PatentDe  


Dokumentenidentifikation EP0774828 12.04.2001
EP-Veröffentlichungsnummer 0774828
Titel Interpolator und Verfahren zum Interpolieren eines Ankerwinkels
Anmelder Switched Reluctance Drives Ltd., Harrogate, North Yorkshire, GB
Erfinder Brown, Geoffrey Thomas, Harrogate, Nort Yorkshire, HG3 2NR, GB
Vertreter Herrmann-Trentepohl und Kollegen, 81476 München
DE-Aktenzeichen 69611970
Vertragsstaaten DE, ES, FR, GB, IT, NL, SE
Sprache des Dokument EN
EP-Anmeldetag 31.10.1996
EP-Aktenzeichen 963078902
EP-Offenlegungsdatum 21.05.1997
EP date of grant 07.03.2001
Veröffentlichungstag im Patentblatt 12.04.2001
IPC-Hauptklasse H02P 5/00
IPC-Nebenklasse H02P 7/05   

Beschreibung[en]

Electric motors turn electrical energy into mechanical energy to produce work. Electric motors work by applying a voltage across one or more windings, thereby energising the winding(s) to produce a resultant magnetic field. Mechanical forces of attraction or repulsion caused by the magnetic field cause a rotor in an electric motor to move. The efficiency of the electric motor depends in part on the timing and magnitude of each application of voltage to the motor. Timing of the voltage being applied is particularly important in the case of switched reluctance motors.

Historically, the switched reluctance motor was thought to be incapable of competing effectively with other types of motors. More recently however, a better understanding of motor design and the application of electronically controlled switching has resulted in a robust switched reluctance drive capable of high levels of performance over a wide range of sizes, powers and speeds. Note that the term "motor" is used here, but it will be appreciated by those skilled in the art that the term covers the same machine in a generating mode unless a particular distinction is made.

The switched reluctance motor is generally constructed without windings or permanent magnets on the rotating part (the rotor) and generally includes electronically-switched windings carrying unidirectional currents on the stationary part (the stator). Commonly, pairs of diametrically opposed stator poles may be connected in series or parallel to form one phase of a potentially multi-phase switched reluctance motor. Motoring torque is produced by applying voltage across each of the phase windings in a predetermined sequence that is synchronized with the angular position of the rotor so that a magnetic force of attraction results between poles of the rotor and stator as they approach each other. Similarly, generating torque is produced by positioning the voltage pulse in the part of the cycle where the poles are moving away from each other. The general theory of design and operation of switched reluctance machines is well known and discussed, for example, in The Characteristics, Design and Applications of Switched Reluctance Motors and Drives, by Stephenson and Blake and presented at the PCIM '93 Conference and Exhibition at Nurnberg, Germany, June 21-24, 1993.

There have been various strategies proposed in the past for controlling switched reluctance motors as part of an overall variable speed drive system. In general, these strategies may be divided into two broad groups: systems that employ current magnitude control over a fixed angle of rotor rotation, and systems that employ voltage control where the angular position at which the applied voltage is controlled. Often, these strategies are combined with each being used during particular periods of the motor's operation. The present invention is directed to angular position voltage control systems. A general discussion of such strategies can be found in the paper The Control of SR Drives: Review and Current Status by Sugden, Webster and Stephenson, EPE'89 Conference on Power Electronics And Applications, October 1989.

At high speeds, the torque of the motor is commonly controlled by controlling the position and duration of the voltage pulse applied to the winding during the phase period. Because a single pulse of voltage is typically applied during each phase period, this form of control is often referred to as "single-pulse control". In single-pulse control, the torque level is defined by the magnitude and shape of the voltage pulse which, in turn, is generally determined by: the angular speed of the rotor; the point during the rotor's rotation when voltage is applied to the phase winding by closing one or more switches (referred to as the "TURN-ON angle"); the point during the rotor's rotation when the application of voltage to the winding is reversed by opening one or more switches (referred to as the "TURN-OFF angle"); and, the magnitude of the voltage applied to the phase winding. The TURN-ON and TURN-OFF angles define a "conduction angle." The conduction angle is the angular distance between the TURN-ON and the TURN-OFF angles.

Some previous switched reluctance motors have used simple angular position sensors to provide the rotor position information necessary to energize the phase windings during their respective conduction angles. Normal practice is to use a two-sensor arrangement for four-phase machines, and a three-sensor arrangement for three-phase machines. One of the advantages to using this type of system is the low sensor cost.

Figure 1 shows the principal components of a switched reluctance drive system 10 for a switched reluctance machine. The input DC power supply 11 can be either a battery or rectified and filtered AC mains. The DC voltage provided by the power supply 11 is switched across the phase windings of the machine 13 by a power converter 12 under control of the electronic control unit 16. The switching must be correctly synchronized to the angle of rotation of the rotor for proper operation of the drive 10. As such, a rotor position detector 15 is typically employed to supply signals corresponding to the angular position of the rotor. The output of the rotor position detector 15 may also be used to generate a speed feedback signal.

The rotor position detector 15 may take many forms. In some systems, the rotor position detector 15 can comprise a rotor position transducer that provides output signals that change state each time the rotor rotates to a position where a different switching arrangement of the devices in the power converter 12 is required, or when the rotor rotates to a particular position where the rotor and stator poles are aligned with each other.

Figure 2 shows the elements of a typical four-phase switched reluctance machine 13. The machine 13 has eight salient poles 26a-h on the stator 28 and six poles 20a-f on the rotor 22. Each stator pole 26a-h carries a simple exciting coil 24a-h. Opposite coils 24a and 24e, 24b and 24f, 24c and 24g, 24d and 24h are connected to form north/south pole pairs for the four phase windings. Only one phase circuit 26 is shown for the opposite coils 24a and 24e. The opposite coils 24a and 24e are excited from a DC supply 29 through two switches or transistors (S1 and S2), and two diodes (D1 and D2) allow energy to return to the supply 29. Other switching circuits are well known in the art.

If it is desired to operate the machine 13 as a motor, torque is developed in the machine 13 by the tendency for the magnetic circuit to adopt a configuration of minimum reluctance, i.e., for an opposing pair of rotor poles 20a and 20d, 20b and 20e, and 20c and 20f to be pulled into alignment with an excited pair of stator poles 26a-h, maximizing the inductance of the exciting coils 24a-h. By switching the phases in the appropriate sequence, the rotor 22 will continuously rotate in the chosen direction so that torque is developed continuously in the appropriate direction. Moreover, the larger the current supplied to the coils 24a-h, the greater the torque. Conversely, if it is desired to operate the machine as a generator, the coils are excited as the rotor poles move away from the stator poles: power is then transferred from the shaft of the machine to the electrical supply.

The positional information provided by a typical rotor position transducer (RPT) is normally of the form shown in Figure 3, which shows the outputs of the three-sensor RPT typically used for a three-phase switched reluctance drive. RPT A is the signal used to drive phase A of the machine. The signals are cyclic over one inductance cycle, i.e., the angular period defined as the angular movement of the rotor between one pair of stator poles having one pair of rotor poles aligned with them and having an adjacent pair of rotor poles aligned with them. The three signals are displaced from each other by one third of a cycle. The RPT is usually arranged relative to the rotor shaft so that the edges of the RPT signals correspond to a particular part of the inductance cycle, e.g., &thetas;1, on RPT A would normally correspond to the minimum inductance point on the inductance cycle and &thetas;2 would then correspond to the maximum inductance position. Because of the mechanical symmetry of the geometry of the machine, the signals RPT B and RPT C correspond to similar points on the inductance cycle of phases B and C respectively.

All this is well-known in the art, as is the adjustment of the mechanical parts of the RPT assembly to ensure that the RPT signals have an equal mark: space ratio.

In one of the simplest methods of control of a switched reluctance rotor, the phase excitation can be linked directly to the appropriate RPT signal, i.e., when the sensor signal RPT A rises to logic 1 (&thetas;1 in Fig. 3), the phase is energised by closing switches S1 and S2 in Figure 2. When the rotor moves to &thetas;2, the phase is de-energised by opening the switches S1 and S2, allowing the flux associated with phase A and the current in the winding to decay to zero by virtue of the current flowing through the diodes and back to the supply.

Although at low machine speeds the sensor edge will typically correspond to the TURN-ON angle, high machine speeds require that the TURN-ON angle be advanced by some varying amount. Since the sensors of Figure 3 only provide a sensor edge twice in each inductance cycle, they do not provide sufficient resolution of the rotor position necessary to energize the phase windings during their respective conduction angles. Consequently, such switched reluctance drive systems ordinarily interpolate angles between sensor edges to provide sufficient resolution of the rotor position.

As seen in Figure 4, one prior art method of interpolation uses a frequency multiplier 31 for each motor phase to generate an integer multiple of pulses between the sensor signal for clocking a corresponding counter 32 for each machine phase. This generates counter values which increase at a rate proportional to the speed of rotation of the rotor. CE is the clock enable input on the counter 32 and prevents the clock changing the counter state when low. TC is the terminal count output of the counter 32 and is high when the counter is at its maximum value. Both the counter 32 and the frequency multiplier 31 for each machine phase are reset at the occurrence of their respective timing sensor edge corresponding to that phase. The outputs of each of these counters 32 are provided to two digital comparators 33 and 36 per machine phase which are used to provide the firing signals needed for energising the phase windings at their respective TURN-ON and TURN-OFF angles. A third digital comparator for providing a signal at the free-wheel angle may also be used as is known by those skilled in the art. The other input to each of these comparators 33 and 36 is typically provided by a pre-interpolated control map in a memory device such as an EPROM.

Since each of the frequency multipliers for each phase are corrected for the current motor speed at their respective sensor edge, the interpolated angles are always being extrapolated from the prior measurement of the period between these edges. The output of the frequency multiplier is only updated once per cycle, allowing relatively large errors to accumulate during rapid acceleration or deceleration. Furthermore, this arrangement requires one frequency multiplier for each phase of the machine.

As seen in Figure 5, one prior art method used to improve these prediction problems in multi-phase systems having more than one position sensor (e.g., a four-phase machine with two position sensors or a three-phase machine with three position sensors) uses a frequency multiplier 42 for all machine phases and updates that frequency multiplier 42 at each of the sensor edges. Here, instead of interpolating based on the entire prior machine phase cycle, the interpolation is based on portions of different phases. Thus, the frequency multiplier 42 will be updated responsive to machine acceleration and deceleration more often.

When visualizing the arrangement of Figure 5, it is helpful to consider the angles as digital "ramps" with the rising "ramp" representing the rising count. If a four-phase machine with two sensors is taken as an example, then the RPT signals RPT A and RPT B shown in Fig. 6a will be available. If each of these has a 50% mark:space ratio, they may be X-ORed as shown in Fig. 5 to give the combined signal SENSOR PULSE shown in Fig. 6a. This gives four pulse edges per inductance cycle. The frequency multiplier 42 then only needs to multiply by 64 to produce 256 pulses per phase cycle. As shown in Figure 6a, each of the four digital ramps A,B,C, and D represent the count for each respective phase. Also shown in this timing diagram are the sensor inputs, RPT A and RPT B, as well as the output of exclusive-or gate 41. Each ramp A, B, C, and D is reset by one of the sensor edges; it is common to set the sensor edges to coincide with the aligned position of each of the phases. While this system provides some improvement for acceleration or deceleration errors, it requires precise sensor positioning which may not be practical to implement, given practical manufacturing tolerances, especially tolerances associated with low cost machines. Moreover, it can be shown mathematically that any variation in the mark:space ratio will produce faster ramps for all phases. These variations cannot be designed out, since they vary with each particular machine. Thus, sub-optimal performance will manifest itself in the form of lower torques and reduced machine efficiency.

Only the frequency multiplier 42 of Figure 5 and the 8-Bit latches can be used for all the phases. The remaining circuitry is specific to each phase.

It will be realized from a consideration of Figure 6B that the prior art corrected for variations once per phase inductance cycle. In other words, the counter would be reset at zero, and then count up to maximum count only once during the phase inductance cycle. These prior art systems did not have the capability of correcting on the edge of each RPT signal.

EP-A-0534761 discloses a switched reluctance machine control system. As part of the disclosure there is a reference to means for producing control system output signals in which predefined values of switch turn-on and turn-off angle are compared with a count conducted over a single period in a phase inductance cycle.

Thus, a need exists for a method and circuitry for interpolating conduction angles with reduced error particularly in a system which adjusts for variations in the mark:space ratio of sensor inputs on each RPT edge. While the prior art will correct the frequency multiplier rate once during the phase inductance cycle, this invention extends the idea of this correction by setting the "ramps" to the expected value at each of the sensor edges, thus preventing the ramps from drifting for more than one sensor period between adjacent sensor edges. In the case of a three-phase machine with three sensors, this is a factor of six improvement over prior art systems.

The present invention is defined in the accompanying independent claims 1, 2, 11 and 12. Preferred features of the invention are recited in the dependent claims.

The invention provides a method and apparatus of interpolating conduction angle including counting between features, such as one edge of a digital pulse, to provide data from which position information is derivable. The tendency of the count to drift in a phase inductance cycle is limited to the period between features. At each feature detection there is an effective correction of the count.

In one form the present invention is used in controlling the energisation of the windings in a switched reluctance machine having more than one phase winding using readings from angular position sensors and interpolating these sensor values electronically to obtain adequate resolution on each sensor edge.

One aspect of the present invention for controlling the energisation of a phase winding involves generating normalized TURN-ON and TURN-OFF signals using a normalized rotor position count, and then generating a voltage control pulse defined by the normalized TURN-ON and TURN-OFF signals for energising the appropriate phase winding.

In accordance with another aspect of the present invention a TURN-ON/TURN-OFF circuit generates a normalized TURN-ON signal and a normalized TURN-OFF signal when the normalized rotor position count reaches a predetermined TURN-ON count and a predetermined TURN-OFF count. Then, a phase pulse circuit generates a voltage control pulse defined by the normalized TURN-ON and TURN-OFF signals for energising the appropriate phase.

These and other aspects and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention which are given by way of example and upon reference to the drawings in which:

  • Figure 1 is a diagram of the principal components of a switched reluctance drive system;
  • Figure 2 is a diagram of the internal components of a machine and the connection of one phase to its power switches;
  • Figure 3 shows the signals provided by a typical rotor position transducer (RPT) having three sensors and used for a three-phase switched reluctance drive;
  • Figure 4 is a block diagram of the typical components of an angular interpolation system used in each motor phase;
  • Figure 5 is a block diagram of an improvement over the system shown in Figure 2 and is used in systems with more than one sensor and the interpolation is based on portions of phases;
  • Figures 6a-b are timing diagrams for a group of signals present in the block diagram of Figure 5, and Figure 6c represents how the digital ramp or count for a phase is adjusted in the four-phase system described in Fig. 7 according to the principles of the present invention;
  • Figure 7 is a block diagram of one embodiment of the present invention;
  • Figure 8 is a block diagram of a second embodiment of the present invention which is used to generate the TURN-ON and TURN-OFF signals used in the voltage pulse generation circuit of Figure 9;
  • Figure 9 is a block diagram of the voltage pulse generation circuit for a four-phase system; and
  • Figure 10 is a block diagram of a voltage pulse generation circuit for a three-phase system.

Illustrative embodiments of the invention are described below as they might be implemented using the improved angle interpolation circuitry and methods to create a simpler, more efficient, and more accurate, conduction angle controller for the phases of a switched reluctance machine. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that the development of any such actual implementation would be a routine undertaking for those of ordinary skill having the benefit of this disclosure.

Conceptually, a simple embodiment of the invention is shown in Figure 7. The output RPT signal pulses from a conventional RPT sensor are supplied to an RPT edge detector 60 which produces edge pulses coincident with the rising and falling edges of the RPT signal pulses. The RPT signal pulses are also passed through an exclusive OR arrangement 68 and to a frequency multiplier (62), which has a multiplying factor of n (64 in this embodiment). The multiplied signal from the multiplier 62 is the clock signal to a counter 61. The multiplied signal is actually submitted to one input of a two-input AND gate 63 which is also supplied with the output of a digital comparator 65 so that the multiplied signal from the multiplier is only admitted to the clock input of the counter according to the state of the digital comparator 65. This is described below.

The edge signal directly from the edge detector 60 is applied to the parallel load input PL of the counter 61. This PL input to the counter presets the counter at each edge signal.

The RPT signals are also applied to the input of a maximum count setting device 66 which produces an output (N) which is the maximum count permitted for the current RPT state. The output of the device 66 is supplied to parallel inputs of the counter 61 and provides the other input to the digital comparator 65.

The counter 61 is enabled between adjacent sensor edges only until a maximum count for that angular region is reached; the counter 61 is stopped by preventing further clock pulses. If the frequency multiplier 62 is running too fast, the counter 61 will be stopped when the maximum count N is reached; if it is running too slow, the maximum count N will not be reached before the next sensor edge output from the edge detector. When the next sensor edge is detected, the counter 61 will be loaded with the correct count corresponding to that particular sensor edge, "PL" being the parallel load command, and the counter 61 will then be enabled thereafter. The reset input to the counter 61 is needed to start the whole phase cycle. The above circuitry must be repeated for all phases apart from the multiplier 62 and the edge detector 60.

Considering the previously described 4-phase machine (phases A,B,C, and D), the system described above begins operation as the RPT A signal falls to logic 0 and the phase A counter 61 is reset at the 'start of phase A' pulse. Figure 6c shows how the digital ramp or count for phase A is adjusted at each sensor edge. The counter 61 will then be clocked at a rate determined by the frequency multiplier 62. If the machine speed is constant and all of the sensor edges are evenly spaced, then the counter 61 should reach a count of sixty-three at the next sensor edge. In that case no corrective action is needed. If the time interval between sensor edges is too long, so that a count higher than 63 would be produced, then the counter will be disabled at sixty-three until the next sensor edge arrives. This disabling occurs when the TC output of the counter 61 is fed back through an inverter and disables the counter 61 through its CE input. Conversely, if the period between sensor edges is too short, the counter may only reach, say, sixty before the next sensor edge arrives. At that sensor edge, the counter will be preset to sixty-three, and the system will count to the next sensor edge, expecting a count of 127. The phases are interleaved, so while phase A is counting to sixty-three, phases B,C and D are counting to 127, 191 and 255 respectively.

By modifying the above concept to use normalized rotor positions, a system can be produced which not only provides for performance enhancement, but also reduces the logic circuits required for implementation. In the second embodiment shown in Figure 8, only one phase counter 73 is used to count between adjacent sensor edges for all the phases. Counting between sensor edges distinguishes this invention from prior art since the prior art provided for corrections only once during a phase. The counter 73 is consequently also reduced in size and will always start from zero and stop at the same count irrespective of which sensor edges are being used. Therefore, the counter 73 now indicates the normalized rotor position which is the rotor position between an adjacent pair of machine phases since the sensor edges are set to coincide with the aligned (i.e., the minimum reluctance) and unaligned positions of each of the phases. This simplifies the logic circuitry considerably and eliminates the necessity of presetting the counter 73. However, in order to provide full control over a phase cycle, a further determination of which machine phase should be energised must be made.

Specifically, this embodiment provides an improved method for controlling the energisation of the phase windings with an improved angle controller in switched reluctance machines having more than one phase winding and more than one position sensor, for example a four-phase machine having two position sensors. The position sensors are set so that their output signals will have sensor edges (the output of the position sensor transitioning from one logic level to another) which coincide with a predetermined datum of the inductance cycle of each of the phases. Preferably, the predetermined datum is that which corresponds to a rotor pole being completely aligned with the stator phase under consideration.

This is a position of the rotor relative to the stator which corresponds to one of minimum reluctance in the flux path between the two. Another convenient datum would be the position of the maximum reluctance at which the stator and rotor poles in question are midway between each other.

The signals provided by these position sensors are combined to generate a sensor pulse signal. This sensor pulse signal has a transition edge each time a sensor edge occurs for any of the position sensors. For instance, Figure 6a shows the position sensor signals RPT A and RPT B for a four-phase machine having two position sensors. One way to generate the sensor pulse signal is by using an exclusive-or (XOR) logic gate 72 with the sensor position signals RPTA and RPTB as its inputs, as shown in Figure 8. The single output from the XOR gate 72 is the input to a frequency multiplier 71.

The multiplied sensor pulse signal represents an angular clock signal. This angular clock signal has an integral number of pulses between the adjacent sensor edges of the sensor pulse signal. The angular clock signal is generated using the frequency multiplier 71 with the sensor pulse signal which is the output of the exclusive-or gate 72. The angular clock signal is used for generating a normalized rotor position count which is representative of the rotor's position relative to the stator poles. For instance, in the four-phase system of Figure 8 the output of the phase counter 73 is representative of the normalized rotor position.

This normalized rotor position count is used to generate the normalized TURN-ON and TURN-OFF signals which define the normalised conduction angles for the machine phases. For instance, in the four-phase system shown in Figure 8 a TURN-ON/TURN-OFF circuit consists of two six-bit digital comparators 74, 77 respectively. The normalized rotor position count comprises one input to each of these six-bit digital comparators. The other input to each of the digital comparators is provided by two six-bit latches 75, 76 respectively. The four-phase system shown uses eight bits to represent the respective TURN-ON and TURN-OFF angles (not normalized), the least significant six bits being representative of the normalized TURN-ON and TURN-OFF angles. The respective TURN-ON and TURN-OFF angles (not normalized) are provided to the angle controller typically by a control law EPROM or other memory circuit, the details of which are not relevant to the description of the present invention and well known to those skilled in the art.

The remaining two bits (two most significant bits) of the TURN-ON and TURN-OFF angles (not normalized) are included to generate a firing pulse for energising the appropriate phase of the switched reluctance machine. The TURN-ON and TURN-OFF signals define the starting position and the conduction angle for all of the firing pulses used to energize each particular phase. A phase pulse circuit is shown in Figure 9 which produces the firing pulses necessary to energize each machine phase at the appropriate time.

The four-phase system of Figure 9 uses the TURN-ON and TURN-OFF signals of the circuit of Figure 8 to generate the required firing pulse. The two position sensor signals RPT A and RPT B define a two-bit digital word indicating uniquely the quadrant of the phase cycle in which the rotor is situated. The two most significant bits of the TURN-ON and TURN-OFF reference angles and the two position sensor signals RPT A, RPT B are input to two, two-bit digital comparators 81, 82 with the TURN-ON and TURN-OFF signals (which are used as a carry in) as shown in Figure 9. The outputs of the comparators 81, 82 are used to define the start and finish of the firing pulse. The logic circuits for the other three phases are derived using identical circuits, with one or both of the sensor signals being inverted as appropriate.

A three-phase drive system may, in principle, use the same technique as described for the four-phase system. However, in a three-phase system, the number of RPT states will typically be six. Because of these six states, more than two bits are needed to represent them; the four-phase arrangement described above is inadequate for the task. However, several options exist to overcome this limitation. For instance, the six-bit counter could be set to provide less resolution. In the usual case, a six-bit counter will provide angular detection resolution of one part per sixty-four within a RPT state. However, a maximum count of forty-two could be used within a RPT state, instead of sixty-four, so that there are 252 counts in a ramp. 252 can be represented by an eight-bit number. Although this approach would work in theory, it may prove impractical to implement, as the counter cannot be easily shared between phases. Also, this embodiment requires additional circuits to derive values for the other phases.

Another option is to add a ninth bit to the TURN-ON and TURN-OFF reference angles to indicate the RPT state. In this case, three-bit digital comparators are required to process the most significant bits. Though simple, this embodiment uses a nine-bit word while most digital storage units are organized in eight-bit blocks.

A preferred implementation restricts the ranges of the TURN-ON reference angle and the TURN-OFF reference angle to four out of six states. The three bits representing the RPT state can be decoded slightly differently for the TURN-ON reference angle than the TURN-OFF reference angle. For the TURN-ON reference angle, the range is restricted to the second, third, fourth and fifth RPT states, irrespective of the value in the six-bit counter. These four states can be coded using two bits, giving a complete eight-bit ramp over the middle four RPT states. The arrangement is slightly different for the TURN-OFF reference angle because this angle is always further in the cycle than the TURN-ON reference angle. In the case of the TURN-OFF reference angle the first two states are disabled, allowing a full ramp over the last four states.

Figure 10 shows the preferred embodiment of the three-phase system, the main difference from the four-phase system being the implementation of the firing circuit, which requires additional signals and logic circuits. The two most significant bits of the TURN-ON and TURN-OFF reference angles and the two 2-bit signals ON-COMP and OFF-COMP from the decoder block 91 are input to two, two-bit digital comparators 92, 93 as shown in Figure 10. The decoder block 91 has among its inputs the three sensor position signals RPT A, RPT B, and RPT C and the rotational direction signal DIR. The decoder block 91 has as outputs the aforementioned two-bit signals ON-COMP and OFF-COMP, as well as ON, ON-BAR, and OFF-BAR, shown in Figure 10. The decoder block 91 may be implemented by a programmable logic array or other similar circuits as are known by those skilled in the art.

Thus, the principles of the present invention, which have been disclosed by way of the above examples and discussion, can be implemented using various configurations and arrangements. Those skilled in the art will readily recognize that various other modifications and changes may be made to the present invention without strictly following the exemplary application illustrated and described herein and without departing from the scope of the present invention, which is set forth in the following claims.


Anspruch[de]
  1. Verfahren zum Interpolieren eines Ankerwinkels in einer elektrischen Maschine (13), welche einen Anker (22), einen Ständer (28) und mindestens eine Phasenwicklung (24) besitzt, welche einen Phaseninduktionszyklus aufweist, und das Verfahren umfaßt:

       Erzeugung eines Ankerpositionssignales, welches erste Merkmale (RPTB) aufweist, die dem Beginn jedes Phaseninduktionszyklus entsprechen; dadurch gekennzeichnet, daß:
    • das Ankerpositionssignal zweite Merkmale (RPTA) aufweist, welche innerhalb des Zyklus auftreten und eine Mehrzahl von Zählintervallen innerhalb des Zyklus bilden;
    • Bestimmung eines für das Ende jedes Zählintervalles zu erwartenden Zählergebnisses;
    • Zählen in jedem Zählintervall, um am Ende jedes Intervalles eine Zahl zu erhalten;
    • Vergleichen der Zahl mit dem zu erwartenden Zählergebnis; und
    • Korrektur der Zahl am Ende jedes Zählintervalles; und
    • Ableiten des Ankerwinkels aus der Zahl.
  2. Verfahren zum Interpolieren eines Ankerwinkels in einer elektrischen Maschine (13), welche einen Anker (22), einen Ständer (28) und mindestens eine Phasenwicklung (24) besitzt, die einen Phaseninduktionszyklus aufweist, und das Verfahren umfaßt:
    • Erzeugung eines Ankerpositionssignales, welches erste Merkmale aufweist, die dem Beginn jedes Phaseninduktionszyklus entsprechen, dadurch gekennzeichnet, daß:
    • das Ankerpositionssignal zweite Merkmale aufweist, welche innerhalb des Zyklus auftreten und eine Mehrzahl von Zählintervallen innerhalb des Zyklus bilden;
    • Zählen im Zählintervall;
    • Rücksetzen der Zahl am Ende jedes Zählintervalles; und
    • Ableiten des Ankerwinkels aus der Zahl.
  3. Verfahren nach Anspruch 2, bei welchem die Zahl einen Maximalwert aufweist, der im wesentlichen einem zu erwartenden Ergebnis am Ende des Zählintervalles gleich ist, dessen Zahl durch das Auftreten des zweiten Merkmales zurückgesetzt wird.
  4. Verfahren nach Anspruch 1, 2 oder 3, welches die Frequenz des Auftretens der zweiten Merkmale vervielfacht.
  5. Verfahren nach Anspruch 1, 2, 3 oder 4, in welchem die Merkmale die ansteigenden und abfallenden Flanken der digitalen Impulse des Ankerpositionssignales sind.
  6. Verfahren zur Bestimmung des Durchlaßwinkels in einer elektrischen Maschine mit einem Anker und einem Ständer, welches umfaßt:
    • Interpolieren des Ankerwinkels nach einem oder mehreren der Ansprüche 1 bis 5;
    • Bestimmen des Beginns des Durchlaßwinkels in bezug zur Erfassung des ersten Merkmales; und
    • Bestimmen des Endes des Durchlaßwinkels nach der Zahl zwischen den zwei Merkmalen.
  7. Verfahren zum Betreiben einer geschalteten Reluktanzmaschine mit einem Anker, einem Ständer, mindestens einer Phasenwicklung und Schaltmitteln zur Stromsteuerung in der oder jeder Phasenwicklung, umfassend:
    • Bestimmung des Durchlaßwinkels nach Anspruch 6;
    • Einschalten der Schaltmittel, um die Leitfähigkeit zu Beginn des Durchlaßwinkels herzustellen; und
    • Ausschalten der Schaltmittel am Ende des Durchlaßwinkels.
  8. Verfahren nach Anspruch 7, bei welchem die Erfassung der ersten Merkmale mit einer Position der minimalen oder maximalen Reluktanz des Ankers relativ zum Ständer zusammenfällt.
  9. Verfahren nach Anspruch 7 oder 8, in welchem die Maschine eine Mehrphasenmaschine ist und der Positionssensor die ersten Merkmale für jede jeweilige Phase erzeugt.
  10. Verfahren nach einem oder mehreren der Ansprüche 7 bis 9, in welchem die zweiten Merkmale in regelmäßigen Winkelabständen der Ausrichtung des Ankers in bezug zum Ständer erzeugt werden.
  11. Interpolator zur Interpolation eines Ankerwinkels in einer elektrischen Maschine (13) mit einem Anker (22), einem Ständer ( 28) und mindestens einer Phaseninduktionswicklung, welche einen Phaseninduktionszyklus aufweist, wobei der Interpolator umfaßt:

       einen Ankerpositionsindikator, welcher betrieben wird, um ein Ankerpositionssignal zu erzeugen, welches erste Merkmale (RPTB) aufweist, die mit dem Beginn jedes Phaseninduktionszyklus übereinstimmen;

       einen Zähler (61) zum Zählen während der Drehung der Maschine, dadurch gekennzeichnet, daß:
    • der Ankerpositionsindikator auch zweite Merkmale (RPTA) erzeugt, die innerhalb des Zyklus auftreten und eine Mehrzahl von Zählintervallen innerhalb des Zyklus bilden; eine Bestimmungseinrichtung zur Bestimmung eines zu erwartenden Ergebnisses am Ende jedes Zählintervalles vorhanden ist, wobei der Zähler (61) vorgesehen ist, um während der Drehung der Maschine zu zählen und am Ende jedes Zählintervalles eine Zahl zu erzeugen;
    • ein Komparator zum Vergleich der Zahl mit dem zu erwartenden Ergebnis vorhanden ist;
    • eine Einrichtung (65) zur Korrektur der Zahl bei jedem Merkmal auf das zu erwartende Ergebnis vorhanden ist; und
    • eine Einrichtung zur Ableitung des Ankerwinkels aus der Zahl vorhanden ist.
  12. Interpolator zur Interpolation eines Ankerwinkels in einer elektrischen Maschine (13) mit einem Anker (22), einem Ständer (28) und mindestens einem Phaseninduktionszyklus, wobei der Interpolator umfaßt:

       einen Ankerpositionsindikator, welcher betrieben wird, um ein Ankerpositionssignal zu erzeugen, welches erste Merkmale (RPTB) aufweist, die mit dem Beginn jedes Phaseninduktionszyklus übereinstimmen;

       einen Zähler (61) zum Zählen während der Drehung der Maschine, dadurch gekennzeichnet, daß:
    • der Ankerpositionsindikator auch zweite Merkmale (RPTA) erzeugt, die innerhalb des Zyklus auftreten und eine Mehrzahl von Zählintervallen innerhalb des Zyklus bilden;
    • der Zähler (61) vorgesehen ist, um während der Drehung der Maschine zu zählen, und am Ende jedes Zählintervalles eine Zahl zu erzeugen;
    • und eine Einrichtung zum Rücksetzen der Zahl bei jedem Merkmal; sowie
    • eine Einrichtung zum Ableiten des Ankerwinkels aus der Zahl vorhanden sind.
  13. Interpolator nach Anspruch 11 oder 12, welcher eine Einrichtung (71) zur Vervielfachung der Frequenz des Auftretens der zweiten Merkmale enthält.
  14. Interpolator nach einem oder mehreren der Ansprüche 11 bis 13, welcher einen Flankendetektor (60) enthält, der so gestaltet ist, daß er das Positionssignal aufnimmt und die ermittelte Flanke dem Zähler zuleitet, um die Merkmale auszugeben, und der Positionsindikator betrieben wird, um die Merkmale dem Flankendetektor in Form von ansteigenden und/oder abfallenden Flanken der digitalen Impulse zuzuleiten.
  15. Elektrisches Maschinensystem, welches umfaßt:

       eine elektrische Maschine (13) mit einem Anker (22), einem Ständer (28), mindestens einer Phasenwicklung (24), Schaltmitteln (51, 52), welche betrieben werden, um den Strom in der oder jeder Phasenwicklung zu steuern, sowie eine Steuereinrichtung, welche einen Interpolator nach einem oder mehreren der Ansprüche 11 bis 14 enthält, sowie Betätigungsmittel (74, 77), welche einen Einschaltausgang der Schaltmittel besitzen, der den Beginn des Durchlaßwinkels in Abhängigkeit von der Ermittlung eines der Merkmale bildet, sowie einen Ausschaltausgang zur Bildung des Endes des Durchlaßwinkels entsprechend der Zahl zwischen zwei der Merkmale, wobei die Schaltmittel in Reaktion auf den Einschaltausgang eingeschaltet und in Reaktion auf den Ausschaltausgang ausgeschaltet werden.
  16. System nach Anspruch 15, in welchem die Erfassung des ersten Merkmales so festgelegt ist, daß sie mit einer Position der minimalen oder maximalen Reluktanz des Ankers relativ zum Ständer zusammenfällt.
  17. System nach Anspruch 15 oder 16, in welchem die Maschine eine Mehrphasenmaschine ist und der Positionssensor so betrieben wird, daß er das erste Merkmal für jede jeweilige Phase erzeugt.
  18. System nach einem oder mehreren der Ansprüche 15 bis 17, in welchem der Positionssensor so betrieben wird, daß er die zweiten Merkmale an den regelmäßigen Winkelabständen der Ausrichtung des Ankers in bezug zum Ständer erzeugt.
Anspruch[en]
  1. A method of interpolating a rotor angle in an electric machine (13) having a rotor (22), a stator (28) and at least one phase winding (24) which has a phase inductance cycle, the method including:

       generating a rotor position signal, including first features (RPTB) corresponding to the start of each phase inductance cycle; characterised by:
    • the rotor position signal including second features (RPTA), occurring within the said cycle and defining a plurality of count intervals within the cycle;
    • determining an expected count result for the end of each count interval;
    • counting in each count interval to produce a count at the end of the interval;
    • comparing the count with the expected count result; and
    • correcting the count at the end of each count interval; and
    • deriving the rotor angle from the count.
  2. A method of interpolating a rotor angle in an electric machine (13) having a rotor (22), a stator (28) and at least one phase winding (24) which has a phase inductance cycle, the method including:

       generating a rotor position signal, including first features corresponding to the start of each phase inductance cycle, characterised by:
    • the rotor position signal including second features, occurring within the said cycle and defining a plurality of count intervals within the cycle;
    • counting in the count interval;
    • resetting the count at the end of each count interval; and
    • deriving the rotor angle from the count.
  3. A method as claimed in claim 2 in which the count has a maximum value substantially equal to an expected result at the end of the count interval which count is reset in response to the occurrence of the second feature.
  4. A method as claimed in claim 1, 2 or 3 including multiplying the frequency of occurrence of the second features.
  5. A method as claimed in claim 1, 2, 3 or 4 in which the features are the rising and/or falling edges of digital pulses of the rotor position signal.
  6. A method of defining the conduction angle in an electric machine having a rotor and a stator, the method comprising:
    • interpolating the rotor angle as claimed in any of claims 1 to 5;
    • defining the start of the conduction angle in relation to the detection of the first feature; and
    • defining the end of the conduction angle according to the count between two of the features.
  7. A method of operating a switched reluctance machine having a rotor, a stator, at least one phase winding and switch means for regulating the current in the or each phase winding, including:
    • defining the conduction angle as claimed in claim 6;
    • enabling the switch means to conduct at the start of the conduction angle; and
    • disabling the switch means at the end of the conduction angle.
  8. A method as claimed in claim 7 in which detection of the first features is coincident with a position of minimum or maximum reluctance of the rotor relative to the stator.
  9. A method as claimed in claim 7 or 8 in which the machine is a multi-phase machine and the position sensor generates the first features for each respective phase.
  10. A method as claimed in any of claims 7 to 9 in which the second features are generated at regular angular intervals of the orientation of the rotor with respect to the stator.
  11. An interpolator for interpolating a rotor angle in an electric machine (13) having a rotor (22), a stator (28) and at least one phase inductance winding (24) which has a phase inductance cycle, the interpolator comprising:

       a rotor position indicator operable to generate a rotor position signal, including first features (RPTB) corresponding to the start of each phase inductance cycle;

       a counter (61) for counting during the rotation of the machine, characterised by:
    • the rotor position indicator also including second features (RPTA), occurring within the said cycle and defining a plurality of count intervals within the cycle;
    • determining means for determining an expected result at the end of each count interval, the counter (61) being arranged to count during the rotation of the machine to produce a count at the end of each count interval;
    • a comparator for comparing the count with the expected result;
    • means (65) for correcting the count at each feature to the expected result; and
    • means for deriving the rotor angle from the count.
  12. An interpolator for interpolating a rotor angle in an electric machine (13) having a rotor (22), a stator (28) and at least one phase inductance cycle, the interpolator comprising:

       a rotor position indicator operable to generate a rotor position signal, including first features (RPTB) corresponding to the start of each phase inductance cycle;

       a counter (61) for counting during the rotation of the machine, characterised by:
    • the rotor position indicator also including second features (RPTA), occurring within the said cycle and defining a plurality of count intervals within the cycle;
    • the counter (61) being arranged to count during the rotation of the machine to produce the count at the end of each count interval;
    • means for resetting the count at each feature; and
    • means for deriving the rotor angle from the count.
  13. An interpolator as claimed in claim 11 or 12, including means (71) for multiplying the frequency of occurrence of the second features.
  14. An interpolator as claimed in any of claims 11 to 13, including an edge detector (60) arranged to receive the position signal and to apply the detected edge to the counter to denote the features, the position indicator being operable to provide the features to the edge detector in the form of rising and/or falling edges of a digital pulse.
  15. An electric machine system comprising an electric machine (13) having a rotor (22), a stator (28), at least one phase winding (24), switch means (51,52) operable to regulate the current in the or each phase winding and control means including an interpolator as claimed in any of claims 11 to 14, and actuator means (74,77), having a switch means turn-on output defining the start of the conduction angle in relation to the detection of one of the features, and a turn-off output for defining the end of the conduction angle according to the count between two of the features, the switch means being enabled to conduct in response to the turn-on output, and being disabled in response to the turn-off output.
  16. A system as claimed in claim 15 in which the detection of the first feature is arranged to be coincident with a position of minimum or maximum reluctance of the rotor relative to the stator.
  17. A system as claimed in claim 15 or 16 in which the machine is a multi-phase machine and the position sensor is operable to generate the first feature for each respective phase.
  18. A system as claimed in any of claims 15 to 17 in which the position sensor is operable to generate the second features at regular angular intervals of the orientation of the rotor with respect to the stator.
Anspruch[fr]
  1. Procédé d'interpolation d'un angle de rotor dans une machine électrique (13) ayant un rotor (22), un stator (28) et au moins un enroulement de phase (24) qui a un cycle d'induction de phase, le procédé comprenant les étapes consistant :

       à générer un signal de position de rotor, comprenant des premières fonctions (RPTB) correspondant au début de chaque cycle d'induction de phase, caractérisé en ce que :
    • le signal de position du rotor comprend des secondes fonctions (RPTA), apparaissant dans ledit cycle et définissant une pluralité d'intervalles de comptage dans le cycle;
    • à déterminer un résultat de comptage escompté à la fin de chaque intervalle de comptage;
    • à compter dans chaque intervalle de comptage pour produire un comptage à la fin de l'intervalle;
    • à comparer le comptage au résultat de comptage escompté;
    • à corriger le comptage à la fin de chaque intervalle de comptage, et
    • à calculer l'angle de rotor du comptage.
  2. Procédé d'interpolation d'un angle de rotor dans une machine électrique (13) ayant un rotor (22), un stator (28) et au moins un enroulement de phase (24) qui a un cycle d'induction de phase, le procédé comprenant les étapes consistant :

       à générer un signal de position de rotor, comprenant des premières fonctions correspondant au début de chaque cycle d'induction de phase, caractérisé en ce que :
    • le signal de position de rotor comprend des secondes fonctions, apparaissant dans ledit cycle et définissant une pluralité d'intervalles de comptage dans le cycle;
    • à compter dans l'intervalle de comptage;
    • à remettre à zéro le comptage à la fin de chaque intervalle de comptage, et
    • à calculer l'angle de rotor du comptage.
  3. Procédé selon la revendication 2, dans lequel le comptage a une valeur maximale sensiblement égale à un résultat escompté à la fin de l'intervalle de comptage, ledit comptage étant remis à zéro en réponse à l'apparition de la seconde fonction.
  4. Procédé selon la revendication 1, 2 ou 3, comprenant la multiplication de la fréquence d'apparition des secondes fonctions.
  5. Procédé selon la revendication 1, 2, 3 ou 4, dans lequel les fonctions sont les fronts montants et/ou descendants d'impulsions numériques du signal de position du rotor.
  6. Procédé de définition de l'angle de conduction dans une machine électrique ayant un rotor et un stator, le procédé comprenant les étapes consistant :
    • à interpoler l'angle du rotor selon l'une quelconque des revendications 1 à 5;
    • à définir le début de l'angle de conduction en relation avec la détection de la première fonction, et
    • à définir la fin de l'angle de conduction selon le comptage entre deux des fonctions.
  7. Procédé de fonctionnement d'une machine à réluctance commutée ayant un rotor, un stator, au moins un enroulement de phase et un moyen de commutation pour régler le courant dans le ou dans chaque enroulement de phase, comprenant les étapes consistant :
    • à définir l'angle de conduction selon la revendication 6;
    • à activer le moyen de commutation pour qu'il soit conducteur au début de l'angle de conduction, et
    • à désactiver le moyen de commutation à la fin de l'angle de conduction.
  8. Procédé selon la revendication 7, dans lequel la détection des premières fonctions coïncide avec une position de réluctance minimale ou maximale du rotor par rapport au stator.
  9. Procédé selon la revendication 7 ou 8, dans lequel la machine est une machine à phases multiples et le capteur de position génère les premières fonctions pour chaque phase respective.
  10. Procédé selon l'une quelconque des revendications 7 à 9, dans lequel les secondes fonctions sont générées à intervalles angulaires réguliers de l'orientation du rotor par rapport au stator.
  11. Interpolateur pour l'interpolation d'un angle de rotor dans une machine électrique (13) ayant un rotor (22), un stator (28) et au moins un enroulement d'induction de phase (24) qui a un cycle d'induction de phase, l'interpolateur comprenant :

       un indicateur de position de rotor qui est à même de générer un signal de position de rotor, qui comprend des premières fonctions (RPTB) correspondant au début de chaque cycle d'induction de phase;

       un compteur (61) pour un comptage au cours de la rotation de la machine, caractérisé en ce que :
    • l'indicateur de position de rotor comprend également des secondes fonctions (RPTA), apparaissant dans ledit cycle et définissant une pluralité d'intervalles de comptage dans le cycle;
    • un moyen de détermination pour déterminer un résultat escompté à la fin de chaque intervalle de comptage, le compteur (61) étant agencé pour compter au cours de la rotation de la machine afin de produire un comptage à la fin de chaque intervalle de comptage;
    • un comparateur pour comparer le comptage au résultat escompté;
    • un moyen (65) pour corriger le comptage à chaque fonction selon le résultat escompté, et
    • un moyen pour calculer l'angle de rotor à partir du comptage.
  12. Interpolateur pour interpoler un angle de rotor dans une machine électrique (13) ayant un rotor (22), un stator (28) et au moins un cycle d'induction de phase, l'interpolateur comprenant :

       un indicateur de position de rotor qui est à même de générer un signal de position de rotor qui comprend des premières fonctions (RPTB) correspondant au début de chaque cycle d'induction de phase;

       un compteur (61) pour un comptage au cours de la rotation de la machine, caractérisé en ce que :
    • l'indicateur de position de rotor comprend également des secondes fonctions (RPTA), apparaissant dans ledit cycle et définissant une pluralité d'intervalles de comptage dans le cycle;
    • le compteur (61) étant agencé pour compter au cours de la rotation de la machine afin de produire le comptage à la fin de chaque intervalle de comptage;
    • un moyen pour remettre à zéro le comptage à chaque fonction, et
    • un moyen pour calculer l'angle de rotor à partir du comptage.
  13. Interpolateur selon la revendication 11 ou 12, comprenant un moyen (71) pour multiplier la fréquence d'apparition des secondes fonctions.
  14. Interpolateur selon l'une quelconque des revendications 11 à 13, comprenant un détecteur de front (60) agencé pour recevoir le signal de position et appliquer le front détecté au compteur pour désigner les fonctions, l'indicateur de position étant à même de délivrer les fonctions au détecteur de front sous la forme de fronts montants et/ou descendants d'une impulsion numérique.
  15. Système de machine électrique comprenant une machine électrique (13) ayant un rotor (22), un stator (28), au moins un enroulement de phase (24), un moyen de commutation (51, 52) qui est à même de régler le courant dans le ou dans chaque enroulement de phase et un moyen de réglage comprenant un interpolateur selon l'une quelconque des revendications 11 à 14, et un moyen d'actionnement (74, 77) ayant une sortie de marche du moyen de commutation définissant le début de l'angle de conduction en relation avec la détection de l'une des fonctions et une sortie d'arrêt pour définir la fin de l'angle de conduction selon le comptage entre deux des fonctions, le moyen de commutation étant activé pour devenir conducteur en réponse à la sortie de marche et étant désactivé en réponse à la sortie d'arrêt.
  16. Système selon la revendication 15, dans lequel la détection de la première fonction est aménagée pour coïncider avec une position de réluctance minimale ou maximale du rotor par rapport au stator.
  17. Système selon la revendication 15 ou 16, dans lequel la machine est une machine à phases multiples et le capteur de position fonctionne pour générer la première fonction pour chaque phase respective.
  18. Système selon l'une quelconque des revendications 15 à 17, dans lequel le capteur de position est à même de générer les secondes fonctions à intervalles angulaires réguliers de l'orientation du rotor par rapport au stator.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com