PatentDe  


Dokumentenidentifikation EP0697763 26.07.2001
EP-Veröffentlichungsnummer 0697763
Titel MEHRFACH GEKOPPELTER LEISTUNGSWANDLER UND SEINE STEUERVERFAHREN
Anmelder Kabushiki Kaisha Yaskawa Denki, Kitakyushu, Fukuoka, JP
Erfinder WATANABE, E., Kitakyushu-shi, Fukuoka 806, JP;
MATSUNAGA, H., Kitakyushu-shi, Fukuoka 806, JP
Vertreter BOEHMERT & BOEHMERT, 28209 Bremen
DE-Aktenzeichen 69521370
Vertragsstaaten DE, GB, IT
Sprache des Dokument EN
EP-Anmeldetag 01.03.1995
EP-Aktenzeichen 959107202
WO-Anmeldetag 01.03.1995
PCT-Aktenzeichen JP9500327
WO-Veröffentlichungsnummer 9524069
WO-Veröffentlichungsdatum 08.09.1995
EP-Offenlegungsdatum 21.02.1996
EP date of grant 20.06.2001
Veröffentlichungstag im Patentblatt 26.07.2001
IPC-Hauptklasse H02M 7/48

Beschreibung[en]
FIELD OF ART

The present invention relates to a multi-coupled power conversion system, in particular a system of multi-coupled PWM-controlled power converters (inverters) which reduces the harmonic components of output voltage and suppresses circulating currents flowing between the PWM-controlled power converters.

BACKGROUND OF THE INVENTION

There is a conventional power conversion system which reduces the harmonic components of output voltage, as disclosed in Unexamined Japanese Patent Publication No. Sho 60-98875 (to be referred to as "Citation 1" hereinafter). The Citation 1 is a method of controlling a multi-coupled power conversion system including voltage-type PWM-controlled power converters of n in number (n is an integer of two or greater ) connected in parallel, with interphase reactors being provided between common-phase output terminals of the power converters, and it is characterized by the shifting in steps of 360/n degrees of the carrier signals which control individual power converters. Namely, the carrier signals that are the base signals for producing the PWM waveform of the parallel-connected power converters are given phase differences of 360/n degrees in correspondence to the power converters, thereby reducing the harmonic components of the output voltage.

However, although the prior art of Citation 1 is capable of reducing the harmonic components of the output voltage, it has the problem of a smaller effect of harmonic reduction for line voltages that are the composition of the phase voltages. Because of this, the harmonic components of output current created in proportion to the line voltage cannot be reduced sufficiently, and in the case of driving a motor, for example, a torque ripple and speed ripple are created and the motor cannot rotate stably.

Although the prior art disclosed in Citation 1 is capable of reducing the harmonic components of the output voltage, there arise lateral currents flowing between the output phases of the power converters, so that the motor supply current decreases and large output interphase reactors are needed.

There is another conventional power conversion system described in Unexamined Japanese Patent Publication No. Hei 5-211775 (to be referred to as "Citation 2" hereinafter). This is a serial or parallel multi-coupled power conversion system having its output voltage controlled by pulse-width modulation, in which a zero-voltage vector adjacent to the command output voltage vector and having a zero line voltage, a zero-voltage vector of a varying neutral voltage or a neutral-voltage vector of a varying neutral-voltage is selected based on the amplitude and phase of the command output voltage vector, with the order of selection of the three voltage vectors in the specified period being controlled so that the zero-voltage vector or neutral-voltage vector comes first.

The prior art of Citation 2 is a means of preventing the loss of harmonic reduction of the output voltage, which is the feature of the serial multicoupled power conversion system. This is in contrast to the usual 2-level power conversion system which produces two positive or negative voltages, in which case, when the command output voltage has its amplitude increased, the zero output voltage period decreases and the positive (output voltage: E) or negative (output voltage: -E) period increases, resulting in an increased amplitude of output voltage. The citation 2 does not deal with the state of a smaller amplitude of output voltage, i.e., this is not a power conversion system which reduces the harmonic components irrespective of the amplitude of output voltage.

Unexamined Japanese Patent Publication No. Hei 5-56648 as well as US 5325285 being parallel thereto (to be referred to as "Citation 3" hereinafter) disclose a parallel operation controller for a PWM power conversion system. The controller includes output current detectors for individual power converters, a circulating current calculator which calculates the circulating currents of the power converters based on the detected output currents, and a parallel operation inhibition circuit which produces and feeds a base cutoff signal to one power converter when a circulating current exceeds a certain value.

However, the prior art disclosed in Citation 3 has a problem in that when the base cutoff operation takes place, the output current decreases to the point where it is unable to drive a load such as a motor.

IEEE Transactions on Industry Applications, 28 (1992) September/October, No. 5, New York, US, pages 1023 to 1030, discloses a technicque for current-controlled PWM invertes, two voltage source inverters, the output terminals of which are connected in parallel through current balancers, being used as main circuit.

DE 38 16 444 A1 discloses a PWM control device for a compensating multiplex inverter with output terminals of two inverters being thereof connected with each other via a compensation throttle in order to obtain parallel three phase multiplex outputs from the centers of the compensation throttle.

DE 4341868 A1 discloses a parallel multiple inverter with two parallel connected single inverters.

DISCLOSURE OF THE INVENTION

The object of this invention is to provide a multi-coupled power conversion system which reduces the harmonic waves of line voltages of the output voltage and also reduces the harmonic waves of the phase voltages.

According to this invention the object is achieved by a multi-coupled power conversion system in line with claim 1.

Subclaims 2 to 5 describe preferred embodiments of the invention.

According to this invention, the lateral currents flowing-between output phases of the power converters can be suppressed, and consequently the output reactors can be made compact and the motor supply current can be increased.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram showing the circuit arrangement of an embodiment of this invention; Fig. 2 is a set of diagrams including a conceptual diagram of the spatial voltage vectors applied to the embodiment of this invention and tables of the selected spatial voltage vectors and the spatial voltage vector series which determine the order of the selected spatial voltage vectors; Fig. 3 is a set of diagrams showing an example of PWM waveforms produced by the embodiment of this invention; Fig. 4 is a diagram showing PWM waveforms produced by another embodiment of this invention; Fig. 5 is a diagram showing PWM waveforms produced by the prior art of Citation 1; and Fig. 6 and Fig. 7 are block diagrams showing the arrangement of yet another embodiment of this invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The embodiments of this invention will be explained with reference to the drawings.

Fig. 1 is a block diagram showing the circuit arrangement of an embodiment of this invention. This embodiment is the case of the parallel operation of two voltage-type, 3-phase PWM (pulse width modulation) power converters using IGBTs (Insulated Gate Bipolar Transistors) as automatic turn-off switching devices. In Fig. 1, reference numeral 101 denotes a spatial voltage vector calculator, which operates as follows.

Initially, a switching period, command amplitude Vc and command phase (electrical angle) &thetas; are fed to the spatial voltage vector calculator 101. Spatial voltage vectors are to indicate the switching states of the power converters, and there are eight spatial voltage vectors [V0], [V1], [V2], [V3], [V4], [V5], [V6] and [V7] for a 3-phase power converter, with "1" and "0" indicating the on-state and off-state of the switching devices located on the higher voltage side of the d.c. lines, as shown in Fig. 2(a). Among these spatial voltage vectors, vectors [V0] and [V7] are specifically called "spatial zero-voltage vectors" (or "zero vectors"). The eight spatial voltage vectors have phase differences of 60° intervals and have an equal magnitude, with the zero vectors being located at the center, as shown in Fig. 2(b). A command spatial voltage vector [Vc] has a command amplitude Vc and has an electrical angle &thetas; with respect to the spatial voltage vector [V1].

The spatial voltage vector calculator 101 selects two spatial voltage vectors [Vi] and [Vj] depending on the value of electrical angle &thetas; as shown in Fig. 2(c).

Subsequently, output times Ti and Tj of the spatial voltage vectors [Vi] and [Vj] and output times T0 and T7 of the spatial voltage vectors [V0] and [V7] are calculated from the command amplitude Vc based on the following equations. Ti= {Vc&peseta;Tc&peseta;sin(60°-&thetas;a)}/{2&peseta;sin(60°)} Tj= (Vc&peseta;Tc&peseta;sin&thetas;a)/{2&peseta;sin(60°)} T0= T7= (Tc-Ti-Tj)/2 where &thetas;a is the electrical angle of the command spatial voltage vector [Vc] with respect to the selected spatial voltage vector [Vi], and it is expressed as follows: &thetas;a = &thetas; -60°&peseta;N and N is a numerical value which depends on the electrical angle &thetas; as listed in Fig. 2(c).

The output times Ti, Tj, T0 and T7 provided by the spatial voltage vector calculator 101 are fed to a vector permutation device 102, by which the order of vector output is determined in accordance with two spatial voltage vector a series P1 and P2 shown in Fig. 2(d). In compliance with this output order, spatial voltage vectors are released for the specified durations. The spatial voltage vector series P1 and P2 are series of spatial voltage vectors established for the first and second power converters 114 and 124, respectively, with the P2 being derived from the P1, having its spatial zero-voltage vector [V0] at the end moved to the top. Namely, this invention resides in a control method for a multi-coupled system of parallel-connected power converters, in which, for multiple spatial voltage vectors which generate the on/off commands to be fed to individual power converters, the order of the second series of spatial voltage vectors having different output times and fed to the second power converters is shifted with respect to the first series of spatial voltage vectors having different output times and fed to the first power converter by the amount of the output time of the spatial voltage vector located at the end of the first series.

A PWM generator 113 generates PWM waveform voltages in accordance with the released spatial voltage vectors which have been arranged based on the spatial voltage vector series P1 in the vector permutation device 102, and delivers the resulting on/off commands for the switching devices to the gate circuit (not shown) of first power converter 114. Similarly, another PWM generator 123 generates PWM waveform voltages in accordance with spatial voltage vector series P2, and delivers the resulting on/off commands for the switching devices to the gate circuit (not shown) of the second power converter 124.

The first and second power converters 114 and 124 operate the automatic turn-off switching devices in accordance with the PWM output signals produced by the PWM generators 113 and 123, thereby producing 3-phase a.c. voltages. Both power converters have their a.c. output terminals U1 and U2, V1 and V2, and W1 and W2 connected in pairs through reactors 105, and the a.c. voltage produced by both power converters 114 and 124 is supplied to a load 106.

The foregoing operation of this embodiment will be explained more specifically for the case of a command amplitude of Vc= 0.3 [P.U.] and a command phase of &thetas;= 80° (electrical angle).

For the command phase &thetas;= 80°, the spatial voltage vector calculator 101 selects the spatial voltage vector [V3]= (0,1,0) for the spatial voltage vector [Vi] and the spatial voltage vector [V2]= (1,1,0) for the spatial voltage vector [Vj], and calculates the output times T3, T2, T0 and T7 based on the equations (1), (2) and (3). Since the numerical value is N= 1, as listed in Fig.2(c), the angle with the selected spatial voltage vector is calculated to be &thetas;a= 20° based on the equation (4).

The resulting output times T3, T2, T0 and T7 are fed to the vector permutation device 102, and arranged in accordance with the spatial voltage vector series P1 and P2. The output times arranged based on the spatial voltage vector series P1 (shown by a1 in Fig. 3(a)) are fed to the PWM generator 113, by which 3-phase PWM waveforms are generated as shown by a2, a3 and a4 in Fig. 3(a). Similarly, the output times arranged based on the spatial voltage vector series P2 (shown by b1 in Fig. 3(b)) are fed to the PWM generator 123, by which 3-phase PWM waveforms are generated as shown by b2, b3 and b4 in Fig. 3(b).

Fig. 4 shows the voltage waveforms produced by the on/off operation in accordance with the PWM signals of the automatic turn-off switching devices of the first and second power converters 114 and 124, and these voltage waveforms are for the case of the command amplitude Vc= 0.6 [P.U.] as another embodiment of this invention. In Fig. 4, 4a, 4b, 4d and 4e show the waveforms of phase voltages on the output terminals U1, U2, V1 and V2 in Fig. 1, 4c and 4f show the composite phase voltages at the points U and V in Fig. 1 produced by both power converters 114 and 124 and coupled by the reactors, and 4g shows the waveform of output line voltage between U and V in Fig. 1 produced by both power converters 114 and 124.

Fig. 5 shows the voltage waveforms produced by the conventional system for the same command amplitude Vc= 0.6 [P.U.] as Fig. 4, and the waveforms 5a-5g correspond to the waveforms 4a-4g of Fig. 4. The comparison between the waveforms 4g of Fig. 4 and 5g of Fig. 5 reveals that the line voltage 5g of Fig. 5 is formed of the zero-voltage mode and full-voltage mode and has a large voltage variation. In contrast, the line voltage 4g of Fig. 4 is formed of the zero-voltage mode and intermediate-voltage mode and has a smaller voltage variation. Accordingly, the inventive system significantly reduces the harmonic components of the line voltage.

Specifically, the PWM voltage shown by 4g in Fig. 4 has its level varying in three steps of 1 P.U., 0.5 P.U. and 0 P.U., resulting in a smaller voltage difference from the sinusoidal fundamental voltage waveform, i.e., it includes fewer high-frequency components. In contrast, the PWM voltage shown by 5g in Fig. 5 has its level varying only in one step of 0 P.U., resulting in a greater voltage difference from the sinusoidal fundamental voltage waveform, i.e., it includes more high-frequency components. This superior feature of this invention is based on the sophisticated control scheme of PWM voltage in which the order of the second series of spatial voltage vectors having different output times and fed to the second power converters is shifted with respect to the first series of spatial voltage vectors having different output times and fed to the first power converter by the amount of the output time of the spatial voltage vector located at the end of the first series.

According to this invention, the amount of variation of the output line voltage waveform as a result of composition by the reactors can be reduced and, therefore, the harmonic components of the output line voltage waveform can be reduced significantly. Consequently, the harmonic components of the output current determined from the harmonic components of the output line voltage are reduced and, in the case of driving an a.c. motor for example, the torque ripple and speed ripple of the a.c. motor can be reduced. The inventive system enables servo calculation control based on the extremely smooth rotation of the a.c. motor, and contributes significantly to the enhanced stability of the control system.

Fig. 6 and Fig. 7 are block diagrams showing yet another embodiment of this invention. This embodiment shows the case of the parallel operation of two voltage-type, 3-phase PWM power converters using IGBTs as automatic turn-off switching devices. In the figure, 101 indicates a spatial vector calculator having a function similar to the counterpart in the embodiment shown in Fig. 1.

The vector calculator 101 produces and feeds output times Ti, Tj, T0 and T7 to the vector permutation device 102, by which the order of vector output is determined in accordance with the two vector series P1 and P2 shown in Fig. 4. In compliance with this output order, these vectors are released for specified durations. The vector series P1 and P2 are established for the first and second power converters 114 and 124, respectively, with the P2 being derived from the P1 having its zero vector [V0] at the end moved to the top.

A PWM generator 103 generates PWM waveform voltages in accordance with the released spatial voltage vectors which have been arranged based on the spatial voltage vector series P1 in the vector permutation device 102, and delivers the resulting on/off commands for the switching devices to the gate circuit of the first power converter 114. Similarly, the PWM generator 103 generates PWM waveform voltages in accordance with the spatial voltage vector series P2, and delivers the resulting on/off commands for the switching devices to the gate circuit of the second power converter 124.

The PWM generator 103 produces vector state signals, which are "0" when the PWM outputs to be fed to the first and second power converters are both zero vectors (V0 and V7), or "1" in all other cases.

Switches 8 select the "A" position or "B" position in response to "0" or "1" outputs of flip-flops 19 so that the PWM outputs to the first and second power converters are replaced by each other.

On-delay counters 9 retard the "0" to "1" transition of the PWM outputs in order to prevent the short-circuiting of IGBT pairs in the power converter main circuit.

Gate blocking circuits 10 deliver the outputs of the on-delay counters 9 intact to the first and second power converters when comparators 16 produce "0" output signals, or deliver "0" outputs to the power converters irrespective of the outputs of the on-delay counters 9 when the comparators 16 produce "1" output signals.

The first and second power converters 114 and 124 operate the respective automatic turn-off switching devices in response to "1" or "0" PWM outputs, respectively, provided by the respective gate blocking circuits, thereby producing the 3-phase a.c. power.

The power converters have their a.c. output terminal pairs U1 and U2, V1 and V2, and W1 and W2 coupled through the 3-phase reactor 4, and the a.c. power produced by both power converters is supplied to the load 5.

The output currents detected by current detectors 3 are fed to subtracters 11, by which the difference in currents of each phase is evaluated. Each differential current is averaged with the current in a half PWM period detected by a sample-holding circuit 12, and each resulting average differential current is fed to comparators 16 and 17.

The comparator 16 compares the absolute value of the average differential current provided by an absolute value circuit 20 with a preset value provided by a setting device 14, and produces a "1" or "0" output when the absolute value of the average differential current is greater or smaller than the preset value, respectively. The comparator 17 compares the average differential current with a preset value provided by a setting device 15, and produces a "1" or "0" output when the average differential current is greater or smaller than the preset value, respectively. The flip-flops 19 produce the command signals of the switches 8 from the PWM state signals and the outputs of the comparators 17 in compliance with the rule listed in Table 1. PWM state signal (R) Comparator output (S) Output 0 0 0 1 0 0 0 1 1 1 1 0

Based on the foregoing circuit arrangement, the system operates as follows.

In response to the operation of the comparator 16, the first and second power converters have their output waveforms replaced by each other, and the lateral current diminishes without having the variation of the phase voltage waveform applied to the load. In response to the operation of the comparator 17, the first and second power converters have their output waveforms cut off, causing the lateral current to diminish immediately, and the magnetic loss created by the reactor to decrease.

According to this invention, the lateral current flowing between output phases of the power converters is suppressed without variation of the line voltage waveform, and, accordingly, the magnetic loss of the output reactor which increases in proportion to the lateral current can be suppressed. Consequently, it becomes possible to make the output reactor more compact and to increase the motor supply current.

INDUSTRIAL FEASIBILITY

The present invention is useful for large-capacity motor drive systems in steel plants, chemical plants, and the like.


Anspruch[de]
  1. Mehrfach gekoppeltes Leistungswandlersystem, das Leistungswandler (114, 124) beinhaltet, die über Reaktanzen (105) parallel geschaltet sind, wobei jeder der Wandler (114, 124) eine Spannung, die für das System von einer Gleichstromversorgung bereitgestellt wird, mittels automatischer Abschalteinrichtungen, welche in Reaktion auf AN/AUS-Befehle an- und abschalten, in eine Wechselspannung umsetzt, wobei das System folgendes umfaßt:
    • eine Berechnungseinrichtung (101) für räumliche Spannungsvektoren, welche, um die AN/AUS-Befehle für jeden der parallel geschalteten Leistungswandler (114, 124) zu liefern, mehrere räumliche Spannungsvektoren auswählt, entsprechend einer Schaltperiode Tc und der Amplitude Vc als auch der Phase &thetas; einer Steuerwechselspannung, die der Berechnungseinrichtung (101) für räumliche Spannungsvektoren eingespeist werden, und die Vektorausgangszeiten berechnet;
    • wobei die Leistungswandler einen ersten Leistungswandler (114) und einen zweiten Leistungswandler (124) beinhalten;
    • eine Vektorpermutationseinrichtung (102), welche, für die ausgewählten mehreren räumlichen Spannungsvektoren, zwei Sätze P1 und P2 der Reihenfolge der Erzeugung der räumlichen Spannungsvektoren bestimmt, indem sie die Reihenfolge einer zweiten Reihe räumlicher Spannungsvektoren, die auf den zweiten Leistungswandler (124) geführt werden sollen, bezüglich einer ersten Reihe mehrerer räumlicher Spannungsvektoren, die auf den ersten Leistungswandler (114) geführt werden sollen, um den Betrag der Ausgangszeit des am Ende der ersten Reihe gelegenen räumlichen Spannungsvektors verschiebt;
    • Pulsbreitenmodulationsgeneratoren (113, 123), welche die AN/AUS-Befehle in Reaktion auf die Ausgabe der Vektorpermutationseinrichtung (102) erzeugen; und
    • Einrichtungen zur Steuerung der Ausgangsspannungen der Leistungswandler (114, 124), indem die zwei Sätze räumlicher Spannungsvektorreihen P1 und P2 unterschiedlicher Reihenfolgen, die durch die Vektorpermutationseinrichtung (102) bestimmt worden sind, auf die Pulsbreitenmodulationsgeneratoren (113, 123) geführt werden,
    • wobei die Berechnungseinrichtung (101) für räumliche Spannungsvektoren mehrere räumliche Spannungsvektoren [Vo], [Vi], [Vj] und [V7] (wobei i=1,3,5; j=2,4,6) in sechs Unterteilungsabschnitten im Bereich von 0° bis 360° entsprechend der Phase der Steuerwechselspannung auswählt und entsprechend der Amplitude Vc der Steuerwechselspannung und der Schaltperiode Tc die Ausgangszeiten Ti und Tj der räumlichen Spannungsvektoren [Vi] und [Vj] und die Ausgangszeiten To und T7 der räumlichen Spannungsvektoren [Vo] und [V7] bestimmt, basierend auf den Gleichungen: Ti = {Vc&peseta;Tc&peseta;sin(60°-&thetas;a)} / {2&peseta;sin(60°)} Tj = (Vc&peseta;Tc&peseta;sin&thetas;a) / {2&peseta;sin(60°)} To = T7 = (Tc-Ti-Tj) /2 &thetas;a = &thetas; - 60°&peseta;N, wobei &thetas;a der elektrische Winkel des räumlichen Steuerspannungsvektors [Vc], der durch die Amplitude Vc der Steuerwechselspannung und deren Phase &thetas; bestimmt ist, bezüglich des ausgewählten räumlichen Spannungsvektors [Vi] ist, und wobei N ein numerischer Wert ist, der von dem Phasenwinkel &thetas; abhängt und 0, 1, 2, ..., 5 annimmt, entsprechend der sechs Abschnitte von 0° ≤ &thetas; < 60°, 60° ≤ &thetas; < 120°, ..., 300° ≤ &thetas; < 360°, und
    • wobei die Vektorpermutationseinrichtung (102) die beiden Sätze P1 und P2 räumlicher Spannungsvektoren freigibt, welche die von der Berechnungseinrichtung (101) für räumliche Spannungsvektoren ausgewählten mehreren räumlichen Spannungsvektoren [Vo], [Vi], [Vj] und [V7] sind, und die in der Reihenfolge [V;], [Vj], [V7], [Vi] und [Vo] bzw. in der Reihenfolge [Vo], [Vi], [Vj], [V7], [Vj] und [Vi] angeordnet sind und die AN/AUS-Befehle für die Pulsbreitenmodulationsgeneratoren (113, 123) entsprechend dieser Reihenfolgen erzeugt.
  2. Mehrfach gekoppeltes Leistungswandlersystem nach Anspruch 1, dadurch gekennzeichnet, daß das System weiterhin Stromdetektoren, die für einzelne Ausgangsphasen der beiden Leistungswandler (114, 124) vorgesehen sind, und Einrichtungen zur Berechnung der Differenz der Ausgangsströme, für jede Ausgangsphase, des ersten und zweiten Leistungswandlers (114, 124) als eine Querstromkomponente beinhaltet.
  3. Mehrfach gekoppeltes Leistungswandlersystem nach Anspruch 2, gekennzeichnet durch eine Einrichtung zum Erfassen der Ausgangsphasenströme der beiden Leistungswandler durch Abtasten der Ströme pro halber Pulsbreitenmodulationsperiode, Berechnen der Differenz der Ausgangsströme des ersten und zweiten Leistungswandlers für jede Ausgangsphase und Auswerten eines Mittelwertes aus der zuvor abgetasteten und berechneten Ausgangsstromdifferenz und der neu abgetasteten und berechneten Ausgangsstromdifferenz als die Querstromkomponente.
  4. Mehrfach gekoppeltes Leistungswandlersystem nach Anspruch 2, gekennzeichnet durch eine Einrichtung zum Erfassen von Querstromkomponenten der beiden parallel geschalteten Leistungswandler und zum Abschalten der AN/AUS-Signale, um dadurch die Leistungswandler auszuschalten, wenn erkannt wird, daß die Querstromkomponente einen festgelegten Wert überschreitet.
  5. Mehrfach gekoppeltes Leistungswandlersystem nach Anspruch 2, gekennzeichnet durch eine Einrichtung zum Erfassen einer Querstromkomponente jeder Phase der beiden parallel geschalteten Leistungswandler und zum Bereitstellen der ersten Reihe und der zweiten Reihe räumlicher Spannungsvektoren für den ersten und zweiten Leistungswandler durch gegenseitiges Ersetzen der ersten und zweiten Reihe in Abhängigkeit von der Polarität (positiv oder negativ) der Querstromkomponente, um dadurch die Ausgangsspannungen der Leistungswandler zu steuern.
Anspruch[en]
  1. A multi-coupled power conversion system including power converters (114, 124) connected in parallel through reactors (105), each of said converters (114, 124) converting a voltage from a d.c. power source provided for said system into an a.c. voltage by means of automatic turn-off switching devices which turn on and off in response to on/off commands, said system comprising:
    • a spatial voltage vector calculator (101) which, in order to provide the on/off commands for each of said parallel-connected power converters (114, 124), selects multiple spatial voltage vectors in accordance with a switching period Tc and the amplitude Vc as well as the phase &thetas; of a command a.c. voltage fed to the spatial voltage vector calculator (101) and calculates vector output times;
    • said power converters comprise a first power converter (114) and a second power converter (124);
    • a vector permutation device (102) which, for the selected multiple spatial voltage vectors, determines two sets P1 and P2 of the order of generation of spatial voltage vectors by shifting the order of a second series of spatial voltage vectors to be fed to said second power converter (124) with respect to a first series of multiple spatial voltage vectors to be fed to said first power converter (114) by the amount of the output time of the spatial voltage vector located at the end of the first series;
    • pulse with modulation generators (113, 123) which generate the on/off commands in response to the output of said vector permutation device (102); and
    • means of controlling the output voltages of said power converters (114, 124) by feedidng to said pulse width modulation generators (113, 123) the two sets of spatial voltage vector series P1 and P2 of different orders determined by said vector permutation device (102),
    • said spatial voltage vector calculator (101) selects multiple spatial voltage vectors [Vo] , [Vi] , [Vj] and [V7] (where i=1,3,5; j=2,4,6) in six divisional sections in the range of 0° to 360° in accordance with said phase of said command a.c. voltage and determines, in accordance with said amplitude Vc of said command a.c. voltage and said switching period Tc, the output times Ti and Tj of the spatial voltage vector [Vi] and [Vj] and the output times To and T7 of the spatial zero-voltage vectors [Vo] and [V7] based on the equations : Ti = {Vc&peseta;Tc&peseta;sin (60°-&thetas;a)}/{2&peseta;sin (60°)} Tj = (Vc&peseta;Tc&peseta;sin&thetas;a)/{2&peseta;sin(60°) } To = T7 = (Tc-Ti-Tj)/2 &thetas;a = &thetas;-60°&peseta;N    where &thetas;a is the electrical angle of the command spatial voltage vector [Vc] determined by said amplitude Vc of said command a.c. voltage and said phase &thetas; thereof, with respect to the selected spatial voltage vector [Vi], and N is a numerical value which depends on the phase angle &thetas; and takes 0, 1, 2, ..., 5 in correspondence to said six sections of 0°≤&thetas;<60°, 60°≤&thetas;<120°, .., 300°≤&thetas;<360°, and
    • said vector permutation device (102) releases said two sets P1 and P2 of spatial voltage vectors that are the multiple spatial voltage vectors [Vo], [Vi], [Vj] and [V7] selected by said spatial voltage vector calculator (101) and are arranged in the order of [Vi], [Vj], [V7], [Vi] and [Vo] and in the order of [Vo], [Vi], [Vj], [V7], [Vj] and [Vi], respectively, and generates the on/off commands to said pulse width modulation generators (113, 123) in compliance with these orders.
  2. A multi-coupled power conversation system according to claim 1, wherein

       said system further includes current detectors provided for individual output phases of said two power converters (114, 124), and means of calculating, for each output phase, the difference of output currents of said first and second power converters (114, 124) as a lateral current component.
  3. A multi-coupled power conversation system according to claim 2 further including

       a means of detecting the output phase currents of said two power converters by sampling the currents in every half pulse width modulation period, calculating for each output phase the difference of output currents of said first and second power converters, and evaluating as said lateral current component a mean value of the differential output current which had been sampled and calculated previously and the differential output current which has been newly sampled and calculated.
  4. A multi-coupled power conversion system according to claim 2 further including

       a means of detecting lateral current components of said two parallel-connected power converters, and turning off the on/off signals thereby to shut off said power converters upon detecting said lateral current component in excess of a prescribed value.
  5. A multi-coupled power conversation system according to claim 2 further including
    • a means of detecting a lateral current component of each phase of said two parallel-connected power converters, and
    • providing the first series and second series of spatial voltage vectors for said first and second power converters by replacing the first and second series with each other depending on the polarity (positive or negative) of the lateral current component, thereby to control the output voltages of said power converters.
Anspruch[fr]
  1. Système de conversion d'alimentation à couplages multiples comprenant des convertisseurs d'alimentation (114, 124) reliés en parallèle par l'intermédiaire de composants à réactance (105), chacun desdits convertisseurs (114, 124) convertissant une tension provenant d'une source d'alimentation continue fournie audit système en une tension en courant alternatif au moyen de dispositifs de commutation automatique blocables qui s'ouvrent et se ferment en réponse à des commandes marche/arrêt, ledit système comprenant :
    • un calculateur de vecteur de tension spatial (101) qui', de manière à fournir les commandes marche/arrêt pour chacun desdits convertisseurs d'alimentation reliés en parallèle (114, 124), sélectionne des vecteurs de tension spatiaux multiples conformément à une période de commutation Tc et à l'amplitude Vc de même qu'à la phase &thetas; d'une tension en courant alternatif de commande appliquée au calculateur de vecteur de tension spatial (101) et calcule les temps de sortie des vecteurs,
    • lesdits convertisseurs d'alimentation comprennent un premier convertisseur d'alimentation (114) et un second convertisseur d'alimentation (124),
    • un dispositif de permutation de vecteurs (102) qui, pour les vecteurs de tension spatiaux multiples sélectionnés, détermine deux ensembles P1 et P2 de l'ordre de génération des vecteurs de tension spatiaux en décalant l'ordre d'une seconde série de vecteurs de tension spatiaux devant être appliqués audit second convertisseur d'alimentation (124) par rapport à une première série de vecteurs de tension spatiaux multiples devant être appliqués audit premier convertisseur d'alimentation (114) de la valeur du temps de sortie du vecteur de tension spatial situé à la fin de la première série,
    • des générateurs de modulation par largeur d'impulsion (113, 123) qui génèrent les commandes marche/arrêt en réponse à la sortie dudit dispositif de permutation de vecteurs (102), et
    • des moyens de commande des tensions de sortie desdits convertisseurs d'alimentation (114, 124) par l'application auxdits générateurs de modulation par largeur d'impulsion (113, 123) des deux ensembles des séries de vecteurs de tension spatiaux P1 et P2 d'ordres différents déterminés par ledit dispositif de permutation de vecteurs (102),
    • ledit calculateur de vecteur de tension spatial (101) sélectionne des vecteurs de tension spatiaux multiples [Vo], [Vi], [Vj] et [V7] (où i = 1, 3, 5 ; j = 2, 4, 6) dans six sections séparées dans la plage de 0° à 360° conformément à ladite phase de ladite tension en courant alternatif de commande et détermine conformément à ladite amplitude Vc de ladite tension en courant alternatif de commande et ladite période de commutation Tc, les temps de sortie Ti et Tj des vecteurs de tension spatiaux [Vi] et [Vj] et les temps de sortie To et T7 des vecteurs de tension nulle spatiaux [Vo] et [V7] sur la base' des équations : Ti = {Vc&peseta;Tc&peseta;sin(60°-&thetas;a)}/{2&peseta;sin (60°)} Tj = (Vc&peseta;Tc&peseta;sin&thetas;a)/{2&peseta;sin (60°)} To = T7 = (Tc-Ti-Tj)/2 &thetas;a = &thetas;-60°&peseta;N    où &thetas;a représente l'angle électrique du vecteur de tension spatial de commande [Vc] déterminé par ladite amplitude Vc de ladite tension en courant alternatif de commande et ladite phase &thetas; de celle-ci, par rapport au vecteur de tension spatial sélectionné [Vi], et N est une valeur numérique qui dépend de l'angle de phase &thetas; et prend la valeur 0, 1, 2, ..., 5 en correspondance avec lesdites six sections des plages 0°≤&thetas;<60°, 60°≤&thetas;<120°, ..., 300°≤&thetas;<360°, et
    • ledit dispositif de permutation de vecteurs (102) émet lesdits deux ensembles P1 et P2 de vecteurs de tension spatiaux qui sont les vecteurs de tension spatiaux multiples [Vo], [Vi], [Vj] et [V7] sélectionnés par ledit calculateur de vecteur de tension spatial (101) et sont disposés dans l'ordre [Vi], [Vj], [V7], [Vi] et [Vo] et dans l'ordre [Vo], [Vi], [Vj], [V7], [Vj] et [Vi], respectivement, et génère les commandes marche/arrêt vers lesdits générateurs de modulation par largeur d'impulsion (113, 123) conformément à ces ordres.
  2. Système de conversion d'alimentation à couplages multiples selon la revendication 1, dans lequel

       ledit système comprend en outre des détecteurs de courant prévus pour les phases de sortie individuelles desdits deux convertisseurs d'alimentation (114, 124), et un moyen de calcul, pour chaque phase de sortie, de la différence des courants de sortie desdits premier et second convertisseurs d'alimentation (114, 124) en tant que composante de courant latéral.
  3. Système de conversion d'alimentation à couplages multiples selon la revendication 2, comprenant en outre

       un moyen pour détecter les courants de phase de sortie desdits deux convertisseurs d'alimentation en échantillonnant les courants dans chaque demi-période de modulation par largeur d'impulsion, calculer pour chaque phase de sortie la différence des courants de sortie desdits premier et second convertisseurs d'alimentation, et évaluer en tant que ladite composanté de courant latéral une valeur moyenne du courant de sortie différentiel qui a été échantillonné et calculé précédemment et du courant de sortie différentiel qui a été nouvellement échantillonné et calculé.
  4. Système de conversion d'alimentation à couplages multiples selon la revendication 2, comprenant en outre

       un moyen pour détecter des composantes de courant latéral desdits deux convertisseurs d'alimentation reliés en parallèle, et la coupure des signaux marche/arrêt, afin d'arrêter ainsi lesdits convertisseurs d'alimentation lors de la détection de ladite composante de courant latéral dépassant une valeur prescrite.
  5. Système de conversion d'alimentation à couplages multiples selon la revendication 2, comprenant en outre

       un moyen pour détecter une composante de courant latéral de chaque phase desdits deux convertisseurs d'alimentation reliés en parallèle, et fournir la première série et la seconde série des vecteurs de tension spatiaux pour lesdits premier et second convertisseurs d'alimentation en remplaçant la première et la seconde séries l'une par l'autre suivant la polarité (positive ou négative) de la composante de courant latéral, afin de commander ainsi les tensions de sortie desdits convertisseurs d'alimentation.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com