PatentDe  


Dokumentenidentifikation DE10020615C2 28.02.2002
Titel Verfahren zur langzeitstabilen und gut reproduzierbaren spektrometrischen Messung der Konzentrationen der Bestandteile wässriger Lösungen sowie Vorrichtung zur Durchführung dieses Verfahrens
Anmelder GlukoMediTech AG, 58455 Witten, DE
Erfinder Zirk, Kai-Uwe, 97772 Wildflecken, DE;
Poetzschke, Harald, Dr., 65207 Wiesbaden, DE
Vertreter Beil und Kollegen, 65929 Frankfurt
DE-Anmeldedatum 27.04.2000
DE-Aktenzeichen 10020615
Offenlegungstag 08.11.2001
Veröffentlichungstag der Patenterteilung 28.02.2002
Veröffentlichungstag im Patentblatt 28.02.2002
IPC-Hauptklasse G01N 21/25
IPC-Nebenklasse G01N 33/483   G01N 21/31   

Beschreibung[de]

Gegenstand der Erfindung ist ein Verfahren mit den Merkmalen des Anspruchs 1 sowie eine Vorrichtung zur Durchführung dieses Verfahrens mit den Merkmalen des Anspruchs 6. Ein bevorzugter Einsatzbereich ist die Messung der Glukosekonzentration in der interstiellen Körperflüssigkeit unter Verwendung einer erfindungsgemäßen Vorrichtung in miniaturisierter Bauweise.

Normalerweise enthalten 100 mL menschliches Blut etwa zwischen 70 und 110 mg Glukose (Traubenzucker). Bei der Volkskrankheit Diabetes mellitus (der "Zuckerkrankheit"), an der allein in den Industrieländern ca. 3% der erwachsenen Bevölkerung leiden, ist der mittlere Glukosegehalt im Blut der Erkrankten meist deutlich erhöht, weil diese Patienten an einem - absoluten oder relativen - Mangel des Hormons Insulin leiden. Insulin senkt den Gehalt der Glukose im Blut, indem es u. a. ihre Aufnahme in die Körperzellen fördert. Kann der aktuelle Blutglukosegehalt des Diabetikers kontinuierlich und augenblicklich ermittelt werden, ermöglicht dies, ihm zu jeder Zeit die genau erforderliche fehlende Insulinmenge zuzuführen und somit seinen Glukose-Stoffwechsel zu normalisieren. Damit werden Belastungen und Spätschäden des Organismus durch unerwünschte Wirkungen, welche aufgrund instabiler Glukosespiegel auftreten, weitgehend ausgeschlossen, was - neben einer allgemeinen Verbesserung der Lebensqualität des Patienten - insbesondere auch zu einer höheren Lebenserwartung führt. Ein implantierbarer Glukosesensor ist eine Möglichkeit, die Glukosekonzentration im Körper kontinuierlich zu detektieren. Diese bislang noch fehlende Komponente, gekoppelt mit einer bekannten Insulinpumpe, trüge entscheidend zur Realisierung einer sogenannten "künstlichen Bauchspeicheldrüse", d. h. einer technischen Vorrichtung zur vollautomatischen Versorgung der Patienten mit dem Hormon Insulin bei. Eine solche künstliche Bauchspeicheldrüse könnte vielen zuckerkranken Menschen ein Leben ohne Insulinspritzen ermöglichen.

Forscher- und Entwicklergruppen sind weltweit bemüht, einen implantierbaren Glukosesensor für die Erfassung der Glukosekonzentration zur Marktreife zu entwickeln. Dabei finden unterschiedliche Meßprinzipien Anwendung. Bisher sind ganz überwiegend elektrochemische Glukose-Sensoren konzipiert, ausprobiert und entwickelt worden. Die Anwendung solcher, auf der Verwendung geeigneter Enzyme basierender, elektrochemischer Sensoren im Körper erfährt enorme Schwierigkeiten. Insbesondere ist dies die "Vergiftung" der verwendeten Enzyme (z. B. der Glukose-Oxidase) durch körpereigene Stoffe, mit einer nachfolgenden Langzeit-Instabilität. Um diesen Nachteil zu vermeiden, bezieht sich die hier dargelegte Erfindung ausschließlich auf ein rein physikalisches Meßprinzip, die Spektrometrie:

Breitet sich ein Lichtstrahl in einem absorbierenden Medium aus, nimmt die Lichtintensität I längs des Weges s (im Rahmen der linearen Optik) exponentiell ab. Eine Küvette der Schichtdicke d, die mit der Lösung einer absorbierenden Substanz der Konzentration c gefüllt sei, werde von einem Lichtstrahl durchdrungen. Das Verhältnis der Intensität des die Küvette verlassenden Lichtstrahles mit lichtabsorbierender Substanz in der Küvette (I(d)) dem entsprechenden Wert ohne diese (I0) ist die Transmission T, sie kann gemäß des LAMBERT-BEERschen Gesetzes berechnet werden.



T = I(d)/I0 = e-d.c.ε

Der Proportionalitätsfaktor c ist der stoffspezifische Absorptionskoeffizient.

Um eine Auflösung von z. B. 3 mg/dL der Konzentration einer wässrigen Glukoselösung in einem Wellenlängenbereich um 1,6 µm der Meßstrahlung (dies ist Infrarot-Strahlung des NIR-Bereiches, NIR: Nahes Infrarot) über einer Meßstrecke von d = 5 mm erreichen zu können, muß man Transmissionsänderungen von ca. 7 . 10-4 [T] erfassen können.

Die genannte Genauigkeit der Detektion entspricht, bei einem mittleren Glukosegehalt im Blut um 100 mg/dL, einem relativen Fehler von etwa 3%. Eine größere Ungenauigkeit sollte, wenn dies technisch realisierbar ist, nicht geduldet werden.

Einige Verfahren und Vorrichtungen zur ex vivo-Messung der Blutglukosespiegel im menschlichen Körper, die das genannte physikalische Prinzip als Meßmethode verwenden, sind aus den Schriften WO 95 10038, EP 0884970, US 5710630, US 5222496, US 5372135, US 5638816, US 5743262 und US 5772587 bekannt. Aber bei all diesen Verfahren wird der "Meßstrahl" von außen in oder durch Gewebe gestrahlt und die Änderung der Absorption oder die Änderung der Intensität der gestreuten (reflektierten) Strahlung als Maß für die Glukosekonzentration verwendet. D. h., keine dieser Erfindungen beschäftigt sich mit der Entwicklung eines implantierbaren Glukosesensors und allen derartigen Messungen stehen, wegen der mannigfaltigen Strukturen des Gewebes, grundsätzliche Schwierigkeiten, wie z. B. ausreichende Spezifität, entgegen.

In den Schriften EP 0589191, EP 0561872 und US 5243983 ist beispielsweise offenbart, die Glukosekonzentration spektrometrisch im Augenwasser zu bestimmen. Da sich die Konzentration im Augenwasser aber nur sehr langsam auf den aktuellen Blutglukosewert einstellt, erscheint dieses Verfahren für eine hinreichend verzögerungsfreie Bestimmung der Blutglukosespiegel äußerst ungeeignet.

Aus der Schrift WO 9852469 sind ein weiteres Verfahren und eine Vorrichtung zur quantitativen Bestimmung der Glukose bekannt. Danach enthält vom Trommelfell ausgestrahlte IR-Wärme-Strahlung eine spektrale Information der Zusammensetzung des Gewebes und somit auch der Glukosekonzentration. Wegen der enormen Komplexität und Anzahl der im Körper vorkommenden Stoffe und Strukturen dürfte aber auch dieses Verfahren als nicht geeignet für eine Entwicklung zur Marktreife ausscheiden.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein hochempfindliches, einfach und reproduzierbar messendes Spektrometrie-Verfahren und entsprechende Vorrichtungen zur quantitativen Bestimmung insbesondere der Glukose in interstiellen Körperflüssigkeiten - und zwar im Rahmen eines implantierbaren Detektors - bereitzustellen. Verfahren und Vorrichtung sind jedoch auch für anderweitige Einsätze, etwa zur Überwachung und Steuerung chemischer Verfahren, einsetzbar.

Aus DE 25 25 378 A1 ist die Verwendung einer Strahlungsquelle bekannt, bei der eine periodische Modulation der Wellenlänge der Strahlung zwischen einem Absorptionsmaximum und einem benachbarten Minimum der nachzuweisenden Gaskomponente erfolgt. DE 35 10 052 A1 lehrt eine Derivatspektroskopie, bei der eine Lasediode mit einem der Gleichstromkomponente überlagerten Wechselstrom betrieben wird, was eine Modulation der Ausgangsfrequenz und der Intensität zu Folge hat. Nach DE 36 33 931 A1 wird eine Bandbreitenmodulation eingesetzt, bei der aus mindestens zwei verschiedenen Intensitätsmessswerten der transmittierten Strahlung die Extinktion ermittelt wird. Nach WO 99/61895 können durch Änderung der Wellenlänge mittels einer Änderung der Temperatur und des Stroms der Strahlungsquelle die Absorptionsmaxima von zwei verschiedenen Gasen erreicht und diese gleichzeitig detektiert werden. US 5671301 A lehrt die Verwendung von zwei über Lichtleiter geführte polarisierte Lichtstrahlen, deren relative Phasenlage zueinander eine Information über die jeweilige Stoffkonzentration ergeben soll. Keine dieser Verfahrensweise führt zu den erfindungsgemäß gewünschten Ergebnissen.

Falls - wie im Falle der Glukose im Organismus - ein sehr niedriger Gehalt der absorbierenden Substanz vorgegeben ist, kann nur ein hochempfindliches Spektrometer mit einer hohen opto-elektronischen Güte der Meßsignal-Aufnahme und -Verstärkung eine hinreichende Genauigkeit der Messung des Gehaltes ermöglichen. Die gewählte Vorrichtung sollte also möglichst einfach aufgebaut sein, d. h. ohne bewegliche Teile und insbesondere miniaturisierbar sein. Die Vorrichtung muß außerdem die Potenz einer großen und rauscharmen opto-elektronische Verstärkung enthalten, um die geforderte Empfindlichkeit und Genauigkeit zu erreichen. Darüber hinaus sollte die Messung weitgehend unabhängig von der Temperatur der zu untersuchenden Substanz sein, da diese Einflüsse direkt im Meßsignal wiederzufinden sind.

Keines der oben genannten Patente ist bislang Basis für eine bekannte marktreife technische Entwicklung geworden. Die in den Patenten beschriebenen Verfahren und Vorrichtungen scheinen die genannten Anforderungen - auch für eine ex vivo-Messung - nicht erfüllen zu können.

Die erfindungsgemäße Lehre hat zum Gegenstand, prinzipiell oder in Teilen bekannte Meßanordnungen in nicht offensichtlich geeigneter Art und Weise zu kombinieren und hinsichtlich der Meßgenauigkeit wesentlich zu verbessern, wobei die genannten Probleme in technisch wirksamer und einfacher Weise gelöst und die genannten Anforderungen an einen Detektor für Glukose zur Messung in Körperflüssigkeiten erfüllt werden sollen. Die gestellte Aufgabe wird anspruchsgemäß gelöst. Zur Messung der Glukosegehalte in Körperflüssigkeiten wird einer Meßkammer mit Hilfe der Mikrodialyse kontinuierlich ein jeweils frisch ins Stoffgleichgewicht gebrachtes Dialysat der Gewebeflüssigkeit zugeführt.

Dies kann in der Weise erfolgen, daß man beispielsweise mindestens eine Wand der Meßküvette ein Diaphragma ist oder die zu messende Flüssigkeit über ein Pumpensystem mit Austauschstrecke, die durch ein Diaphragma von der zu messenden Lösung getrennt ist, der Meßküvette zugeführt wird. Ein so erhaltenes eiweißfreies Dialysat der Gewebsflüssigkeit verringert die Querempfindlichkeiten, da sämtliche Moleküle, die größer als die Trenngrenze der Dialysemembran sind und sich störend auswirken können, von der Membrane zurückgehalten werden. Unabhängigkeit von der Temperatur erreicht man beispielsweise durch einen "symmetrischen" Aufbau mit einer Meß- und einer Referenzstrecke, weil sich dann temperaturabhängige Änderungen gegenseitig kompensieren.

Erfindungsgemäß wird die gestellte Aufgabe einer langzeitstabilen und gut reproduzierbaren spektrometrischen Messung der Konzentrationen der Bestandteile wässriger Lösungen, insbesondere auch Dialysaten interstitieller Gewebeflüssigkeiten, dadurch gelöst, dass ein Meßstrahl durch einen Strahlteiler in zwei Teilstrahlen zerlegt wird, der eine Teilstrahl durch eine Meßküvette und der andere Teilstrahl durch eine Küvette, die mit einer Referenzlösung gefüllt ist, geleitet wird, die Lichtintensitäten beider Teilstrahlen gemessen und die Meßsignale, gegebenenfalls nach geeigneter Verstärkung, einer symmetrischen Signalverarbeitung zugeführt werden, wobei die Intensität des Meßstrahls zeitlich gleichförmig periodisch schwankt, in der Signalverarbeitung das Signal jedes Teilstrahls zunächst jeweils einem Multiplizierer zugeführt wird, von denen einer eine Signalinvertierung bewirkt, und anschließend eine Differenz- oder Verhältnisbildung erfolgt.

Die Ausgestaltung des erfindungsgemäße Meßverfahrens umfaßt die folgenden Charakteristika: Die von Strahlungsquellen ausgehenden, modulierten, quasi monochromatischen elektromagnetischen Strahlen werden durch einen geeigneten Strahlteiler in zwei Teilstrahlen geteilt und deren Intensitäten von in einem gewissen Wellenlängenband weitgehend wellenlängenunabhängigen Detektoren (z. B. Fotodioden) detektiert. Deren Ausgangssignale (Fotoströme) werden in Spannungen transformiert und diese anschließend elektronisch mit einander zu einem hochstabilen Differenz- oder Quotientensignal verrechnet. Durch eine solche Differenz- oder Quotientenbildung werden Intensitätsschwankungen der Quellenstrahlung(en) eliminiert. Vor allem aber sind die Differenz- oder Quotientensignale ebenfalls moduliert, dadurch wird der zusätzliche Einsatz der bekannten "Lock-In"-Verstärkertechnik möglich. Damit ist eine weitere Steigerung der Empfindlichkeit um einen Faktor von bis zu 103 gegenüber "herkömmlichen" elektronischen Verstärkermechanismen möglich.

Das Kernstück des erfindungsgemäßen spektrometrischen Meßverfahrens und der dafür eingesetzten Vorrichtung ist in Fig. 1 gezeigt. Die wesentlichen Elemente sind ein Strahlteiler (2), der den von einer Strahlungsquelle oder Strahlungsquellen (1) erzeugten Strahl in zwei Strahlen (Meß- und Referenzstrahl) teilt, eine Probenküvette (3) und eine Referenzküvette (4) jeweils in Strahlrichtung hinter dem Strahlteiler, sowie zwei Detektoren (5 und 6), die jeweils einen Teilstrahl hinter einer Küvette erfassen und dessen Intensität in elektrische Signale wandeln. Diese werden dann nachfolgend in einer Signalverarbeitung bedarfsgerecht aufbereitet.

Fig. 2 zeigt eine erfindungsgemäße Ausgestaltung der Meßanordnung. Die zeitabhängige Intensität (I(t)) der (praktisch) monochromatischen Quellenstrahlung der Strahlungsquelle (1, z. B. eine Laserdiode) wird sinusförmig moduliert:



I(t) = I0 . sin(ω . t) + IK

Im Innern der Referenzküvette (4) befindet sich zu jeder Zeit unveränderlich Meßgut mit Analyten in einer Konzentration, die ähnlich oder gleich der zu messenden Konzentrationen, in der Probenküvette sind. Erfindungsgemäß wird das Intensitäts-Teilungsverhältnis des Strahlteilers (2) so gewählt, daß die beiden auf die Detektoren (5 und 6) treffenden Intensitäten IM(t) und IR(t), während sich kein zu detektierender Stoff (Analyt) im Meßgut der Probenküvette (3) befindet, den gleichen Wert besitzen, dies ist der sogenannte abgeglichene Zustand. Die beiden nachfolgenden Strom-Spannungs-Wandler (7 und 8) transformieren die durch die Detektoren erzeugten Fotoströme in Spannungen (UM(t) und UR(t)) und trennen gleichzeitig den Gleichspannungsanteil ab. Als eines der wesentlichen Merkmale dieser Vorrichtung sind die beiden folgenden Multiplizierer (9 und 10) mit den Verstärkungen n und -n anzusehen. Einer der beiden Multiplizierer invertiert das Signal, der zweite dient zur analogen Kompensation eventuell im ersten Signal-Invertierer auftretender Signallaufzeiten - wobei es gleichgültig ist, welcher der beiden die Verstärkung n bzw. -n besitzt. Die beiden Ausgangsspannungen der Multiplizierer werden als Versorgungsspannungen einer WHEATSTONEschen Meßbrücke oder als Versorgungsspannungen einer Spannungsteiler-Meßschaltung verwendet - dies ist ein weiteres wichtiges Merkmal der erfindungsgemäßen Vorrichtung. Während im abgeglichenen Zustand die Brückenspannung (UBr), die zwischen den beiden Widerständen (11 und 12) und dem Null-Potential der elektronischen Schaltung abgegriffen wird, null beträgt, stellt sich während jeder Analyse (im Inneren der Probeküvette befindet sich Analyt) eine von Null unterschiedliche Brückenspannung (UBr) ein.

Die Brückenspannung beträgt während der Analyse



UBr = A . UM(t) + UR(t)

= A . n . U0 . sin(ω . t) - n . U0 . sin(ω . t)

= (A - 1) . n . U0 . sin(ω . t)



A ist das Verhältnis zwischen den Werten von UM(t) während der Analyse (bei der jeweiligen Konzentration des Analyten) und dem abgeglichenen Zustand.

Die Brückenspannung kann durch Änderung der Quellenintensität der Strahlungsquelle verändert werden; dabei ist sie (ihr Betrag) unabhängig von der Position der Proben- bzw. Referenzküvette, beide sind gegeneinander austauschbar. Die durch den Analyten hervorgerufene Brückenspannung wird durch einen "Lock-In"-Verstärker (13) erfaßt, dessen Ausgangssignal (eine Gleichspannung UGI) an eine Meßwertverarbeitungseinheit (14), die im einfachsten Fall aus einem visuellen Anzeigegerät besteht, weitergegeben wird. Für das Ausgangssignal des "Lock-In"-Verstärkers gilt:



UGI = (2/π) . (A - 1) . n . v . U0



v ist die Signal-Verstärkung des "Lock-In"-Verstärkers. Die Empfindlichkeit des Endsignals der gesamten Meßanordnung ist die erste Ableitung dieser Funktion nach der von der Konzentration des Analyten abhängigen Größe A.



dUGI/dA = (2/π) . n . v . U0

Die Empfindlichkeit kann zum einen durch Erhöhung der Quellenintensität, zum anderen durch Variation der Verstärkungsfaktoren n und v eingestellt werden. Dabei ist sie nur durch das Signal-Rausch-Verhältnis der Signalverarbeitung begrenzt und insbesondere unabhängig von Intensitätsänderungen, die durch Absorption hervorgerufen werden.

Der erzielte Vorteil der erfindungsgemäßen Meßanordnung liegt im einfachen und symmetrischen Aufbau, der sowohl Intensitätsschwankungen der Quellenstrahlung, als auch Absorptionsänderungen durch Temperaturänderungen des Meßguts (weitgehend) eliminiert. Darüber hinaus ermöglicht sie den Einsatz der "Lock-In"-Verstärkertechnik, deren allgemein bekannte Vorteile genutzt werden können, d. h. das Erfassen sehr kleiner Signaländerungen mit gleichzeitiger Elimination äußerer (elektrischer oder optischer) Störgrößen, die auf die Meß- und/oder Referenzstrecke einwirken.

Fig. 3 zeigt eine bevorzugte erweiterte erfindungsgemäße Ausgestaltung der Meßanordnung als ein Zwei-Wellenlängen-Spektrometer. Dabei besitzen die beiden quasi monochromatischen Quellenstrahlungen der Strahlungsquellen (1a und 1b, z. B. Laserdioden) unterschiedliche Wellenlängen. Die zeitlichen Verläufe der Intensitäten der Quellenstrahlungen sind sinusförmig moduliert und besitzen eine unveränderliche zeitliche Phasenverschiebung von 180° (= π) zueinander. All dies sind wesentliche Merkmale dieser Meßanordnung. Die beiden Ausgangsintensitäten haben dann folgenden zeitlichen Verlauf:



I1(t) = I0,1 . sin(ω . t) + IK,1



I2(t) = I0,2 . sin(ω . t ± π) + IK,2 = -I0,2 . sin(ω . t) + IK,2

Die beiden Strahlen werden zu einem Strahl mit der Gesamtintensität I vereinigt, z. B. indem die Einzelstrahlen in die beiden Eingänge eines "Y"-Lichtleiterkabels (1c) mit statistischer Verteilung der Lichtleiter-Fasern eingekoppelt werden. Die vereinigten Strahlen verlassen dann den gemeinsamen Ausgang des Lichtleiters, die Intensitäten addieren sich auf. Sind die beiden Amplituden der Intensitätssummanden (I0,1 und I0,2) gleich, ist die Lichtintensität (I(t)) am Ausgang des Lichtleiters konstant.

Im Inneren der verschlossenen Referenzküvette (4) liegt der zu detektierende Stoff kontinuierlich und unveränderlich in einer Konzentration vor, die der zu erwartenden Konzentration im Meßgut ähnlich ist. Das Teilungsverhältnis (IM/IR) der Strahlungsintensitäten am Strahlteiler (2) ist so gewählt, daß im abgeglichenen Zustand, d. h. mit Meßgut ohne den zu detektierenden Stoff im Inneren der Probenküvette (3) (also bei unterschiedlichen Gehalten des Analyten in der Referenz- und der Meßküvette) trotzdem jeweils die gleiche Intensität auf die Detektoren (5 und 6) trifft. Die Intensitäten werden von den Detektoren erfaßt, deren Fotoströme durch zwei Strom-Spannungs-Wandler (7 und 8) in Spannungen transformiert und gleichzeitig die Gleichspannungsanteile abgetrennt werden. Die anschließenden Multiplizierer (9 und 10) mit den Verstärkungen n und -n verstärken diese Spannungen, so daß an den Ausgängen der Multiplizierer die Spannungen UM(t) und UR(t) anliegen. Die beiden Ausgangsspannungen (UM(t) und UR(t)) werden als Brückenversorgungsspannungen einer WHEATSTONEschen Meßbrücke oder als Versorgungsspannungen einer Meßspannungsteiler-Schaltung verwendet. Während im abgeglichenen Zustand die Brückenspannung (UBr) zwischen den beiden Widerständen (11 und 12) und dem Null-Potential der Schaltung null beträgt, stellt sich während der Analyse (d. h. in der Meßküvette befindet sich der Analyt in einer gewissen Konzentration) eine von null unterschiedliche Brückenspannung ein. Während der Analyse kommt es in der Meßstrecke zu Intensitätsänderungen, die durch den zu detektierenden Stoff hervorgerufen werden, in der Referenzstrecke bleibt dagegen die Intensität (IR(t)) die auf den Detektor trifft konstant.

Die Brückenspannung während der Analyse ergibt sich gemäß:



UBr = UM(t) + UR(t)

= n . (A . U0 . sin(ω . t) - B . U0 . sin(ω . t)) - n . (U0 . sin(ω . t) - U0 . sin(ω . t))

= (A - B) . n . U0 . sin(ω . t)



A und B sind die Umrechenfaktoren für die beiden Wellenlängen zwischen den Werten von UM(t) bei der Analyse (bei den jeweiligen Konzentrationen des Analyten) und UM(t) im abgeglichenen Zustand.

B ist proportional zu A, substituiert man B durch x . A (B = x . A) ergibt sich:



UBr = A . (1 - x) . U0 . sin(ω . t)

Der Aufbau ist symmetrisch, Probenküvette (3) und Referenzküvette (4) und damit Meß- und Referenzstrecke des Detektors sind austauschbar. Die durch den Analyten hervorgerufene Brückenspannung wird durch einen "Lock-In"-Verstärker (13) erfaßt und dessen Ausgangssignal UGI an eine Meßwertverarbeitungseinheit (14) weitergegeben.

Es gilt:



UGI = (2/π) . A . (1 - x) . n . v . U0



v ist die Signal-Verstärkung des "Lock-In"-Verstärkers. Die Empfindlichkeit des Ausgangssignals der gesamten Meßanordnung ist die erste Ableitung dieser Funktion nach der von der Konzentration der Analyten abhängigen Größe A:



dUGI/dA = (2/π) . (1 - x) . n . v . U0

Sie ist zum einen von der Quellenintensität der Strahlungsquelle, zum anderen von den Verstärkungsfaktoren n und v abhängig und somit veränderbar. Darüber hinaus ist sie vom Faktor x, d. h. vom Absorptionsunterschied zwischen beiden Wellenlängen, abhängig.

Fig. 4 zeigt eine Abwandlung der in Fig. 3 gezeigten Meßanordnung. Anstelle der Multiplizierer (9 und 10) und der nachfolgenden Meßbrücke oder Spannungs-Teilungsschaltung (11 und 12) in der Meßanordnung gemäß Fig. 3 kann auch ein elektronischer Verhältnisbildner (15) eingesetzt werden. Die Ausgangsspannungen der beiden Strom-Spannungs- Wandler (7 und 8) dienen dabei als Eingangssignale des Verhältnisbildners. Die Gleichspannungsanteile werden nicht abgetrennt.

Für die Ausgangsspannung des Verhältnisbildners (U(t))ergibt sich somit:



U(t) = UM(t)/UR(t)

= [U0 . sin(ω . t) . A . (1 - x) + UK . A . (1 + x)]/[2 . UK]

Im Anschluß an den Verhältnisbildner folgt ein "Lock-In"-Verstärker (13) dessen Ausgangssignal UGI zur Weiterverarbeitung an eine Meßwertverarbeitungseinheit (14) weitergeführt wird. Mit UK > U0 > 0 gilt:



UGI = (1/π) . A . (1 - x) . v . U0/UK



v ist die Signal-Verstärkung des "Lock-In"-Verstärkers. Die Empfindlichkeit des Ausgangssignals der gesamten Meßanordnung ist die erste Ableitung dieser Funktion nach der von der Konzentration des Analyten abhängigen Größe A:



dUGI/dA = (1/π) . (1 - x) . v . U0/UK

Sie ist, wie in der Anordnung zuvor, zum einen von der Quellenintensität und dem Verstärkungsfaktor v, zum anderen vom Faktor x (Absorptionsunterschied der beiden Wellenlängen) abhängig und somit ebenfalls veränderbar.

Fig. 5 und Fig. 6 zeigen eine Erweiterung der anhand der Fig. 3 und 4 beschriebenen Meßanordnungen. Anstelle der zwei quasi monochromatischen Strahlungsquellen kann eine größere Anzahl an Strahlungsquellen eingesetzt werden. Die Intensitäten der einzelnen Strahlungsquellen können beispielsweise durch vielarmige Lichtleiter (Fig. 5) oder durch dielektrische Strahlteiler (Fig. 6) zur Überlagerung gebracht werden. Dabei beträgt die zeitliche Phasenverschiebung der einzelnen Quellenintensitäten für drei Quellen 2 . π/3 (120°), für vier Quellen π/2 (90°) und allgemein für k Strahlungsquellen entsprechend (2 . π/k, k ∈ N). Die Übertragung der in Fig. 3 und 4 dargestellten Lösungsform auf Gestaltung unter Einsatz mehrerer Quellen liegt im Wissensbereich des Fachmanns.

Der Vorteil, der durch den Einsatz von mehreren Quellen (simultane Messung bei mehreren Wellenfängen) erzielt wird, ist zum einen eine deutliche Erhöhung der Spezifität, zum anderen wird bei geeigneter Wahl der einzelnen Wellenlängen (Zu- und Abnahme der Transmission) die Signaländerung (durch die Differenzbildung) vergrößert.

Weitere Vorteile liegen im sowohl kompakten als auch zugleich symmetrischen Aufbau: es werden einerseits nur zwei fotoempfindliche Elemente für die Detektion von k Quellen und für die Elimination der Schwankungen der Quellenintensitäten benötigt, andererseits werden Absorptionsänderungen durch Temperaturschwankungen eliminiert.

Ein Beispiel einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens ist in Fig. 7 dargestellt. Diese zeigt das Schema einer Anordnung von Komponenten gemäß der in Fig. 3 gezeigten Vorrichtung. Die Strahlungsquellen (1a) waren eine Laserdiode ("FNLD 1450", LASER GRAPHICS, Kleinostheim) mit einer Wellenlänge von 1450 nm und einer optischen Ausgangsleistung von max. 4 mW und (1b) eine LED ("LED 16", LASER GRAPHICS, Kleinostheim) mit einer Wellenlänge von 1580 (± 150) nm und einer optischen Ausgangsleistung von max. 1,2 mW. Beide Strahlungsquellen wurden von Stromquellen (19 und 20: "Model LDC 220", PROFILE, Karlsfeld) versorgt, deren Ausgangsströme durch zwei Funktionsgeneratoren (21 und 22: "HM 8131-2", HAMEG, Frankfurt am Main) einen sinusförmigen Verlauf aufgeprägt bekamen. Hinter der LED (1b) war ein Interferenzfilter (17: "Model 42-6197", COHERENT, Dieburg) mit einer zentralen Wellenlänge von 1620 nm angeordnet. Die Strahlungen der LED und der Laserdiode wurden jeweils in einen Schenkel eines "Y"- förmigen Lichtleiters (1c; eine Sonderanfertigung mit einem Durchmesser von 1 mm, L.O.T.- ORIEL, Darmstadt) aus infrarotstrahlungs-durchlässigen Quarzfasern eingekoppelt und der vereinte Strahl, der das gemeinsame Ende des Lichtleiters verläßt, von einer nachfolgenden Kollimatoroptik (18: "DIV-THR-Optik-LWL", LASER 2000, Wessling) gebündelt und fokussiert. Das nachfolgende Strahlteilerprisma (2: "44-3861", COHERENT, Dieburg) teilte den Strahl in zwei gleich mächtige Teilstrahlen, die die nachfolgenden Küvetten (3 und 4; Sonderanfertigungen mit einer Schichtdicke von 1 mm und einem Volumen von 50 µL, HELLMA, Müllheim) durchdrangen. Als Detektoren (5 und 6) dienten zwei InGaAs-PIN- Fotodioden ("G 5832-01", HAMAMATSU, Herrsching), nachgeschaltete Stromverstärker (7 und 8: "DLPCA-100", FEMTO, Berlin) verstärkten deren Fotoströme. Die Ausgangssignale der Stromverstärker wurden durch nachfolgende Spannungsverstärker (9 und 10 "4-Kanal- INH-Verstärker", SCIENCE PRODUCTS, Hofheim) verstärkt und deren Ausgangsspannungen an zwei Widerstände (11 und 12: "Metallschicht 1,2 MΩ", RS, Mörfelden-Walldorf) angelegt. Die Spannung die zwischen den beiden Widerständen gegen Schaltungsnull anlag erfaßte ein "Lock-In"-Verstärker (13: "LIA-MV-150", FEMTO, Berlin) und dessen Ausgangssignal zeigte ein Digital-Speicher-Oszilloskop (14: "9304", LECROY, Heidelberg) an.

Die beispielhafte Vorrichtung gemäß Fig. 7 ergab sehr genaue Meßergebnisse auch für Meßgut mit geringer Konzentration des zu analysierenden Stoffs. Fig. 8 zeigt eine mit dieser Vorrichtung erstellte Eichkurve für D(+)-Glukose. Aus der Messung ergibt sich für eine Konzentration von 100 mg/dL im Bereich der Eichkurve ein absoluter Fehler von etwa 5 mg/dL.


Anspruch[de]
  1. 1. Verfahren zur langzeitstabilen und gut reproduzierbaren spektrometrischen Messung der Konzentrationen der Bestandteile wässriger Lösungen, insbesondere auch Dialysaten interstitieller Gewebeflüssigkeiten, bei dem ein Meßstrahl durch einen Strahlteiler in zwei Teilstrahlen zerlegt wird, ein Teilstrahl durch eine Meßküvette und der andere Teilstrahl durch eine Küvette, die mit einer Referenzlösung gefüllt ist, geleitet wird die Lichtintensitäten beider Teilstrahlen gemessen und die Meßsignale, gegebenenfalls nach geeigneter Verstärkung, einer symmetrischen Signalverarbeitung zugeführt werden, dadurch gekennzeichnet, daß die Intensität des Meßstrahls zeitlich gleichförmig periodisch schwankt, in der Signalverarbeitung das Signal jedes Teilstrahls zunächst jeweils einem Multiplizierer zugeführt wird, von denen einer eine Signalinvertierung bewirkt, und anschließend eine Differenz- oder Verhältnisbildung erfolgt.
  2. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Meßstrahl eine monochromatische Strahlung ist.
  3. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Meßstrahl aus mehreren überlagerten monochromatischen Strahlen besteht.
  4. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Differenz- oder Verhältnissignal demoduliert wird.
  5. 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das demodulierte Signal von einer Meßwertverarbeitungseinheit erfaßt und mittels dort abgelegter Eichkurven die Konzentration ermittelt wird.
  6. 6. Vorrichtung zur langzeitstabilen und gut reproduzierbaren spektrometrischen Messung der Konzentrationen der Bestandteile wässriger Lösungen, insbesondere auch Dialysaten interstitieller Gewebeflüssigkeiten, bestehend aus einer Strahlungsquelle (1) mit zeitlich gleichförmig periodisch schwankender Intensität, einem Strahlteiler (2) einer im Meßteilstrahl angeordneten Meßküvette (3), einer im Referenzteilstrahl angeordneten Referenzküvette (4), die mit einem unveränderlichen Analyt ähnlicher Konzentration, wie sie für die zu messende Lösung erwartet wird, gefüllt ist, hinter der Proben- und Referenzküvette in den Strahlengängen angeordneten Detektoren (5 und 6) zur Messung der Lichtintensität der Teilstrahlen, Strom-Spannungs-Wandlern (7 und 8) zur Umwandlung der Signale in elektrische Signale, je einem Multiplizierer (9 und 10) für jedes der beiden Teilsignale, von denen einer eine Signalinvertierung bewirkt, sowie einer Signalverarbeitungs- und auswertungsvorrichtung.
  7. 7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Strahlungsquelle (1) einen monochromatischen Strahl liefert.
  8. 8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Strahlungsquelle (1) aus mehreren Strahlungsquellen besteht, deren Strahlen mittels geeigneter optischer Bauteile zu einem Strahl vereinigt werden.
  9. 9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die optischen Bauteile die die Einzelstrahlen in einen Strahl vereinen, dielektrische Strahlteiler oder optische Lichtteiler sind.
  10. 10. Vorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die Signalauswertungsvorrichtung eine Wheatstonsche Meßbrücke oder eine Spannungsteiler-Schaltung (11 und 12) ist.
  11. 11. Vorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die Signalauswertungsvorrichtung ein Verhältnisbildner (15) ist.
  12. 12. Vorrichtungen nach einem der Anspruche 6 bis 11, dadurch gekennzeichnet, daß hinter der Signalauswertungsvorrichtung ein Lock-In-Verstärker (13) und eine Meßwertverarbeitungseinheit (14) angeordnet sind.
  13. 13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Meßwertverarbeitungseinheit (14) aus einem Mikrocomputer und einem visuellen Anzeigegerät besteht.
  14. 14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Meßwertverarbeitungseinheit (14) aus einem Mikrocomputer mit einer bidirektionalen telemetrischen Übertragungseinheit besteht.
  15. 15. Vorrichtung nach einem der Ansprüche 6 bis 14, dadurch gekennzeichnet, daß die Meßküvette (3) durch ein Diaphragma von der zu messenden Lösung getrennt, oder an ein Pumpensystem mit Austauschstrecke, die durch ein Diaphragma von der zu vermessenden Lösung getrennt ist, angeschlossen ist.
  16. 16. Verwendung der Vorrichtung nach Anspruch 6 bis 15 zur Messung von Verfahrensparameter oder zur Überwachung und Regelung von Verfahrensabläufen, insbesondere in chemischen Produktionsverfahren.
  17. 17. Verwendung der Vorrichtung nach Anspruch 6 bis 15 in Mikroreaktoren.
  18. 18. Vorrichtung nach Anspruch 6 bis 15, dadurch gekennzeichnet, dass sie in miniaturisierter Bauweise als implantierbarer Glukosesensor ausgebildet ist.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com