PatentDe  


Dokumentenidentifikation EP0722539 15.02.2001
EP-Veröffentlichungsnummer 0722539
Titel ABBLASVENTIL
Anmelder Pratt & Whitney Canada Corp., Longueuil, Quebec, CA
Erfinder BLAIS, Daniel, Mont St. Hilaire, CA;
TREMAINE, Eric, Longueuil, CA;
OZARAPOGLU, Vasil, St. Lambert, CA
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69519846
Vertragsstaaten DE, FR, GB, IT, SE
Sprache des Dokument EN
EP-Anmeldetag 08.08.1995
EP-Aktenzeichen 959263583
WO-Anmeldetag 08.08.1995
PCT-Aktenzeichen CA9500462
WO-Veröffentlichungsnummer 9605438
WO-Veröffentlichungsdatum 22.02.1996
EP-Offenlegungsdatum 24.07.1996
EP date of grant 10.01.2001
Veröffentlichungstag im Patentblatt 15.02.2001
IPC-Hauptklasse F04D 27/02
IPC-Nebenklasse F02K 3/075   

Beschreibung[en]
Technical Field

The technical field to which this invention pertains is gas turbine engines, particularly handling bleed valves for gas turbine engines.

Background of the Invention

In gas turbine engines for use in powering aircraft, air is directed through multiple stage compressors as it flows axially or axially and radially through the engine to a combuster. As the air passes through each successive compressor stage, the pressure of the air is increased. Under certain conditions, such as when the engine is operating at off design conditions, interstage bleed is required to match the compressor stages. If this compressor matching is not acheived an engine surge or blow-out may occur, endangering the operation of the engine and the associated aircraft.

To mitigate against these conditions, such gas turbine engines have incorporated bleed valves in the engine casing forward of the burner which, when an engine surge is imminent, open to rematch the compressor stages. These bleed valves have taken many forms from simple ports in the compressor casing which open via a movable valve element to devices which separate adjacent segments of the engine casing thereby creating an opening there between.

However, these valves, although useful, present problems where the air bleed off is directed into a secondary air flow, in lieu of being dumped overboard. In the design of these prior art bleed valves all of the criteria which must be met such as, simple maintenance of the valve, maintenance of a smooth fluid flow through the bypass flow path and quick response time are not all addressed in any single prior art valve.

USA-A-3849020 describes such a gas turbine air bleed valve which is mounted in inner and outer casing portions of the engine.

Therefore, what is necessary in this art is a bleed valve that is simple to service, minimizes the disturbance to the secondary air flow and offers quick response to the pressure changes which lead to the engine operating problems.

According to the invention there is provided a bleed valve adapted for use when installed in a gas turbine engine having a bypass fluid flow path and a primary fluid flow path downstream from an engine inlet of said engine, said paths being separated by a barrier and said bypass fluid flow path having an outer perimeter, the bleed valve being characterised by a housing positioned, in use, on said outer perimeter of said bypass fluid flow path, a piston having a first end which is fitted into said housing, said piston extending, in use, across said bypass fluid flow path, said piston having a second end opposite said first end, said second end being profiled whereby to be sealingly fitted, in use, into an opening in said barrier separating said primary fluid flow path from said bypass fluid flow path, and said piston being slidably movable to open and close said opening in response to a pressure differential on said second end between fluid pressures at two locations in said primary fluid flow path.

Thus using the invention it is possible to permit use of a bypass valve which will respond to prevent surges in the engine and will be easily serviced without disassembly of the engine due to its positioning across the by pass flow path and having the housing on the perimeter of the by pass flow path.

According to a second aspect of the invention there is provided a by pass gas turbine engine as hereinbefore defined in the preceding paragraphs

Brief Description of the Drawings

Figure 1
is a view of one embodiment of the valve of the present invention indicating its location in a gas turbine engine.
Figure 2
is a breakaway view of one embodiment of the valve of the present invention depicting the valve in the closed position
Figure 3
is a breakaway view of one embodiment of the valve of the present invention depicting the valve in the open position.
Figure 4
is a cross sectional view of one embodiment of a valve of the present invention positioned in a gas turbine engine in the open position.
Figure 4A
is a cross sectional view of the valve showing the pressure control means.
Figure 5
is a cross sectional view of one embodiment of a valve of the present invention positioned in a gas turbine engine in the closed position.
Figure 6
is a cross sectional view of taken along line 6-6 of Figure 2 of the piston central portion and strut member.

Best Mode for Carrying Out the Invention

The bleed valve of the present invention will be described herein with reference to Figures 1-6. The description and the drawings are intended to be exemplary and not limiting.

Referring now to the Figures in which the bleed valve of the present invention is shown. The bleed valve 2 comprises a piston 4 having a first end 6 and a second end 8 connected by a center portion 10. The first end 6 is fitted into a chamber 12 inside a housing 14. The housing 14 is fitted into an opening 16 in the outer perimeter of the by bypass flow path, in this case the outer shroud 18 of the engine 20. The chamber 12 of the housing 14 is in flow or pressure communication with one location within a primary flow path 22 of compressed gas passing through the engine 20. Via an opening 24 in the housing 14 a controlling pressure is introduced to schedule the valve opening.

In the present description the housing 14 is formed of a single unit which is attached to the outer shroud 18 by a number of bolts 26 and which is seated onto a flange 28 on the perimeter of the opening 16. The piston 4 is slidably mounted onto a rod or similar means 29 which passes longitudinally through substantially the center of the piston 4.

The second end 8 is formed such that it will seat in and seal an opening 30 in a barrier separating the bypass flow path 34 from the primary flow path 22, in the present embodiment this is the inner shroud 32, and thereby prevent any of the primary fluid flow 22 to pass to the bypass fluid flow path 34 through said opening 30 when the piston 4 is in the closed position. This may be achieved in any number of designs.

The present embodiment depicts an aerodynamic design for the second end 8 in which the top 35 of the second end 8 is smooth and forms a smooth plane with the surface of the inner shroud 32 when the valve 2 is in the closed position as shown in Figures 2 and 5. However, that portion of the second end 8 which is below the inner shroud 32 when the valve 2 is in the closed position, the bottom 36 of the second end 8, is downwardly inwardly frustoconically tapered. Although it is not necessary that the bottom 36 be formed in such a manner, it is preferred that it be formed in such a shape so as to permit an even transition zone for the fluid to flow from the primary flow path 22 into the bypass flow path 34, and to control the rate of opening and closing of the valve.

In addition, a portion of the bottom 36 which is facing upstream of the bypass fluid flow path 34, is in the form of an arcuate apron 38 extending around the leading edge 40 of the circumference 42 of the second end 8, from about one side 44 of the second end 8 of the piston to the opposite side 46 of the second end 8 of the piston and crossing the plane perpendicular to the bypass flow path 34. The apron 38 further extends from just under the top of the second end 8 to just below the inner shroud 32 when the valve 2 is in the open position (See Figure 3). This apron 38 prevents bleed flow exit in the upstream direction of the by-pass flow. Such a flow will disturb the fan by affecting its stability, reducing surge margin and increasing noise level.

As depicted in Figure 4 and 5 the opening 30 in the inner shroud 32 houses the structural framework 48 to support the rod 29 on which the piston 4 is slidably fitted. The rod 29 is removably connected to the structural framework 48 by a nut 50 threaded onto the end 52 of the rod 29 and the other end of the rod 29 is removably fixed in the same manner to an opening in the housing 14 by a nut 57. Bushings 54 are introduced between the rod 29 and the piston 4 to ensure free sliding movement of the piston 4. A compression spring 56 is fitted on to rod 29 at the end 52 between the structural framework 48 and piston end 8 to ensure that with no pressures acting on the piston 4, the piston 4 will remain in a partly open condition. This valve position will enhance engine starting.

Additionally the upstream surface 58 of the piston having central portion 10 may be fitted with a slot 60 which slides over a key 61 which is attached to housing 14. The upstream surface 58 of the piston central portion 10 may be designed in the form of an aerodynamic shape in combination with the strut 64 as shown in Figure 6, thereby reducing the disturbance in the bypass flow path 34. The key 61 and the slot 60 provide an antirotation means to ensure alignment of the strut 64 and the piston central portion 10. This also acts as an antirotation feature to insure alignment of the apron 38 and piston central portion 10.

The bleed valve responds to a preset pressure differential between a first location in the primary fluid flow path 22 and a second location in the primary flow path 22 such that as the pressure in the second location, which is in pressure communication with the chamber 12 in the housing 14 in which the first end 6 of the piston 4 is fitted, is greater than the pressure at the first location, which is in pressure and flow communication with the primary fluid flow path 22, the valve 4 remains in the closed position and none of the fluid of the primary fluid flow path 22 is permitted to pass from the primary fluid flow path 22 to the bypass fluid flow path 34. However, in the event that the pressure at the first location is greater than the second location by a predetermined amount, then the pressure in the chamber 12 of the housing 14 is less than that at the opening 30 of the inner shroud 32 and the piston 4 is slidably moved up the rod 29 thereby moving the second end 8 of the piston 4 into a position where it no longer seals the opening 30 in the inner shroud 32 and thereby permitting a portion of the primary fluid flow 22 to pass through the opening 30 in the inner shroud 32 to the bypass fluid flow path 34.

As may be seen by viewing Figure 4A the pressure from the first location is upstream from the maximum compressor outlet for the primary flow path 22, while the second location is downstream from the maximum compressor outlet and is in flow communication via a tube (partially indicated at 66). The tube is fitted with an orifice 68 (this may be an adjustible valve i.e. needle valve or a simple hole of a predetermined size) and connects with a second tube 70 forming a T or Y having one end connected to the housing at opening 24 and the other end 72 vented to atmosphere through an orifice 73. In addition, a regulating means 74 is fitted between the orifices 68 and 73 to control the valve opening to a certain compressor speed. The pressure created at opening 24 will be such that the valve will have a predetermined position as a function of compressor rotational speed, thereby bleeding as required and hence preventing surge.

The present invention offers a bleed valve for use in bypass engines having unique and beneficial advantages not seen in the prior art. The present invention discloses a bleed valve which is releasably mounted on the exterior of the engine to permit easy removal and maintenance without the disassembly of the engine as necessitated by prior designs. In addition the valve offers a minimum disturbance to the flow path of the bypass flow and therefore lessens any loss of efficiency due to the placement of such a device across the flow path of the bypass fluid.


Anspruch[de]
  1. Entlüftungsventil (2), das für den Einbau in einen Gasturbinen-Motor ausgeführt ist und einen Bypassfluidströmungsweg (34) und einen Primärfluidströmungsweg (22) in nachgeschalteter Anordnung hinter einem Motoreinlaß des Gasturbinen-Motors umfaßt, wobei die Wege (34, 22) durch eine Barriere (32) getrennt sind und der Bypassfluidströmungsweg (34) einen Außenumfang aufweist, wobei das Entlüftungsventil (2) gekennzeichnet ist durch:
    • ein Gehäuse (14), das bei Verwendung am Außenumfang des Bypassfluidströmungsweges (18) positioniert ist;
    • einen Kolben (4), der ein erstes Ende (6) besitzt, das in das Gehäuse (14) eingepaßt ist, wobei sich der Kolben (4) bei Verwendung über den Bypassfluidströmungsweg (34) erstreckt;
    • den Kolben (4), der ein zweites Ende (8) gegenüber dem ersten Ende (6) besitzt, wobei das zweite Ende (8) so profiliert ist, daß es bei Verwendung in abdichtender Weise in eine Öffnung (30) in der Barriere (32), die den Primärfluidströmungsweg (22) vom Bypassfluidströmungsweg (34) trennt, eingepaßt werden kann; und
    • den Kolben (4), der in gleitender Weise bewegbar ist, um die Öffnung (30) in Reaktion auf eine auf das zweite Ende (8) einwirkende Druckdifferenz zwischen Fluiddrücken an zwei Stellen im Primärfluidströmungsweg (22) zu öffnen und zu schließen.
  2. Entlüftungsventil nach Anspruch 1, dadurch gekennzeichnet, daß das Zentrum (10) des Kolbens (4) mit einer vorderen Kante und einer hinteren Kante aerodynamisch ausgebildet ist und die vordere Kante so ausgeführt ist, daß sie bei Verwendung dem Bypassfluidströmungsweg (34) in vorgeschalteter Anordnung zugewandt ist.
  3. Entlüftungsventil nach Anspruch 1 oder Anspruch 2, gekennzeichnet durch:
    • das Gehäuse (14), das eine Kammer (12) bildet, die an einer ersten Stelle in Druckverbindung mit dem Primärfluidströmungsweg (22) steht;
    • den Kolben (4), der so positioniert ist, daß er sich innerhalb der Kammer (12) an einem Führungsweg (29) entlang bewegt, der sich vom Außenumfang (18) durch das Gehäuse (14) über den Bypassfluidströmungsweg (34) bis hin zur Öffnung (30) in der inneren Barriere (32) erstreckt, so daß dadurch eine Strömungsverbindung zwischen dem Primärfluidströmungsweg (22) an einer zweiten Stelle der beiden Stellen und dem Bypassfluidströmungsweg (34) entsteht, wobei die erste Stelle der beiden Stellen der zweiten Stelle im Primärfluidströmungsweg (22) nachgeschaltet angeordnet ist; und
    • das erste Ende (6) des Kolbens (4), der innerhalb der Gehäusekammer (12) bewegbar ist, und das zweite Ende (8), das gegenüber dem ersten Ende (6) positioniert und so ausgebildet ist, daß eine Abdichtung gegenüber der Öffnung (30) der inneren Barriere (32) entsteht, wobei sich der Kolben (4) am Führungsweg (29) entlang zwischen einer offenen Position und einer geschlossenen Position bewegt, wodurch die Öffnung (30) in der inneren Barriere (32) in Reaktion auf die Druckdifferenz zwischen der ersten Stelle und der zweiten Stelle im Primärfluidströmungsweg (22) nicht abgedichtet oder abgedichtet wird.
  4. Entlüftungsventil (2) nach Anspruch 2 oder Anspruch 3, dadurch gekennzeichnet, daß die vordere Kante in einen Schlitz in einem Verstrebungselement (64) eingepaßt ist, daß das Verstrebungselement (64) eine vorgeschaltete und eine nachgeschaltete Seite aufweist, wobei der Schlitz in der nachgeschalteten Seite des Verstrebungselements (64) vorgesehen ist, und daß die aerodynamische Form durch die Kombination des Verstrebungselements (64) und des Kolbens (4) zwischen dem ersten Ende und dem zweiten Ende (6, 8) definiert ist.
  5. Entlüftungsventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das zweite Ende (8) des Kolbens (4) eine vorgeschaltete Kante (40) aufweist und daß eine gebogene Schürze (38) vorgesehen ist, die sich zur Öffnung (30) hin und durch diese Öffnung, die sich in der inneren Barriere (32) an der vorgeschalteten Kante (40) des zweiten Endes (8) befindet, erstreckt.
  6. Entlüftungsventil nach Anspruch 5, dadurch gekennzeichnet, daß sich die Schürze (38) zur Öffnung (30) hin und durch diese Öffnung, die sich in der inneren Barriere (32) befindet, über eine Distanz erstreckt, die ausreichend ist, damit sich die Schürze (38) zur Öffnung (30) hin und durch diese Öffnung in der inneren Barriere (32) erstrecken kann, wenn sich der Kolben (4) in der offenen Position befindet.
  7. Bypass-Gasturbinen-Motor, gekennzeichnet durch ein in den Motor eingebautes Entlüftungsventil (2) nach einem der vorstehenden Ansprüche.
Anspruch[en]
  1. A bleed valve (2) adapted for use when installed in a gas turbine engine having a bypass fluid flow path (34) and a primary fluid flow path (22) downstream from an engine inlet of said engine, said paths (34,22) being separated by a barrier (32) and said bypass fluid flow path (34) having an outer perimeter, the bleed valve (2) being characterised by;
    • a housing (14) positioned, in use, on said outer perimeter of said bypass fluid flow path (18);
    • a piston (4) having a first end (6) which is fitted into said housing (14), said piston (4) extending, in use, across said bypass fluid flow path (34);
    • said piston (4) having a second end (8) opposite said first end (6), said second end (8) being profiled whereby to be sealably, in use, fitted into an opening (30) in said barrier (32) separating said primary fluid flow path (22) from said bypass fluid flow path (34); and
    • said piston (4) being slidably movable to open and close said opening (30) in response to a pressure differential on said second end (8) between fluid pressures at two locations in said primary fluid flow path (22).
  2. A bleed valve according to Claim 1, characterised in that the centre (10) of the piston (4) is aerodynamically formed having a leading edge and a trailing edge and that said leading edge is, in use, adapted to face upstream of said bypass fluid flow path (34).
  3. A bleed valve according to Claim 1 or Claim 2, characterised by;
    • the housing (14) forming a chamber (12), which is in pressure communication with said primary fluid flow path (22) at a first location;
    • by the piston (4) being positioned to move within the chamber (12) along a guide path (29), which extends from the outer perimeter (18) through the housing (14), across the bypass fluid flow path (34) to the opening (30) in the inner barrier (32) which permits flow communication between the primary fluid flow path (22) at a second location of the two locations and the bypass fluid flow path (34), the first location of the two locations being downstream from said second location in said primary fluid flow path (22); and
    • by the first end (6) of the piston (4) being movable within the housing chamber (12) and by the second end (8) being positioned opposite the first end (6) and being formed to create a seal against the opening (30) of the inner barrier (32), wherein the piston (4) moves along said guide path (29) between an open position and a closed position thereby unsealing or sealing the opening (30) in the inner barrier (32) in response to the pressure differential between the first and the second locations in the primary fluid flow path (22).
  4. A bleed valve (2) according to either Claim 2 or Claim 3, characterised in that the leading edge is fitted into a slot in a strut member (64), in that the strut member (64) has an upstream and a downstream side with said slot in said downstream side of said strut member (64), and in that the aerodynamic form is defined by the combination of said strut member (64) and said piston (4) between said first and second ends (6, 8).
  5. A bleed valve according to any preceding claim, characterised in that said second end (8) of said piston (4) has an upstream edge (40), and that there is an arcuate apron (38) which extends toward and through the opening (30) in said inner barrier (32) on said upstream edge (40) of said second end (8).
  6. A bleed valve according to Claim 5, characterised in that the apron (38) extends toward and through said opening (30) in said inner barrier (32) to a distance sufficient such that said apron (38) extends to or through said opening (30) in said inner barrier (32) when said piston (4) is in said open position.
  7. A bypass gas turbine engine, characterised by a bleed valve (2) according to any preceding claim installed in the engine.
Anspruch[fr]
  1. Soupape de purge (2) prévue pour l'utilisation dans un moteur de turbine à gaz ayant une voie d'écoulement de dérivation (34) pour le fluide et une voie d'écoulement primaire (22) pour le fluide en aval d'une admission dudit moteur, lesdites voies (34, 22) étant séparées par une barrière (32) et ladite voie d'écoulement de dérivation (34) pour le fluide ayant un périmètre extérieur, la soupape de purge (2) étant caractérisée par :
    • un boîtier (14) positionné, lors de l'utilisation, sur ledit périmètre extérieur (18) de ladite voie d'écoulement de dérivation pour le fluide ;
    • un piston (4) ayant une première extrémité (6) qui est ajustée dans ledit boîtier (14), ledit piston (4) s'étendant, lors de l'utilisation, à travers ladite voie d'écoulement de dérivation (34) pour le fluide;
    • ledit piston (4) ayant une deuxième extrémité (8) opposée à ladite première extrémité (6), ladite deuxième extrémité (8) étant profilée de manière à être ainsi ajustée hermétiquement, lors de l'utilisation, dans une ouverture (30) dans ladite barrière (32) séparant ladite voie d'écoulement primaire (22) pour le fluide de ladite voie d'écoulement de dérivation (34) pour le fluide ; et
    • ledit piston (4) étant déplaçable par coulissement pour ouvrir et fermer ladite ouverture (30) en réponse à une différence de pression au niveau de ladite deuxième extrémité (8) entre les pressions de fluide en deux emplacements dans ladite voie d'écoulement primaire (22) pour le fluide.
  2. Soupape de purge selon la revendication 1, caractérisée en ce que le centre (10) du piston (4) a une forme aérodynamique ayant un bord avant et un bord arrière et en ce que ledit bord avant est, lors de l'utilisation, adapté pour faire face vers l'amont de ladite voie d'écoulement de dérivation (34) pour le fluide.
  3. Soupape de purge selon la revendication 1 ou la revendication 2, caractérisée par :
    • le boîtier (14) formant une chambre (12), qui est en communication de pression avec ladite voie d'écoulement primaire (22) pour le fluide en un premier emplacement ;
    • le piston (4) étant positionné pour se déplacer à l'intérieur de la chambre (12) le long d'une voie de guidage (29), qui s'étend depuis le périmètre extérieur (18) à travers le boîtier (14), à travers la voie d'écoulement de dérivation (34) pour le fluide jusqu'à l'ouverture (30) dans la barrière interne (32) qui permet une communication d'écoulement entre la voie d'écoulement primaire (22) pour le fluide en un deuxième emplacement des deux emplacements et la voie d'écoulement de dérivation (34) pour le fluide, le premier emplacement des deux emplacements se trouvant en aval dudit deuxième emplacement dans ladite voie d'écoulement primaire (22) pour le fluide ; et
    • la première extrémité (6) du piston (4) étant déplaçable à l'intérieur de la chambre (12) du boîtier et la deuxième extrémité (8) étant positionnée à l'opposé de la première extrémité (6) et étant formée pour créer un joint contre l'ouverture (30) de la barrière interne (32), le piston (4) se déplaçant le long de ladite voie de guidage (29) entre une position ouverte et une position fermée en ouvrant ou en fermant hermétiquement l'ouverture (30) dans la barrière interne (32) en réponse à la différence de pression entre les premier et deuxième emplacements dans la voie d'écoulement primaire (22) pour le fluide.
  4. Soupape de purge (2) selon l'une ou l'autre des revendications 2 ou 3, caractérisée en ce que le bord avant est ajusté dans une fente dans un organe raidisseur (64), en ce que l'organe raidisseur (64) a un côté amont et un côté aval, ladite fente étant dans ledit côté aval dudit organe raidisseur (64), et en ce que la forme aérodynamique est définie par la combinaison dudit organe raidisseur (64) et dudit piston (4) entre lesdites première et deuxième extrémités (6, 8).
  5. Soupape de purge selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite deuxième extrémité (8) dudit piston (4) a un bord amont (40), et en ce qu'il y a un tablier recourbé (38) qui s'étend vers et à travers l'ouverture (30) dans ladite barrière interne (32) sur ledit bord amont (40) de ladite deuxième extrémité (8).
  6. Soupape de purge selon la revendication 5, caractérisée en ce que le tablier (38) s'étend vers et à travers ladite ouverture (30) dans ladite barrière interne (32) jusqu'à une distance suffisante, de sorte que ledit tablier (38) s'étende vers ou à travers ladite ouverture (30) dans ladite barrière interne (32) lorsque ledit piston (4) est dans ladite position ouverte.
  7. Moteur de turbine à gaz à dérivation, caractérisé par une soupape de purge (2) selon l'une quelconque des revendications précédentes, installée dans le moteur.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com