PatentDe  


Dokumentenidentifikation EP0733914 15.02.2001
EP-Veröffentlichungsnummer 0733914
Titel Detektor- und Modulator- Schaltkreise für eine passive Mikrowellenverbindung
Anmelder Lucent Technologies Inc., Murray Hill, N.J., US
Erfinder Drabeck, Lawrence Milton, Long Branch, New Jersey 07740, US;
Tran, Cuong, Howell, New Jersey 07731, US;
Schneider, Martin Victor, Holmdel, New Jersey 07733, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69611470
Vertragsstaaten DE, GB
Sprache des Dokument EN
EP-Anmeldetag 13.03.1996
EP-Aktenzeichen 963017058
EP-Offenlegungsdatum 25.09.1996
EP date of grant 10.01.2001
Veröffentlichungstag im Patentblatt 15.02.2001
IPC-Hauptklasse G01S 13/75
IPC-Nebenklasse G01V 15/00   G06K 7/10   G06K 19/07   

Beschreibung[en]

This invention relates to radio frequency apparatus.

Optimized detector/modulator circuits are key components in passive microwave links which use smart labels and tags for identification and tracking of objects in shipping and transportation. The recent development of low-cost detector diodes and miniature antennas made it possible to develop electronic labels for the wireless supermarket and related applications requiring the use of inexpensive tags or smart labels serving as terminals in a modulated backscatter microwave link.

EP-A-0 480 413 discloses a responder in a moveable-object identification system which includes an interrogator for transmitting an interrogation signal and a responder mounted on a moveable object for transmitting a reply signal in response to the interrogation signal. The responder includes an antenna for receiving an interrogation signal, and an input means connected to the antenna with the input means including a receiving element for dividing the received electric power into a first separation electric power and a second separation electric power corresponding to a traveling wave and reflected wave respectively and with the receiving element having an impedance. The responder also includes generating means for generating predetermined identification information by the first separation electric power and a modulating means connected with the input means and connected to the antenna for varying the impedance of the receiving element in accordance with the generated identification information, for modulating the second separation electric power of the interrogation signal in accordance with the identification information to generate the reply signal and for feeding the reply signal to the antenna.

EP-A-0 492 569 discloses a system and method for the non-contact transmission of data between a station and a portable data carrier. The station includes a station transmitter operating at a predetermined frequency for generating a first signal and a receiver for receiving a second signal superimposed on the first signal. The station further includes a matched station antenna coupled via a length of cable to the station transmitter. The portable data carrier includes a data carrier modulator for modulating the first signal with the second signal in response to the first data generated by the data carrier by means of an inductive coupling, and thereby enabling the first data to be transmitted from the data carrier to the station, with the portable data carrier including a tuned antenna circuit inductively coupled with the station antenna. The tuned antenna circuit may include a resonant circuit tuned to the frequency of the first signal. The tuned antenna circuit may also include a matched antenna circuit.

EP-A-0 254 954 relates to a transponder in a system for identifying objects. The transponder includes a dipole antenna constructed to receive signals from a reader at a suitable frequency, with an impedance matching section connected to the dipole to match the impedance of the dipole to the impedance of remaining circuitry.

US-A-5,119,099 discloses a microwave transponder whereby a diode which is switched between ON and OFF states in response to a response signal is interposed between two end portions of microstrip lines separated by a predetermined interval, and a distance, between distal ends of the two linearly arranged microstrip lines, which includes an impedance defined by the ON or OFF state of the diode is determined to be one-half a wave length of the microwave.

US-A-5,319,802 discloses a device for the exchange of data by electromagnetic waves, whereby a transistor works, under a first bias, as a detector of a wave transmitted by a reader and demodulates this wave and then, under a second bias, it works as an oscillator and modulates the response transmitted by the badge. A transistor, mounted as a common source, has its gate connected by a matching network to the input of a circuit (typically, a single transmission/reception antenna). Microstrip lines are disclosed as impedance matching loads for coupling between the transistor and the input in both types of operation, modulation and demodulation.

EP-A-0 344 885 discloses a beam powered antenna. The antenna includes a folded planar dipole section having two separated oppositely disposed U-shaped elements, each of the elements having a pair of ends, with a capacitor series coupled between two oppositely disposed ends of the two elements and a diode having a high impedance at a selected center frequency, series coupled between the other two oppositely disposed ends of the two elements. The antenna may also have a matching section of two conductive lines, with one end of each line coupled to each of the other two oppositely disposed ends of the two elements, the diode being series coupled between the other ends of the two conductive lines. The diode may be a Schottky barrier diode.

Our U.S. patent application, Serial No. 08/380277, filed January 30, 1995, and entitled "Wireless Electronic Module," teaches that the maximum sensitivity for the downlink (base station to label module) communication is achieved if the antenna port impedance is the complex conjugate of the diode impedance. While operating the antenna at such an impedance does improve downlink communications, it does not result in a maximum cross-section of a wireless label needed for efficient backscattering of an incident CW carrier to provide uplink label to base station) communications.

According to one aspect of this invention there is provided radio frequency apparatus as claimed in claim 1.

According to another aspect of this invention there is provided radio frequency apparatus as claimed in claim 13.

Apparatus embodying the present, invention (e.g., a wireless label) provides improved backscattering of an incident Radio Frequency (RF) signal by utilizing a separate modulator diode, which connects across the antenna to modulate the backscattering of the antenna. A separate detector diode connects across the antenna to detect modulated signals received by the antenna, the detector diode connecting to the antenna through a matching network such that the impedance of the detector diode at a predetermined RF frequency conjugately matches an antenna port impedance transformed through the matching network. The antenna may be dipole, microstrip patch or monopole.

In one embodiment, the detector diode connects to the antenna port through an impedance matching network. In another embodiment, the modulator diode is a tunnel diode which may be biased in a negative resistance portion of its current-voltage characteristics when the apparatus is operated in a backscatter mode and biased at its valley voltage when the apparatus is operated in a receive mode.

Brief Description of the Drawing

  • FIG. 1 shows a first embodiment of the present invention;
  • FIG. 2 shows a second embodiment of the present invention;
  • FIG. 3 shows typical I-V characteristics of a tunnel diode;
  • FIG. 4 shows typical I-V characteristics of a Schottky diode; and
  • FIG. 5 shows an embodiment of the present invention using a folded monopole antenna.

Detailed Description

The present invention describes a circuit for which the downlink communication signal (base station to label) and the uplink communication signal (backscattering from the label to base station) are optimized by means of separate detector and switching (may also be referred to as modulator) diodes. Applicants have noted that, in prior art wireless labels, the simultaneous optimization of the downlink and uplink signals cannot be achieved using a single diode which is biased at two different current levels. In such an arrangement, the diode acts as a detector when biased at a first current level and acts as a low impedance when biased at a second current level. However, such an arrangement results in a compromise or tradeoff in downlink or uplink communication performance.

A wireless label including a dipole antenna 102, a detector 110 and a modulator 120 is shown in FIG. 1. The dipole antenna 102 has a half-wavelength, each of the two branches being a quarter-wavelength long. The dipole antenna 102 may also be implemented as a "microstrip patch" antenna.

The wireless label illustratively operates in one of three modes; a sleep mode, a receiving mode, or a backscattering mode. The circuitry which performs this function, as well as other functions which are part of the wireless label but not necessary for an understanding of the present invention, is not further described herein. Our previously referenced U.S. patent application illustratively describes more details of the detector circuit operation.

Most of the time, the wireless label operates in the sleep mode so as to extend the lifetime of its battery (not shown). The wireless label, using well-known circuitry (not shown), periodically "wakes up" and enters the receiving mode looking for any modulated carrier signals (downlink signals) being sent to it. This downlink signal is typically an on/off keyed amplitude modulated carrier signal. If no modulated carrier signal is detected, the wireless label returns to the sleep mode. If a modulated carrier signal is received, it is detected and processed by the wireless label. A predetermined period of time after the completion of the receiving mode, the wireless label enters the backscatter or reflection mode. The exact timing between the receiving mode and backscattering mode is determined by label circuitry (not shown) which implements the predetermined communication protocol established between the base station and the wireless label. During the backscatter mode, the wireless label modulates a carrier wave signal received from the base station with the information to be sent to the base station, thereby forming the uplink signal. The uplink signal is modulated by switching modulator diode 121 on and off using an information signal received from baseband modulator circuit 124, as will be described in a later paragraph.

The detector circuit 110 includes matching network 113 that connects detector diode 111, transmission line 118, capacitor 116, and baseband circuit 117 to port 101 of antenna 102. The modulator circuit 120 includes modulator diode 121, transmission line 122, capacitor 123, and baseband modulator circuit 124.

Separate diodes 111 and 121 are utilized in the detector 110 and modulator 120 circuits, respectively, to maximize the receiving of a modulated carrier signal and reflecting (backscattering) of a received carrier signal.

The detector diode 111 and modulator diode 121 are connected across the antenna 102 in opposite polarities. Such a connection arrangement insures that, when the modulator diode 121 is modulated into the forward-biased region during the backscatter mode, it does not forward-bias the detector diode 111. Similarly, during the receive mode, when the detector diode 111 is forward-biased, the modulator diode 121 is reverse-biased.

If the diode 121 shown in FIG. 1 connected across the antenna port is a tunnel diode, a bypass capacitor must be added in series with the inductor 115 shown in FIG. 1. The bypass capacitor is needed because diode 121, being a tunnel diode, is conducting current for both negative and positive voltages. The bypass capacitor prevents current from flowing through the detector diode 111 for any voltage applied through the baseband modulator circuit 124.

In detector circuit 110, during a receiving mode, the detector diode 111, illustratively a zero DC current biased Schottky detector diode 111, detects or rectifies a received modulated carrier signal. As shown in FIG. 4, the detector diode 111, when operated at a zero biased current, has essentially a capacitive impedance. Returning to FIG. 1, the capacitive impedance of detector diode 111, at the received modulated carrier frequency, is conjugately matched to the inductive impedance Z1 of the matching network 113 terminated by port impedance of dipole antenna 102. This matching network 113 illustratively includes a capacitor 114 and inductor 115 which may be implemented by means of a simple, lumped or hybrid integrated LC matching circuit.

This matching network 113 transforms the capacitive junction impedance of detector diode 111 into an impedance Z2 which matches the real port impedance of dipole antenna 102. The modulator diode 121, a tunnel diode shown in FIG. 3, during the receiving mode is forward-biased in the valley 401 region of the I-V characteristics curve, creating a small parasitic capacitance across the port 101 of antenna 102. The capacitance of modulator diode 121 acts together with capacitor 114 of matching network 113.

The detected output of detector diode 111 is inputted to baseband detector circuit 117 via a quarter-wave transmission line 118 and a capacitor chip 116 which, at the received modulated carrier frequency, presents an open-circuit impedance to detector diode 111 to prevent RF currents from flowing into the baseband circuit 117. Similarly, during the detection mode, the quarter-wave transmission line 122 and capacitor 123 also present an open-circuit impedance to prevent RF currents at port 101 of antenna 102 from flowing back into baseband modulator circuit 124.

During the reflecting or backscattering mode, modulator diode 121 is forward-biased by an on-off modulation signal received from baseband modulator circuit 124. The forward-biasing current in diode 121 causes diode 121 to present an RF short-circuit impedance across antenna port 101. When a continuous wave (CW) signal at a resonant predetermined frequency is received by antenna 102, it generates high RF currents (+i,-i) in antenna 102 which maximize the backscatter energy re-radiated from antenna 102. Consequently, the incoming CW signal is backscatter modulated when the impedance of modulator diode 121 is modulated by turning it on and off using the signal from baseband modulator circuit 124.

Backscattering is enhanced if modulator diode 121 is a tunnel diode which is biased in the negative resistance region, shown as 402 in FIG. 3, when it is turned on.

When the modulator diode 121 is turned off during the backscattering mode, the quarter-wave transmission line 122 and capacitor 123 present an open-circuit impedance to prevent RF antenna currents from the incoming CW signal from flowing into baseband modulator circuit 124. The quarter-wave transmission line 118 and capacitor 116 also present an open-circuit impedance to prevent any of the RF antenna currents from flowing into baseband circuit 117 of detector circuit 110.

The intensity of the backscattered wave re-radiated from antenna 102 is the product of the incident CW signal field intensity times the backscattering cross-section of the antenna. This cross-section is a function of the antenna geometry and the port impedance of the antenna as outlined below.

The effective area of a small isotropic antenna can be readily derived from the basic antenna equations. If the antenna aperture, D0, is small with respect to one wavelength D0 < λ0 one obtains for the radius, r0, which defines the boundary between the radiative and the reactive region, r0 = λ0 / (2π). The resulting effective area, which is the cross-section of the virtual cavity formed by the antenna, is for a small isotropic antenna Aeff = πr20 = λ20 / (4π). Various detailed derivations of this basic equation have been reviewed recently by D. C. Hoff in the article entitled "Fun with the Friie Free-Space Transmission," IEEE Antennas and Propagation Magazine, Vol. 35, August 1993, pp. 33-35.

The cross-section for backscattering is identical to the effective area if the antenna port is terminated with an impedance which is equal to the port impedance. For the case of a dipole antenna with a total length of λ02, with a load impedance of 73 ohms terminating the antenna port, the cross-section is that shown by equation (3).

This cross-section is enhanced by a factor of four if the port is short-circuited and if the antenna is resonant at the frequency of the incident field. The increase of the scattering cross-section by 6 dB occurs because the currents +i and -i flowing in and out of the port are doubled, similar to the doubling of the current in a shorted transmission line as opposed to a current flowing into the matched load terminating a transmission line. For the case of an open antenna port, the antenna is split into two scatterers which resonate at the second harmonic frequency 2 f0 . At the fundamental frequency f0 , the scattering cross-section drops to nearly zero because the currents flowing in the two conducting parts are very small.

Consequently, for our FIG. 1 embodiment, by switching modulator diode 121 between an open- and a short-circuit impedance, the load impedanceZ2 presented across antenna port 101 switches between 72 ohms (Z2) and zero ohms. This results in a modulated backscatter wave that varies by a factor of 4, or 6 dB in power.

With reference to FIG. 2, there is shown a wireless label identical to FIG. 1 except that it includes a quarter-wavelength monopole antenna 201 rather than the dipole antenna 102 of FIG. 1. One such monopole may be implemented using an inverted-F structure as shown in FIG. 5. Such a monopole antenna 501 is typically utilized with a ground shield 502 mounted on ground plane 503 to shield the detector 110 and modulator 120 circuits as well as other circuits of the wireless label from antenna 501. The antenna 501 illustratively is implemented as a unitary L-shaped microstrip conductor 510 having two support legs or strips 511 and 512, thereby forming the monopole inverted-F antenna. These support strips 511 and 512 maintain the antenna 501 a predetermined height above ground plane 503. The first support strip 511 is electrically connected or shorted to ground plane 503 which is formed by a deposited metal surface on the top and bottom of printed circuit board 510. The second strip 512 is isolated from ground plane 503 by a thin dielectric material which is deposited over the ground plane 503. The dielectric material may be, illustratively, FR-4, a low-cost circuit board material. The bottom part 513 of the second strip 512 forms an antenna port 513 for antenna 501, which means that a signal incident on antenna 501 generates an RF voltage between the bottom of the second strip 512 (antenna port 513) and the ground plane 503. This RF voltage is connected to the detector 110 and modulator 120 circuits of FIG. 2, illustrated for convenience as circuit blocks in FIG. 5.

The antenna has a total length (522 + 523) of about 08 which is about 5.0 cm at an operating modulated carrier frequency of 2.45 GHz. The height (511) of the support strips 511 and 512 is about 0.8 cm. The antenna 501 illustratively may be fabricated from a stainless steel sheet by cutting an essentially L-shaped geometry (formed by segments 523 and 511, 522, in addition to the second strip 512 extending perpendicularly to 522) using a well-known computer-controlled wire Electron Discharge Machining (wire EDM). The resulting L-shaped metal piece is then appropriately bent to obtain the inverted-F shape of antenna 501.


Anspruch[de]
  1. Hochfrequenz-Vorrichtung (HF) mit einer Antenne (102) zum Empfangen eines HF-Signals, wobei die Antenne eine Antennenportimpedanz aufweist, gekennzeichnet durch:
    • eine an die Antenne (102) angeschlossene Detektordiode (111) zum Erfassen von durch die Antenne (102) empfangenen modulierten Signalen, wobei die Detektordiode (111) so durch ein Anpassungsnetzwerk (113) an die Antenne (102) angeschlossen ist, daß die Impedanz der Detektordiode (111) bei einer vorbestimmten HF-Frequenz auf die durch das Anpassungsnetzwerk (113) transformierte Antennenportimpedanz abgestimmt ist, und
    • eine an die Antenne (102) angeschlossene Tunneldiode (121), die gezielt in einen negativen Widerstandsbereich und aus diesem heraus vorgespannt werden kann, zur Verbesserung der Rückstreuung der Antenne (102).
  2. Vorrichtung nach Anspruch 1, wobei die Antenne ein Monopol (201) ist.
  3. Vorrichtung nach Anspruch 1, wobei die Antenne ein Dipol (102) ist.
  4. Vorrichtung nach Anspruch 3, wobei die Länge der Dipolantenne (102) eine halbe Wellenlänge beträgt und die Antennenportimpedanz reell ist.
  5. Vorrichtung nach Anspruch 1, wobei die Tunneldiode während der Zeit, in der sich die Vorrichtung in einem Empfangsmodus befindet, in einen Auszustand vorgespannt ist.
  6. Vorrichtung nach Anspruch 1, wobei die Tunneldiode in einem negativen Widerstandsteil ihres in Vorwärtsrichtung vorgespannten Bereichs während der Zeit vorgespannt ist, in der sich die Vorrichtung in einem Rückstreumodus befindet.
  7. Vorrichtung nach Anspruch 1, wobei die Tunneldiode im wesentlichen mit einer Talspannung ihres in Vorwärtsrichtung vorgespannten Bereichs während der Zeit vorgespannt ist, in der sich die Vorrichtung im Empfangsmodus befindet.
  8. Vorrichtung nach Anspruch 1, wobei

       die Detektordiode (111) an die Antenne (102) in einer entgegengesetzten Polarität zu der Tunneldiode (121) angeschlossen ist.
  9. Vorrichtung nach Anspruch 1, wobei

       eine Detektorschaltung (110) an die Detektordiode über eine Übertragungsschaltung (118) angeschlossen ist, die bei der vorbestimmten Frequenz an der Detektordiode (111) im wesentlichen eine Leerlaufimpedanz liefert.
  10. Vorrichtung nach Anspruch 9, wobei die Übertragungsschaltung (118) eine zwischen der Detektordiode (111) und einem Kondensator (116) an einen Eingang einer angeschlossenen Detektorschaltung (117) angeschlossene Viertelwellenübertragungsleitung (118) enthält.
  11. Vorrichtung nach Anspruch 1, wobei eine Modulatorschaltung (120) an die Tunneldiode (121) durch eine Übertragungsschaltung (122) mit einer an die Tunneldiode (121) angeschlossenen Viertelwellenübertragungsleitung (122) und einem Kondensator (123) an einem Eingang einer angeschlossenen Modulationsschaltung angeschlossen ist.
  12. Vorrichtung nach Anspruch 1, wobei die Detektordiode (111) eine Schottky-Detektordiode ist.
  13. Hochfrequenz-(HF)- Vorrichtung zum Betrieb mindestens im Empfangsmodus und einem Rückstreumodus mit einer Antenne (102) zum Empfangen eines HF-Signals, wobei die Antenne (102) eine Antennenportimpedanz aufweist, wobei die Vorrichtung gekennzeichnet ist durch:
    • eine Detektorschaltung (110) zum Erfassen des HF-Signals während des Empfangsmodus der Vorrichtung, wobei die Detektorschaltung (110) folgendes enthält:
    • ein Anpassungsnetzwerk (113) und
    • eine Detektordiode (111), die so an die Antenne (102) durch das Anpassungsnetzwerk (113) angeschlossen ist, daß eine Impedanz der Detektordiode (111) bei einer vorbestimmten HF-Frequenz auf die durch das Anpassungsnetzwerk (113) transformierte Antennenportimpedanz abgestimmt ist; und
    • eine Modulatorschaltung (120) zum Modulieren des Signals zur Rückstreuung während des Rückstreumodus, wobei die Modulatorschaltung (120) folgendes enthält:
    • eine an die Antenne (102) angeschlossene Tunneldiode (121), die gezielt in einen negativen Widerstandsbereich und aus diesem heraus vorgespannt werden kann, zur Verbesserung der Rückstreuung der Antenne (102), und
    • eine Basisbandmodulatorschaltung (124) für das gezielte Vorspannen der Tunneldiode (121) zum Modulieren der Rückstreuung der Antenne (102).
Anspruch[en]
  1. Radio Frequency (RF) apparatus having an antenna (102) for receiving an RF signal, the antenna having an antenna port impedance, CHARACTERIZED BY:
    • a detector diode (111) connected across the antenna (102) to detect modulated signals received by the antenna (102), said detector diode (111) connecting to the antenna (102) through a matching network (113) such that the impedance of the detector diode (111) at a predetermined RF frequency matches the antenna port impedance transformed through the matching network (113), and
    • a tunnel diode (121), being selectively biasable into and out of a negative resistance region, connected across the antenna (102) to enhance the backscattering of the antenna (102).
  2. Apparatus as claimed in claim 1 wherein the antenna is a monopole (201).
  3. Apparatus as claimed in claim 1 wherein the antenna is a dipole (102).
  4. Apparatus as claimed in claim 3 wherein the dipole antenna (102)is a half-wavelength long and the antenna port impedance is real.
  5. Apparatus as claimed in claim 1 wherein the tunnel diode is biased off during the time when the apparatus is in a receiving mode.
  6. Apparatus as claimed in claim 1 wherein the tunnel diode is biased in a negative resistance portion of its forward-biased region during the time when the apparatus is in a backscatter mode.
  7. Apparatus as claimed in claim 1 wherein the tunnel diode is biased substantially at a valley voltage of its forward-biased region during the time when the apparatus is in the receiving mode.
  8. Apparatus as claimed in claim 1 wherein

       the detector diode (111) connects across the antenna (102) in an opposite polarity to the tunnel diode (121).
  9. Apparatus as claimed in claim 1 wherein

       a detector circuit (110) connects across the detector diode through a transmission circuit (118) which provides an essentially open circuit impedance across the detector diode (111) at the predetermined frequency.
  10. Apparatus as claimed in claim 9 wherein the transmission circuit (118) includes a quarter-wavelength transmission line (118) connected between the detector diode (111) and a capacitor (116) at an input of a connected detector circuit (117).
  11. Apparatus as claimed in claim 1 wherein a modulator circuit (120) connects across the tunnel diode (121) through a transmission circuit (122) including a quarter-wavelength transmission line (122) connected across the tunnel diode (121) and a capacitor (123) at an input of a connected modulation circuit.
  12. Apparatus as claimed in claim 1 wherein the detector diode (111) is a Schottky detector diode.
  13. Radio frequency (RF) apparatus for operating in at least receiving mode and a backscattering mode including an antenna (102) for receiving an RF signal, the antenna (102) having an antenna port impedance, the apparatus being CHARACTERIZED BY:
    • a detector circuit (110) for detecting the RF signal during the receiving mode of the apparatus, the detector circuit (110) including,
    • a matching network (113), and
    • a detector diode (111) connected across the antenna (102) through the matching network (113) such that an impedance of the detector diode (111) at a predetermined RF frequency matches the antenna port impedance transformed through the matching network (113); and
    • a modulator circuit (120) for modulating the signal for backscattering during the backscattering mode, the modulator circuit (120) including,
    • a tunnel diode (121), being selectively biasable into and out of a negative resistance region, connected across the antenna (102) to enhance the backscattering of the antenna (102), and
    • a baseband modulator circuit (124) for selectively biassing the tunnel diode (121) to modulate backscattering of the antenna (102).
Anspruch[fr]
  1. Appareil radiofréquence (RF) doté d'une antenne (102) pour recevoir un signal RF, l'antenne présentant une impédance du port d'antenne, caractérisé par :
    • une diode détectrice (111) branchée aux bornes de l'antenne (102) pour détecter des signaux modulés reçus par l'antenne (102), ladite diode détectrice (111) se branchant à l'antenne (102) par le biais d'un réseau d'adaptation (113) de sorte que l'impédance de la diode détectrice (111) à une fréquence RF prédéterminée soit adaptée à l'impédance du port d'antenne transformée par le réseau d'adaptation (113), et
    • une diode tunnel (121), susceptible d'être polarisée sélectivement dans et hors d'une région de résistance négative, branchée aux bornes de l'antenne (102) pour renforcer la rétrodiffusion de l'antenne (102).
  2. Appareil selon la revendication 1, dans lequel l'antenne est un monopôle (201).
  3. Appareil selon la revendication 1, dans lequel l'antenne est un dipôle (102).
  4. Appareil selon la revendication 3, dans lequel l'antenne dipôle (102) est longue d'une demi-longueur d'onde et l'impédance du port est réelle.
  5. Appareil selon la revendication 1, dans lequel la diode tunnel est bloquée pendant tout le temps où l'appareil se trouve en mode de réception.
  6. Appareil selon la revendication 1, dans lequel la diode tunnel est polarisée dans une partie de résistance négative de sa région polarisée dans le sens direct pendant tout le temps où l'appareil se trouve en mode de rétrodiffusion.
  7. Appareil selon la revendication 1, dans lequel la diode tunnel est polarisée essentiellement à une tension de vallée de sa région polarisée dans le sens direct pendant tout le temps où l'appareil se trouve en mode de réception.
  8. Appareil selon la revendication 1, dans lequel

       la diode détectrice (111) se branche aux bornes de l'antenne (102) selon une polarité opposée à celle de la diode tunnel (121).
  9. Appareil selon la revendication 1, dans lequel

       un circuit détecteur (110) se branche aux bornes de la diode détectrice par un circuit de transmission (118) qui fournit essentiellement une impédance en circuit ouvert aux bornes de la diode détectrice (111) à la fréquence prédéterminée.
  10. Appareil selon la revendication 9, dans lequel le circuit de transmission (118) comporte une ligne de transmission quart de longueur d'onde (118) branchée entre la diode détectrice (111) et un condensateur (116) à une entrée d'un circuit détecteur branché (117).
  11. Appareil selon la revendication 1, dans lequel un circuit modulateur (120) se branche aux bornes de la diode tunnel (121) par le biais d'un circuit de transmission (122), comportant une ligne de transmission quart de longueur d'onde (122) branchée aux bornes de la diode tunnel (121) et un condensateur (123) à une entrée d'un circuit de modulation branché.
  12. Appareil selon la revendication 1, dans lequel la diode détectrice (111) est une diode détectrice de Schottky.
  13. Appareil radiofréquence (RF) destiné à fonctionner au moins en mode de réception et un mode de rétrodiffusion, comportant une antenne (102) pour recevoir un signal RF, l'antenne (102) présentant une impédance du port d'antenne, l'appareil étant caractérisé par :
    • un circuit détecteur (110) pour détecter le signal RF au cours du mode de réception de l'appareil, le circuit détecteur (110) comportant,
    • un réseau d'adaptation (113), et
    • une diode détectrice (111) branchée aux bornes de l'antenne (102) par le biais du réseau d'adaptation (113) de sorte qu'une impédance de la diode détectrice (111) à une fréquence RF prédéterminée soit adaptée à l'impédance du port d'antenne transformée par le biais du réseau d'adaptation (113) ; et
    • un circuit modulateur (120) pour moduler le signal pour la rétrodiffusion au cours du mode de rétrodiffusion, le circuit modulateur (120) comportant,
    • une diode tunnel (121), susceptible d'être polarisée sélectivement dans et hors d'une région de résistance négative, branchée aux bornes de l'antenne (102) pour renforcer la rétrodiffusion de l'antenne (102), et
    • un circuit modulateur en bande de base (124) pour polariser sélectivement la diode tunnel (121) afin de moduler la rétrodiffusion de l'antenne (102).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com