PatentDe  


Dokumentenidentifikation EP0609363 15.02.2001
EP-Veröffentlichungsnummer 0609363
Titel ANTRIEB MIT ELEKTRONISCH STEUERBARER REAKTIONSEMPFINDLICHKEIT
Anmelder Immersion Corp., San Jose, Calif., US
Erfinder SCHULER, L., Chester, Sudbury, US
Vertreter Beetz und Kollegen, 80538 München
DE-Aktenzeichen 69231634
Vertragsstaaten CH, DE, FR, GB, IT, LI
Sprache des Dokument EN
EP-Anmeldetag 26.10.1992
EP-Aktenzeichen 929227346
WO-Anmeldetag 26.10.1992
PCT-Aktenzeichen US9209006
WO-Veröffentlichungsnummer 9308517
WO-Veröffentlichungsdatum 29.04.1993
EP-Offenlegungsdatum 10.08.1994
EP date of grant 10.01.2001
Veröffentlichungstag im Patentblatt 15.02.2001
IPC-Hauptklasse G05B 19/29
IPC-Nebenklasse G05B 13/00   G05B 19/10   

Beschreibung[en]

The present invention relates to an actuator having tactile feedback capabilities according to the preamble of claim 1. Such an actuator is known from GB-A-2 235 310.

In numerous contexts humans perform tasks by interacting with machines via actuators having knobs or dials. Such human interaction in many instances becomes conditioned upon the responsiveness of the actuator. The human operator interacts in accordance with tactile feedback perceived through contact with the actuator knobs or dials.

For example, in video or film editing using systems as described in U.S. Patent Nos. 4,937,685 and 4,964,004, an editor edits video image information at a console having a plurality of "control wheels" (i.e. large dials or knobs). The film or video editor controls operation of a composition system from an operator's console, as illustrated in Fig. 1, using two sets of controls, one for each hand, to control the editing process. Each control set includes a plurality of finger switches or pushbuttons 110 clustered proximate to a large rotatable control wheel 112, facilitating tactile operation with minimal hand movement. As the editor is focussing on at least one video monitor, viewing frames of visual source material during the editing function, it is generally the case that the operator will acquire a feel for the various controls and become acclimated to their functionality through tactile feedback therefrom, rather than having to look at the control wheel(s) for visual feedback. Accordingly, more efficiently human interaction with, and sensitivity to the composition system is achieved.

The control wheels 112 exhibit tactile responsiveness, such as detents or clicks, as they are rotated. Typically, a full rotation of the wheel 112 is correlated to a unit of time, such as one second, of viewing the visual source material being edited. A corresponding number of "frames" of visual source material will be viewed during such a time period, depending on the medium or type of source material being edited. It is most desirable that the number of frames of source material be correlated to the tactile responsiveness, i.e. number of clicks, of the wheel 12 during rotation. For instance, film editing involves standardized source material of which twenty-four (24) frames are provided per second. Thus, it is most desirable that in a full rotation of the wheel 112 (presenting one second of source material), the wheel respond with twenty-four (24) clicks, each click corresponding to one frame of the visual source material.

While film editing involves source material having twenty-four (24) frames per second, other video medium standards require different frame rates. The frame rate, or number of frames per second according to the National Television System Committee (NTSC) is thirty (30) frames per second, a standard promulgated for television video in the United States. Standards such as PAL and SECAM provide for a standard frame rate of twenty-five (25) frames per second in England and France respectively. New standards for high definition television specify a frame rate of thirty (30) or sixty (60) frames per second.

Differing frame rate standards relating to visual source material and the nature of mechanical detents in actuators, presents the problem that multiple actuators are required to facilitate correlation between actuator tactile responsiveness and the various visual source material standards. As illustrated in Fig. 1a, actuators known in the art for providing tactile responsiveness typically incorporate a mechanical decent mechanism. A fixed number of clicks is provided by a spring loaded friction mechanism 111 coacting with a sprocket 113 having a fixed number of cogs or detents corresponding to the desired number of clicks per revolution. Therefore, an actuator having twenty-four fixed detents is required and dedicated for a film editing context, a thirty detent actuator is required for a NTSC video editing system, a twenty five detent actuator is required in the PAL or CCAM video editing context, etc. The plurality of actuators required limits the flexibility of visual source material composition systems and significantly increases the complexity, cost and hardware requirements of a flexible system.

In addition to the lack of flexibility of use of fixed mechanical detent actuators, such actuators disadvantageously become worn and suffer tactile responsiveness degradation over time.

US-4 983 901 discloses a digital electronic foot control for medical apparatus and the like, connected to the end of a pedal shaft is a stepper motor that drives the pedal shaft in a return direction when the motor is energized. The motor may be energized at one or more preselected pedal angular positions according to the particular function to be performed.

Prior art document GB-A-2 235 310 discloses a control and display of a plurality of channels. The device includes a motorized part which is manually movable, and sensing means operable to sense the position of the manually movable motorized part and to control the rate of alternation of the said value and which further comprises means for generating and feeding to the manually movable motorized part a signal which is a function of the position of the control knob of the manually movable motorized part from a median position and which tends to exert a force thereon resisting movement of the manually movable motorized part from said median position. Therefore, a tactile indication to the user is provided of the rate at which the controlled function is being altered.

Citation EP-A-0 085 518 discloses a control apparatus. With this apparatus detents, programmed and/or external condition dependent feel forces can be generated. To this end, the device comprises an elongated box-like housing interposed between the shaft of an actuating mechanism and a fixed point. Within the housing there are contained the stator and mover of a linear stepper motor. The motor is controlled in order to provide the desired feel forces.

EP-A-0 111 992 discloses a dynamically interactive responsive control device and system. A device for information input through rotational motion has independent means for the simultaneous output of information in a form perceivable to the human tactile sense. In particular, a knob is coupled to a shaft, a tachometer and a particle brake. An associated control means receives information from the tachometer, controls the operation of the particle brake and interfaces the corresponding operations with the apparatus which is desired to be controlled thereby.

EP-A-0 349 086 discloses a control system. An electronic processing circuit compares digital signals representing the position of a number of mutually connected operating members to the contents of an electronic memory. On detecting a difference indicating the adjustment of the position of one of one operating members, the circuit actuates those motors which are associated with the non-adjusted operating members in order to make them follow the adjustment.

It is the object of the invention to provide an actuator having tactile feedback capabilities capable of flexibly and reliably providing tactile feedback over an operating range of the actuator.

This object is accomplished in accordance with the features of claim 1. Dependent claims are directed on preferred embodiments of the invention.

An actuator is attached to a motor having a position sensor which outputs position information to a controller that has access to one of a plurality of torque-position relationships. The output of the controller is a digital torque signal, in accordance with the torque-position relation information, which is converted to an analog current signal applied to the servo motor to generate torque in the servo motor. The torque presenting a tactile response to a human interacting with the actuator, is sensed as a detent or a plurality of detents.

The controller may be a microprocessor which receives position information, from the encoder, through a counter as a position count. Torque-position relation information is stored in microprocessor accessible firmware as a table containing a series of particular torque values corresponding to a series of particular position values. The torque values, output as digital signals and converted by a digital to analog converter, can be modified in accordance with a plurality of stored torque versus position tables to facilitate flexible programming of various torque profiles.

Further features include the capacity to store and modify torque profiles and to select one of a predetermined set of torque profiles to provide an actuator with a desired tactile responsiveness. The torque profiles, stored for example, in electrically erasable programmable read only memory can be changed via a computer in communication with the microprocessor. Upon system power down and subsequent power up, a previously entered torque profile can be present as a default profile.

These and other features and advantages of the present invention will become more apparent in view of the following detailed description in conjunction with the accompanying drawing, of which:

  • Fig. 1 is an illustration of an operator's console for editing visual source material in a composition system;
  • Fig. 1a is a partially broken-away view of an actuator according to the prior art having mechanical detents;
  • Fig. 2 is a block diagram of a system for providing programmable tactile feedback in an actuator;
  • Fig. 3 is a block diagram of a system for providing programmable tactile feedback in an actuator, wherein the controller comprises a counter, microprocessor and accessible firmware;
  • Fig. 3a is an illustrative diagram of an actuator and associated function keys for controlling multiple functions and providing multiple tactile responses in accordance with the selected function; and
  • Fig. 4 is a block diagram of a system for providing programmable tactile feedback in an actuator, wherein the system further includes a tachometer sensing motor actuation to generate a corresponding actuation in an associated actuator.

Referring now to Fig. 2, an actuator, such as a rotary actuator having a control knob 114 is attached via a shaft to a servo motor 116. In this illustrative embodiment wherein the actuator is for use in a film/video editing context, the servo motor is a PMI 12FVS motor. In the present application, as discussed in greater detail hereinafter, the servo motor is not used as a motor per se, but rather as a torque controller. The motor never runs at a significant amount of its rated revolutions per minute, but operates normally in this application in a stalled or semi-stalled state. The preferred motor 116 has an installed encoder 118. The encoder 118 is a PMI M23, 300 segment modular encoder having an index and providing 300 cycles per revolution, which results in 1200 waveform edges from index to index. Note that in this illustrative embodiment it is important that the encoder be selected to provide a number of edges which is divisible by factors of two, three, five and eight. Thus, position information can be electronically divided to provide an integer number of clicks in selectable modes of 24, 25 and 30 positions per revolution (corresponding to the film/video editing standards of 24, 25 and 30 frames per second or revolution, as discussed hereinbefore).

The position information received from the encoder 118 is processed by a controller 120 so that it represents a positional count. The controller 120 accesses stored input data 122 in the form of torque-position relation information which correlates a received position count with a related torque value. As noted hereinbefore, the position count, which is a function of encoder output information, can be derived by electronically dividing position information provided by the encoder waveform, as desired into a selected number of positions or position values. The input data 122 accessed by the controller 120 will have stored torque values associated with the selected position values as provided in accordance with the desired torque profile. The controller 120 outputs the torque value as a digital signal which is converted by a latchable digital to analog converter 124 to an analog voltage. As a voltage applied to the motor would result in a proportional motor speed, the analog voltage is related to motor torque by generating a proportional motor current using a power amplifier 126 in conjunction with a motor power supply 123. The torque related current is applied to the motor 116 to present the desired torque which imparts the desired tactile responsiveness to the control knob 114.

In an embodiment illustrated in Fig. 3, the controller 120 comprises a counter 130 which receives the servo motor position information from the encoder 118. A microprocessor 132, such as a Motorola 6809, receives a position count from the counter 130 providing an indication of servo motor position relative to the index. The count provided by the counter will increment or decrement depending on the direction of the change of position of the servo motor. The microprocessor accesses electrically erasable programmable read only memory 134 (EEPROM) which is programmed with one or more tables of torque-position relation information. Each table defines a particular torque profile specifying a torque value corresponding to a particular position count (i.e. knob/servo motor position).

A main application CPU 136 runs an application which requires and defines particular torque profiles for the actuator 114. The main application CPU may run an application which defines the functionality of a control wheel and related function buttons as illustrated in Fig. 3a. In this illustrative embodiment the control wheel has an outer dial 140 which according to the application performs a first function having a fixed number of positions, such as selecting one of a plurality of switch settings. The application can assign a second function to the same outer dial 140 and provide a profile assigning an alternative responsiveness to the outer dial actuator, such as assigning a lever control function having electronically defined stop positions, when a shift key 142 is depressed. An inner control knob 144 similarly can be assigned a first function and corresponding torque profile (such as a free running non-detent scan function), by the application running on the main application CPU, and a second (or other) function and corresponding torque profile (such as a. 30 detent per rotation edit mode, as discussed hereinbefore), which is invoked such as by depressing an alt key 146.

The main application CPU 136, upon application initialization, down loads the desired torque profiles to the microprocessor accessible EEPROM, via an RS-232 serial, or other communication port. The desired torque profiles reside in EEPROM and are selectable via the microprocessor for providing the desired torque at the appropriate actuator position(s) in accordance with the requirements of the main application. A desired torque profile can be selected by a user operating the control knob 144 or outer dial 140 actuators, alone or with other control functions such as the alt or shift keys, to be responsive in accordance with the first or second function. A change in actuator function, and a corresponding change in actuator responsiveness (i.e. torque profile) can be effected via selected key strokes, such as a shift key or function key implementation discussed.

The EEPROM resident tables will not change until a new set of profiles is programmed, i.e down loaded, into the microprocessor accessible memory. Thus, when the system is powered down and subsequently powered up, the previously selected torque profile is resident and available as a default mode for the respective actuators.

As illustrated in Fig. 4, the selectable torque profiles and tactile responsiveness of the actuator according to the invention can be implemented so that a second actuator 150 is responsive to a first actuator 114', operating substantially as discussed hereinbefore. In certain operations it is desirable to have two actuators working in conjunction according to a common torque profile. In such a case, the servo motor of one actuator can be used to actually drive a second motor, in addition to its function as a torque controller.

For instance, it is desirable when editing film, to turn the first actuator 114' to add one or more frames to one end of the composition material while removing one or the same number of frames from an opposite end of the composition material controlled by the second actuator 150. In such a case, rather than trying to turn the respective control knobs exactly the same amount, it would be best to have the second actuator 150 respond according to the first actuator 114'and its associated torque profile.

As the first actuator 114' is manually rotated N clicks as sensed according to its torque profile implemented as discussed hereinbefore with respect to Fig. 3, the encoder 118' and a tachometer 152 associated with the first actuator 114' indicate the direction and speed, respectively, of the first actuator 114' to the microprocessor 132'. The direction and position of the first actuator 114' is received from the encoder 118' through the counter 130'. The rate of change of position, i.e. velocity, is indicated by the tachometer 152 as an analog signal, which must be converted by an analog to digital converter 154 for processing digitally by the microprocessor 132'. The microprocessor 132', in accordance with the count received from the first actuator 114' and a velocity profile, generates a digital signal which is delivered to the second actuator digital to analog converter 156 and converted to an analog signal, increasing power to a second actuator servo motor 158. The power increase to the second actuator servo motor 158 results in an actuation of the second motor in a direction according to the direction sensed, and according to an operation directed by the microprocessor. The microprocessor monitors a second actuator encoder 160 to read a complementary count from the second actuator 150 being driven, and monitors a second actuator tachometer 162 to sense a velocity comparable to that of the first actuator being manually actuated. When the comparisons indicate that the second actuator is actuated in accordance with the manual actuation of the first actuator, the operation is complete.

While the implementation of a driven actuator describes a tachometer for determining velocity of the actuators, it will be appreciated that velocity can be derived by the microprocessor using a mathematical operation which takes the first derivative of the rate of change of position information, eliminating the need for a tachometer. Further, although a motor power supply is indicated in Fig. 4 for each servo motor, it can be appreciated that a single power supply can be used for both motors.

Although the invention is described herein in the context of an actuator in a film/video editing context, one of ordinary skill in the art will appreciate that selectably programmable tactile responsiveness according to the invention can be provided in many contexts in which mode selection of tactile responsiveness is desirable.

While the actuator having electronically controllable tactile responsiveness is described herein as providing a selectable number of detents or clicks per rotation of a control wheel, it can be appreciated that other torque profiles, such as progressively increasing torque in one direction or another or increasing torque to a point of a pseudo hard stop, can be achieved according to the invention by introducing a torque profile which results in an appropriate current applied to the servo motor.

Further, although programmable tactile responsiveness is described in the context of a rotary actuator application, it will be appreciated that selectable tactile responsiveness can be implemented according to the invention in other applications and actuator contexts, such as in linear actuator contexts.

While various embodiments of the invention illustrated herein describe a main CPU to execute an application program requiring and defining torque profiles for an actuator, and a separate 6809 microprocessor implementing firmware specifying torque-position relationships, one of ordinary skill in the art will appreciate that torque-position relationships can be implemented in the application CPU without the microprocessor or via numerous other microcontrollers. Further, while it is described that the torque profiles are in EEPROM. accessible to the microprocessor it will be appreciated that the torque profiles can be stored in microprocessor resident or other storage means, such as ROM, RAM, PALs and the like, and accessed accordingly to implement the desired tactile responsiveness in an actuator.


Anspruch[de]
  1. Betätigungsvorrichtung mit der Fähigkeit taktiler Rückkopplung mit:
    • einem Betätigungsbauteil (114), das betätigbar ist und taktile Rückkopplung aufnehmen kann,
    • einem Stellmotor (116), an dem das Betätigungsbauteil angebracht ist, einem Positionssensor (118), der für den Motor Positionsinformation bezüglich einer Referenzposition liefert, und
    • einem Steuerer bzw. Regler (120), der mit dem Positionssensor verbunden ist, von ihm die Positionsinformation empfängt und nach Maßgabe davon einen Drehmomentwert ausgibt,
    dadurch gekennzeichnet, daß
    • das Betätigungsbauteil ein anfaßbares Greifbauteil ist,
    • der Steuerer bzw. Regler einen Mikroprozessor (132) aufweist, der getrennt von einer Hauptanwendungs-CPU (136) vorgesehen ist,
    und daß weiter vorgesehen sind
    • mehrere Beziehungen zwischen Drehmoment und Position, die in einem Speicher (134) vorliegen und dem Mikroprozessor zugänglich sind, wobei jede Beziehung zwischen Drehmoment und Position eine Kennlinie des taktilen Ansprechverhaltens definiert und dem Mikroprozessor zugänglich ist, wobei der Mikroprozessor zumindest einen Drehmomentwert entsprechend der Positionsinformation und nach Maßgabe einer ausgewählten Drehmoment-Positions-Beziehung ausgibt, wobei die Auswahl aus den Drehmoment-Positions-Beziehungen über den Mikroprozessor nach Maßgabe von Anforderungen einer Hauptanwendung erfolgt, die auf der Hauptanwendungs-CPU läuft, und
    • eine Ansteuerungssignalquelle (126), die für den Motor ein Ansteuerungssignal nach Maßgabe des zumindest einen Drehmomentwerts erzeugt, wobei das Ansteuerungssignal im Motor ein Drehmoment erzeugt, das am Greifbauteil die taktile Rückkopplung liefert.
  2. Betätigungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Betätigungsbauteil einen Knopf oder eine Drehscheibe aufweist.
  3. Betätigungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Positionssensor einheitlich zum Motor an einem Schaft angebracht ist.
  4. Betätigungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Positionssensor pro Umlauf des Motors 300 Zyklen erzeugt.
  5. Betätigungsvorrichtung nach Anspruch 1, weiter gekennzeichnet durch einen Zähler, der die Positionsinformation des Motors empfängt und der einen Zählwert liefert, um den Steuerer bzw. Regler durch die Drehmoment-Positions-Beziehung zu führen, wobei der Steuerer bzw. Regler einen digitalen Drehmomentwert entsprechend dem Zählwert nach Maßgabe der Drehmoment-Positions-Beziehung ausgibt.
  6. Betätigungsvorrichtung nach Anspruch 5, weiter gekennzeichnet durch einen Digital-Analog-Wandler, der das digitale Drehmoment empfängt und den digitalen Drehmomentwert in ein analoges Drehmomentsignal wandelt.
  7. Betätigungsvorrichtung nach Anspruch 6, weiter gekennzeichnet durch einen Leistungsverstärker, der das analoge Drehmomentsignal empfängt und ein Ansteuerungssignal für den Motor nach Maßgabe des zumindest einen Drehmomentwerts erzeugt, wobei das Ansteuerungssignal proportional zum analogen Drehmomentsignal ist.
  8. Betätigungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Steuerer bzw. Regler ein Mikroprozessor ist, der an zumindest einem seiner Eingänge die Positionsinformation empfängt.
  9. Betätigungsvorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Mikroprozessor einen residenten, löschbaren, programmierbaren Nur-Lese-Speicher aufweist, der für die Drehmoment-Positions-Kennlinien verwendet wird.
  10. Betätigungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Drehmoment-Positions-Beziehung in einem elektrisch löschbaren programmierbaren Nur-Lese-Speicher gespeichert ist.
  11. Betätigungsvorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß 300 Zyklen pro Umlauf 1200 Wellenformkanten erzeugen, die elektronisch teilbar sind, um für jeden der wählbaren Moden von 24, 25 und 30 Positionen pro Umlauf des Motors eine ganze Anzahl von Kanten zu erzeugen.
  12. Betätigungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Drehmoment-Positions-Beziehung wahlweise ein Drehmomentprofil für eine Betätigungsvorrichtung mit 24, 25, 30 oder 60 Rastpositionen erzeugt.
  13. Betätigungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Signalquelle eine Stromquelle ist, die einen Leistungsverstärker aufweist, wobei das Signal ein vom Leistungsverstärker gelieferter Strom ist.
  14. Betätigungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Drehmoment-Positions-Beziehung eine programmierbare Einrichtung aufweist, um zumindest ein Drehmoment-Positions-Profil zu speichern.
  15. Betätigungsvorrichtung nach Anspruch 1, weiter gekennzeichnet durch eine Einrichtung zum Bestimmen einer Änderungsrate der Position des Motors, wobei der Steuerer bzw. Regler, der die Positionsinformation vom Sensor empfängt, außerdem eine Einrichtung aufweist zum Erzeugen eines Ansteuerungssignals für einen zweiten Motor, und eine Einrichtung zum Bestimmen der Gleichheit der Positionsänderungsrate des Motors und der Positionsänderungsrate des zweiten Motors, wobei der Steuerer bzw. Regler außerdem eine Einrichtung zum Bestimmen der Gleichheit der Positionsinformation des Sensors und einer zweiten Positionsinformation bezüglich des zweiten Motors aufweist.
Anspruch[en]
  1. An actuator having tactile feedback capabilities, comprising:
    • an actuating member (114) that is actuatable for receiving a tactile feedback,
    • a servo motor (116) having said actuating member attached thereto,
    • a position sensor (118) providing position information of said motor relative to a reference position, and a controller (120) in communication with said position sensor, said controller receiving said position information from said sensor and outputting a torque value in accordance therewith,
    characterized in that
    • the actuating member is a graspable gripping member,
    • the controller comprises a microprocessor (132) separate from a main application CPU (136),
    and in further comprising
    • a plurality of torque-position relationships resident in a store (134) accessible to said microprocessor, each torque-position relationship defining characteristics of a tactile responsiveness and each being accessible to said microprocessor, said microprocessor outputting at least one torque value corresponding to said position information in accordance with a selected one of said torque-position relationships, said selected one of said torque-position relationships being selectable via said microprocessor in accordance with requirements of a main application running on said main application CPU, and
    • a drive signal source (126) generating a drive signal to said motor in accordance with said at least one torque value, said drive signal causing a torque in said motor, said torque providing said tactile feedback to said gripping member.
  2. The actuator of claim 1,

    characterized in that

    said actuating member comprises a knob or a dial.
  3. The actuator of claim 1,

    characterized in that

    said position sensor is mounted on a shaft integral with said motor.
  4. The actuator of claim 1,

    characterized in that

    said position sensor generates 300 cycles per revolution of said motor.
  5. The actuator of claim 1,

    characterized in further including

    a counter receiving said position information of said motor and providing a count to sequence said controller through said torque-position relationships, said controller outputting a digital torque value corresponding to said count in accordance with said torque-position relationships.
  6. The actuator of claim 5,

    characterized in further including

    a digital to analog converter receiving said digital torque value and converting said digital torque value to an analog torque signal.
  7. The actuator of claim 6,

    characterized in further including

    a power amplifier receiving said analog torque signal and generating a drive signal to said motor in accordance with said at least one torque value, said drive signal being proportional to said analog torque signal.
  8. The actuator of claim 1,

    characterized in that

    said controller is a microprocessor receiving said position information on at least one port thereof.
  9. The actuator of claim 8,

    characterized in that

    said microprocessor includes resident erasable programmable read only memory which is used for said torque-position characteristics.
  10. The actuator of claim 1,

    characterized in that

    said torque-position relationship is stored in electrically erasable programmable read only memory.
  11. The actuator of claim 4,

    characterized in that

    said 300 cycles per revolution generate 1200 waveform edges which are electronically divisible to provide an integer number of edges for each of selectable modes of 24, 25 and 30 positions per revolution of said motor.
  12. The actuator of claim 1,

    characterized in that

    said torque-position relationship selectably provides a torque profile for an actuator having one of 24, 25, 30 and 60 detent positions.
  13. The actuator of claim 1,

    characterized in that

    said signal source is a current source including a power amplifier, and said signal is a current provided by said power amplifier.
  14. The actuator of claim 1,

    characterized in that

    said torque-position relationship includes programmable means for storing at least one torque versus position profile.
  15. The actuator of claim 1,

    characterized in further comprising

    means for determining a rate of change of position of said motor and wherein said controller receiving said position information from said sensor further includes means for generating a drive signal to a second motor, and means for determining equivalence of said rate of change of position of said motor and rate of change of position of said second motor, said controller further including means for determining equivalence of said position information from said sensor and a second position information relating to said second motor.
Anspruch[fr]
  1. Actionneur présentant des capacités de réaction tactile, comprenant :
    • un élément d'actionnement (114) qui peut être actionné pour recevoir une réaction tactile,
    • un servomoteur (116) auquel est rattaché ledit élément d'actionnement,
    • un détecteur de position (118) fournissant une information de position dudit moteur par rapport à une position de référence, et
    • un contrôleur (120) communiquant avec ledit détecteur de position, ledit contrôleur recevant ladite information de position en provenance dudit détecteur et délivrant une valeur de couple fonction de celle-ci,
       caractérisé en ce que l'élément d'actionnement est un élément qui peut être saisi, le contrôleur comprend un microprocesseur (132) séparé d'une unité centrale de traitement d'application principale (136),
    • et comprend en outre une pluralité de relations couple-position qui réside dans une mémoire (134) accessible par ledit microprocesseur, chaque relation couple-position définissant des caractéristiques d'une réponse tactile et étant accessible chacune par ledit microprocesseur, ledit microprocesseur délivrant au moins une valeur de couple correspondant à ladite information de position conformément à l'une sélectionnée desdites relations couple-position, ladite relation sélectionnée desdites relations couple-position étant sélectionnable par l'intermédiaire dudit microprocesseur conformément aux exigences d'une application principale se déroulant sur ladite unité centrale de traitement d'application principale, et
    • une source de signal de pilotage (126) produisant un signal de pilotage pour ledit moteur fonction de ladite au moins une valeur de couple, ledit signal de pilotage générant un couple dans ledit moteur, ledit couple fournissant ladite réaction tactile audit élément qui peut être saisi.
  2. Actionneur selon la revendication 1, caractérisé en ce que ledit élément d'actionnement comprend un bouton ou un cadran.
  3. Actionneur selon la revendication 1, caractérisé en ce que ledit détecteur de position est monté sur un arbre faisant partie intégrante dudit moteur.
  4. Actionneur selon la revendication 1, caractérisé en ce que ledit détecteur de position produit 300 cycles par tour dudit moteur.
  5. Actionneur selon la revendication 1, caractérisé en ce qu'il comprend en outre un compteur recevant ladite information de position dudit moteur et fournissant un nombre pour commander séquentiellement ledit contrôleur par l'intermédiaire desdites relations couple-position, ledit contrôleur délivrant une valeur de couple numérique correspondant audit nombre en conformité avec lesdites relations couple-position.
  6. Actionneur selon la revendication 5, caractérisé en ce qu'il comprend en outre un convertisseur numérique-analogique recevant ladite valeur de couple numérique et convertissant ladite valeur de couple numérique en un signal de couple analogique.
  7. Actionneur selon la revendication 6, caractérisé en ce qu'il comprend en outre un amplificateur de puissance recevant ledit signal de couple analogique et générant un signal de pilotage pour ledit moteur en fonction de ladite au moins une valeur de couple, ledit signal de pilotage étant proportionnel audit signal de couple analogique.
  8. Actionneur selon la revendication 1, caractérisé en ce que ledit contrôleur est un microprocesseur recevant ladite information de position sur au moins un de ses ports.
  9. Actionneur selon revendication 8, caractérisé en ce que ledit microprocesseur comprend une mémoire morte programmable et effaçable résidente qui est utilisée pour lesdites caractéristiques couple-position.
  10. Actionneur selon la revendication 1, caractérisé en ce que ladite relation couple-position est mémorisée dans une mémoire ROM programmable et effaçable électriquement.
  11. Actionneur selon la revendication 4, caractérisé en ce que lesdits 300 cycles par tour génèrent 1200 fronts d'onde qui sont divisibles électroniquement pour fournir un nombre entier de fronts pour chaque mode sélectionnable de 24, 25 et 30 positions par tour dudit moteur.
  12. Actionneur selon la revendication 1, caractérisé en ce que ladite relation couple-position fournit sélectivement un profil de couple pour un actionneur ayant soit 24, soit 25, soit 30, soit 60 positions dures.
  13. Actionneur selon la revendication 1, caractérisé en ce que ladite source de signal est une source de courant comprenant un amplificateur de puissance, et ledit signal est un courant fourni par ledit amplificateur de puissance.
  14. Actionneur selon la revendication 1, caractérisé en ce que ladite relation couple-position comprend des moyens programmables pour enregistrer au moins un profil couple-position.
  15. Actionneur selon la revendication 1, caractérisé en ce qu'il comprend en outre des moyens pour déterminer une vitesse de changement de position dudit moteur et dans lequel ledit contrôleur recevant ladite information de position provenant dudit détecteur comprend en outre des moyens pour générer un signal de pilotage pour un second moteur, et des moyens pour déterminer une équivalence entre ladite vitesse de changement de position dudit moteur et la vitesse de changement de position dudit second moteur, ledit contrôleur comprenant en outre des moyens pour déterminer une équivalence entre ladite information de position provenant dudit détecteur et une seconde information de position se rapportant audit second moteur.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com