent cells, and both end surfaces of each partition which are the upper surface 8 and the lower surface 9 of the partition in these figures. The X-ray absorbing layer is formed as a one-piece uninterrupted layer. Fig. 4 at the left end side shows a peripheral portion 11 of the main body 1 which does not form partitions, but instead forms a peripheral frame 4 of the main body. As can be seen from this figure, the peripheral portion of the main body is also covered with the X-ray absorbing layer 5 which covers all surfaces of the peripheral portion 11. In particular, the X-ray absorbing layer 5 surrounds the peripheral surface 10 which faces outwardly of the main body as side part of frame identified with numeral 4, the inner surface 14 which faces the cells located the closest to the periphery of the main body, and both end surfaces or in other words the upper and the lower surface in FIG. 4 of the peripheral portion of the main body and together form a one-piece uninterrupted layer.

Plates or covers 6 and 7 are arranged at both end sides of the main body 1 or in other words on the upper side and on the lower side of the main body as shown in FIGS. 2 - 4. The covers 6 and 7 are fixedly connected with the x-ray absorbing layer 5 applied on the end surfaces of the partitions 3 and the end surfaces of the peripheral portion of the main body (or in other words the upper and the lower surfaces in FIGS. 2 - 4), for example by adhesive. The plates 6 and 7 are transmitting for long wave component of the exposing x-ray radiation and at the same time protect the grid from mechanical loads.

Each cell of the grid is filled with gas which is different from air or is vacuumed.

The cells are oriented in a special manner relative to the sides of the main body or in particular relative to one of the longitudinal sides, when the main body may have a rectangular shape on the plan view. In particular, on the plan view two opposite sides of each cell which extend parallel to one another extend at an angle α different from 0° and 90° to one longitudinal side which is the lower side in FIG. 1. The angle α is selected so that during exposing an x-ray sensitive image carrier for example an x-ray film through the x-ray grid of the present invention, the movement of the x-ray grid in a direction along the above mentioned longitudinal side of the grid, the images of the cells including the tracks of their movement on an x-ray sensitive image carrier is erased. The angle α may be selected as follows: tg α1 = l/3l + 3i;   tg α2 = l/2l + 2i; tg a3 = l/l + i;   tg α4 = 2l + i/l + i; tg α5 = 3l + 2i/l + i;   tg α6 = 2l + i/2l + 2i; tg α7 = l + l/3l + 2i;   tg α8 = l + i/2l + i; tg α9 = l + i/l;   tg α10 = 2l + 2i/l; tg α11 = 3l + 3i/l;   tg α12 = 2l + 2i/2l + i wherein l is a thickness of each of the partitions in a direction perpendicular to parallel sides of neighboring ones of the cells 2 , and i is a length of the side of each of the cells 2.

FIG. 2 shows a so-called parallel grid in which the axes of the cells extend perpendicular to the plane of the grid or in other words perpendicular to the end surfaces of the grid. In contrast, FIG. 3 shows the cells of a so-called focused grid, in which the axes of the cells are inclined relative to the line extending through the focal point of an X-ray radiation source and perpendicular to the end surfaces of the grid.

While the invention has been illustrated and described as embodied in cellular X-ray grid, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the wording of the following claims.


Anspruch[de]
  1. Zellulares Röntgengitter, umfassend einen Hauptkörper (1), der eine obere Endfläche (8) und eine untere Endfläche (9) hat, wobei der Hauptkörper (1) ausgestattet ist mit einer Vielzahl von durchgängigen Zellen (2), die sich zwischen den Endflächen erstrecken, wobei die Zellen getrennt sind durch eine Vielzahl von röntgenstrahlabsorbierenden Abtrennungen (3), die jeweils Seitenflächen (12) haben, welche einer jeweiligen Zelle (2) gegenüberstehen; wobei jede Abtrennung zwei entgegengesetzte Endflächen hat, eine obere Endfläche als Teil der oberen Fläche des Hauptkörpers und eine untere Endfläche als Teil der unteren Fläche des Hauptkörpers, dadurch gekennzeichnet, dass das zellulare Gitter ein punktfokussiertes Flachgitter ist und Seiten der Zellen entlang einer Ansicht von jeder der Endoberflächen relativ zu einer Bewegungsrichtung (m-m) des Gitters geneigt sind, mit einem Winkel (α), so dass ein Bild der Zellen (2) auf einem Röntgenbildträger während der Belichtung durch das Röntgenstrahlgitter vollkommen ausgelöscht wird, wenn das Gitter in eine Richtung m-m bewegt wird.
  2. Zellulares Röntgenstrahlgitter nach Anspruch 1, dadurch gekennzeichnet, dass der Neigungswinkel der Seiten der Zellen zur Richtung der Bewegung des Gitters mindestens einer der folgenden Winkel ist tanα1=l/(3l+3i)   tanα7=(l+i)/(3l+2i) tanα2=l/(2l+2i)   tanα8=(l+i)/(2l+i) tanα3=l/(l+i)   tanα9=(l+i)/l tanα4=(2l+i)/(l+i)   tanα10=(2l+2i)/l tanα5=(3l+2i)/(l+i)   tanα11=(3l+3i)/l tanα6=(2l+i)/(2l+2i)   tanα12=(2l+2i)/(2l+i).
  3. Zellulares Röntgenstrahlgitter nach Anspruch 1, dadurch gekennzeichnet, dass der Hauptkörper (1) eine röntgenstrahlabsorbierende Schicht (5) hat, welche vollständig alle Oberflächen der Abtrennungen des Hauptkörpers bedeckt.
  4. Zellulares Röntgenstrahlgitter nach Anspruch 1, dadurch gekennzeichnet, dass das Gitter zwei Platten (6, 7) umfasst, die an entgegengesetzten Endflächen des Hauptkörpers (1) angeordnet sind und mit der röntgenstrahlabsorbierenden Schicht (5) an der oberen Fläche (8) und der unteren Fläche (9) verbunden sind, und an den Endflächen des peripheren Abschnitts (4) des Hauptkörpers (1), wobei die Platten (6, 7) aus Material bestehen, welches durchlässig ist für die langwellige Komponente der Röntgenstrahlung und den Hauptkörper (1) gegenüber Stoßbelastung schützt.
  5. Zellulares Röntgenstrahlgitter nach Anspruch 1, dadurch gekennzeichnet, dass die Zellen (2) evakuiert sind.
  6. Zellulares Röntgenstrahlgitter nach Anspruch 1, dadurch gekennzeichnet, dass die Zellen (2) mit einem anderen Gas als Luft gefüllt sind.
  7. Zellulares Röntgenstrahlgitter nach Anspruch 6, dadurch gekennzeichnet, dass die Zellen (2) mit einem Gas gefüllt sind, das röntgenstrahldurchlässiger ist als Luft.
Anspruch[en]
  1. A cellular x-ray grid comprising a main body (1) having an upper end surface (8) and a lower end surface (9), said main body (1) being provided with a plurality of throughgoing cells (2) extending between said end surfaces, said cells being separated by a plurality of X-ray absorbing partitions (3) each having side surfaces (12) facing a respective one of said cells (2); each partition having two opposite end surfaces, upper end surface as part of said upper surface of said main body and lower end surface as part of said lower surface of said main body, characterized in that said cellular grid is point focused flat grid and sides of said cells on a view from either of one of said end surfaces are inclined relative to a direction of movement (m-m) of said grid, at an angle (α) such that an image of said cells (2) on an X-ray image carrier during exposure through said X-ray grid is completely erased when grid is moved in a direction m-m.
  2. A cellular X-ray grid as defined in claim 1, characterized in that said angle of inclination of said sides of said cells to said direction of said movement of said grid is at least one of the following angles: tanα1=l/(3l+3i)   tanα7=(l+i)/(3l+2i) tanα2=l/(2l+2i)   tanα8=(l+i)/(2l+i) tanα3=l/(l+i)   tanα9=(l+i)/l tanα4=(2l+i)/(l+i)   tanα10=(2l+2i)/l tanα5=(3l+2i)/(l+i)   tanα11=(3l+3i)/l tanα6=(2l+i)/(2l+2i)   tanα12=(2l+2i)/(2l+i).
  3. A cellular X-ray grid as defined in claim 1, characterized in that said main body (1) has an X-ray absorbing layer (5) which completely covers all surfaces of all said partitions of said main body.
  4. A cellular X-ray grid as defined in claim 1, characterized in that said grid comprising two plates (6,7) arranged at opposite said end surfaces of said main body (1) and connected with said X-ray absorbing layer (5) at said upper surface (8) and said lower surface (9) and at said end surfaces of said peripheral portion (4) of said main body (1), said plates (6,7) being composed of material which is transmitting for long-wave component of X-ray radiation and protects said main body (1) from impact loads.
  5. A cellular X-ray grid as defined in claim 1, characterized in that said cells (2) are vacuumed.
  6. A cellular X-ray grid as defined in claim 1, characterized in that said cells (2) are filled with gas other than air.
  7. A cellular X-ray grid as defined in claim 6, characterized in that said cells (2) are filled with gas which is more X-ray transparent than air.
Anspruch[fr]
  1. Grille cellulaire pour rayons X comprenant un corps principal (1) comportant une surface d'extrémité supérieure (8) et une surface d'extrémité inférieure (9), ledit corps principal (1) étant muni d'une pluralité de cellules allant de bout en bout (2) s'étendant entre lesdites surfaces d'extrémité, lesdites cellules étant séparées par une pluralité de cloisons absorbant les rayons X (3), chacune comportant des surfaces latérales (12) en regard d'une cellule respective parmi lesdites cellules (2), chaque cloison comportant deux surfaces d'extrémités opposées, une surface d'extrémité supérieure en tant que partie de ladite surface supérieure dudit corps principal et une surface d'extrémité inférieure en tant que partie de ladite surface inférieure dudit corps principal, caractérisée en ce que ladite grille cellulaire est une grille plate à focalisation en un point et les côtés desdites cellules sur une vue depuis l'une ou l'autre de l'une desdites surfaces d'extrémité sont inclinés par rapport à une direction de déplacement (m-m) de ladite grille, suivant un angle (α) de sorte qu'une image desdites cellules (2) sur un support d'image des rayons X durant l'exposition par l'intermédiaire de ladite grille pour rayons X est complètement effacée lorsque la grille est déplacée dans une direction m-m.
  2. Grille cellulaire pour rayons X selon la revendication 1, caractérisée en ce que ledit angle d'inclinaison desdits côtés desdites cellules vers ladite direction dudit déplacement de ladite grille est au moins l'un des angles suivants : tanα1=l/(3l+3i)   tanα7=(l+i)/(3l+2i) tanα2=l/(2l+2i)   tanα8=(l+i)/(2l+i) tanα3=l/(l+i)   tanα9=(l+i)/l tanα4=(2l+i)/(l+i)   tanα10=(2l+2i)/l tanα5=(3l+2i)/(l+i)   tanα11=(3l+3i)/l tanα6=(2l+i)/(21+2i)   tanα12=(2l+2i)/(2l+i).
  3. Grille cellulaire pour rayons X selon la revendication 1, caractérisée on ce que ledit corps principal (1) comporte une couche absorbant les rayons X (5) qui recouvre complètement toutes les surfaces de toutes lesdites cloisons dudit corps principal.
  4. Grille cellulaire pour rayons X selon la revendication 1, caractérisée on ce que ladite grille comprend deux plaques (6, 7) agencées au niveau desdites surfaces d'extrémités opposées dudit corps principal (1) et reliée à ladite couche absorbant les rayons X (5) au niveau de ladite surface supérieure (8) et de ladite surface inférieure (9) et au niveau desdites surfaces d'extrémité de ladite partie périphérique (4) dudit corps principal (1), lesdites plaques (6, 7) étant composées de matériau qui transmet la composante d'onde longue de rayonnement de rayons X et protège ledit corps principal (1) des forces de chocs.
  5. Grille cellulaire pour rayons X selon la revendication 1, caractérisée en ce que lesdites cellules (2) sont sous vide.
  6. Grille cellulaire pour rayons X selon la revendication 1, caractérisée en ce que lesdites cellules (2) sont remplies d'un gaz autre que l'air.
  7. Grille cellulaire pour rayons X selon la revendication 6, caractérisée en ce que lesdites cellules (2) sont remplies d'un gaz qui est plus transparent aux rayons X que l'air.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com