PatentDe  


Dokumentenidentifikation DE10113038C2 10.04.2003
Titel Turmschwingungsüberwachung
Anmelder Wobben, Aloys, Dipl.-Ing., 26607 Aurich, DE
Erfinder Wobben, Aloys, Dipl.-Ing., 26607 Aurich, DE
Vertreter Eisenführ, Speiser & Partner, 28195 Bremen
DE-Anmeldedatum 17.03.2001
DE-Aktenzeichen 10113038
Offenlegungstag 02.10.2002
Veröffentlichungstag der Patenterteilung 10.04.2003
Veröffentlichungstag im Patentblatt 10.04.2003
IPC-Hauptklasse F03D 7/00

Beschreibung[de]

Die vorliegende Erfindung betrifft ein Verfahren zur Steuerung einer Windenergieanlage mit einer Steuerungsvorrichtung zur Betriebsführung der Windenergieanlage, bei welchem die Beschleunigung des Turmes erfasst wird. Die Erfindung betrifft weiterhin eine Windenergieanlage, mit einem Turm, einer Steuerungsvorrichtung zur Betriebsführung der Windenergieanlage und einer Vorrichtung zur Erfassung der Beschleunigung des Turmes.

An der Spitze des Turmes einer Windenergieanlage vom Horizontalachsentyp befindet sich der Generator, der gesamte Antriebsstrang und der Rotor, also alle beweglichen Teile einer Windenergieanlage, die dem Wind Energie entziehen und diese in elektrische Energie umwandeln.

Die Umwandlung erfolgt, in dem der Rotor durch den Wind in Rotation versetzt und diese Rotation auf den oder die Generator(en) übertragen wird. Daher ist die Rotationsgeschwindigkeit einerseits vom Wind und andererseits von den aerodynamischen Eigenschaften der Windenergieanlage abhängig.

Aus dem Vorstehenden ergibt sich, dass der Turm daher nicht nur Rotor, Antriebsstrang und Generator (und Gondel) tragen, sondern darüber hinaus auch den im Betrieb einwirkenden Lasten sicher standhalten muss. Weiterhin muss der Turm hohen Windgeschwindigkeiten standhalten, auch wenn die Windenergieanlage bereits außer Betrieb ist.

Aus diesen Belastungen werden daher bestimmte Lastfälle abgeleitet, für welche der Turm ausgelegt sein muss. Diese Lasten werden als dimensionierende Lasten bezeichnet und bestimmen eben die Dimensionierung des Turmes. Aus dieser Dimensionierung ergibt sich wiederum auch das Schwingungsverhalten des Turmes, seine Eigenfrequenzen (die Grundfrequenz sowie deren Harmonische), usw.

Nun gibt es für Windenergieanlagen eine Reihe von Vorschriften, die eingehalten werden müssen. Dazu gehört auch eine "Richtlinie für Windkraftanlagen", herausgegeben vom Deutschen Institut für Bautechnik (DIBt) in Berlin. In dieser Richtlinie gibt es u. a. eine Vorschrift zur betrieblichen Schwingungsüberwachung des Turmes. Demnach ist in einem Betriebsbereich, in welchem die Erregerfrequenz des Rotors in einer Bandbreite der Eigenfrequenz des Turmes +/-5% liegt, ein dauernder Betrieb ohne eine betriebliche Schwingungsüberwachung unzulässig.

Aus DE 33 08 566 C2 ist eine Windturbinenanlage bekannt, bei welcher mittels einer Beschleunigungsmesseinrichtung am Turmkopf die Beschleunigung bzw. die Bewegung des Turmkopfes im Lastfall ermittelt wird und eine Rotorblattverstellung in Abhängigkeit der gemessenen Beschleunigung bzw. Bewegung des Turmkopfes eingestellt wird.

Aus US 4 435 647 A ist bekannt, wie aufgrund einer analytischen (rechnerischen) Vorhersage die Schwingung des Turms durch Veränderung der Blatteinstellung der Rotorblätter gedämpft werden kann.

Aus DE 100 11 393 A1 ist ein Regelungssystem für eine Windkraftanlage bekannt, bei welcher mittels Beschleunigungssensoren im Turmkopf und Rotorblättern oder Dehnungsmesstreifen an repräsentativen Punkten der Tragstruktur der Windenergieanlage die Turbinenbelastung und/oder Beanspruchung ermittelt und eine hieraus resultierende Regelgröße zur erforderlichen Leistungsreduzierung der Windenergieanlage ermittelt wird, damit insgesamt die erfasste Beanspruchung bzw. Belastung verringert wird.

Aus DE 100 16 912 C1 ist eine turmeigene frequenzabhängige Betriebsführung von Offshore-Windenergieanlagen bekannt, bei welcher der Betrieb einer Windenergieanlage im Bereich der Eigenfrequenz bewusst vermieden wird, indem bei Erreichen der kritischen Eigenfrequenz der kritische Drehzahlbereich schnell durchfahren wird.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren und eine Windenergieanlage der eingangs genannten Art derart weiterzubilden, dass eine zuverlässige und effiziente Schwingungsüberwachung verwirklicht wird, um den oben genannten Frequenzbereich für den Betrieb der Windenergieanlage zu erschließen.

Diese Aufgabe wird erfindungsgemäß mit einem Verfahren nach Anspruch 1 sowie einer Windenergieanlage mit den Merkmalen nach Anspruch 11 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen beschrieben. Die Erfindung beruht auf dem Ansatz, nicht nur die Schwingungsfrequenzen - wie im Stand der Technik - zu erfassen, sondern vor allem auch die Schwingungsamplituden, also den Schwingungsweg zu ermitteln. Schließlich kann eine Windenergieanlage auch in einem kritischen Frequenzbereich betrieben werden, solange dort die Schwingungsamplituden einen bestimmten Grenzwert nicht überschreiten.

Der Erfindung liegt die Erkenntnis zugrunde, dass bei allen nicht erzwungenen Schwingungen des Turmes die Schwingungen mit der ersten Eigenfrequenz des Turmes die größte Amplitude aufweisen und damit die größte Belastung für den Turm darstellen. Schwingungen mit Harmonischen der ersten Eigenfrequenz weisen stets kleinere Amplituden auf. Anteile von Beschleunigungen mit einer Harmonischen der ersten Eigenfrequenz des Turmes, die in die Ermittlung des Schwingweges einfließen, weisen zwar eine kleinere Amplitude auf, werden aber auf der Basis der ersten Eigenfrequenz in die Berechnung einbezogen und deshalb überbewertet.

Daraus ergibt sich, dass der Schwingweg im Wesentlichen proportional zu den Lasten ist und die aus dem Schwingweg abgeleiteten Lasten eher höher als die tatsächlich einwirkenden Lasten sind. Die Lasten werden also eher überbewertet als unterbewertet. Die Lasterfassung ergibt damit eine erhöhte Sicherheit.

Im Falle von parallel zur Rotorebene verlaufenden, also erzwungenen Schwingungen kann die Frequenz der Schwingung signifikant unterhalb der ersten Turmeigenfrequenz liegen. Eine Ermittlung der Belastung auf der Basis der ersten Turmeigenfrequenz führt hierbei sicher zu einer Unterbewertung des Schwingweges. Um diese Unterbewertung zu vermeiden, wird die Schwingfrequenz im laufenden Betrieb überwacht und bei Bedarf für die Ermittlung des Schwingweges mit einem korrigierten Wert verwendet.

Wird ein Schwingweg ermittelt, der einen ersten Grenzwert überschreitet, der also eine erste Last überschreitet, wird eine Gefährdung erkannt und die Steuerungsvorrichtung reagiert darauf. Ebenso wird eine Gefährdung erkannt, wenn ein zweiter Grenzwert des Schwingweges innerhalb einer vorgebbaren Zeitspanne überschritten wird. Um diese Gefährdung sicher zu beseitigen, kann die Anlage angehalten werden.

Weiterhin wird die Aufgabe gelöst durch eine Windenergieanlage gemäß dem Oberbegriff des Anspruches 10, gekennzeichnet durch eine Vorrichtung zur Ermittlung des Schwingweges aus den erfassten Beschleunigungen. Dieser ermittelte Schwingweg wird dann gemäß dem erfindungsgemäßen Verfahren verarbeitet bzw. ausgewertet.

In einer bevorzugten Weiterbildung der Erfindung umfasst die Windenergieanlage eine Vorrichtung zur Überwachung der Vorrichtung zur Erfassung von Beschleunigungen des Turmes. Dadurch kann ein Ausfall der Schwingungsüberwachung erkannt und Maßnahmen zur Beseitigung der Störung eingeleitet und die Windenergieanlage angehalten werden, damit nicht unkontrolliert Schwingungen auftreten können.

Weitere vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen angegeben.

Nachfolgend wird eine Ausführungsform der Erfindung anhand der en detailliert beschrieben. Dabei zeigen:

Fig. 1 eine Draufsicht auf die Gondel mit zwei Beschleunigungssensoren; und

Fig. 2 ein Flussdiagramm des Steuerungsvorganges in einer ersten Ausführungsform der Erfindung.

Die Draufsicht in Fig. 1 zeigt eine Gondel 10, von der aus sich seitlich Rotorblätter 12 erstrecken. Die Gondel ist an der Spitze eines Turmes 16 angeordnet. Im Inneren der Gondel 10 befindet sich eine Messvorrichtung 14 mit zwei Beschleunigungssensoren. Diese Beschleunigungssensoren sind in einer horizontalen Ebene ausgerichtet und weisen einen rechten Winkel zueinander auf. Durch diese Anordnung können Turmschwingungen in den entsprechenden Richtungen, also einmal in etwa parallel zu der Rotorblattebene und zum anderen senkrecht zu der Rotorblattebene erfasst werden.

Schwingungen mit der Eigenfrequenz des Turmes 16, die z. B. durch Windlasten angeregt werden, sind stets Schwingungen senkrecht zur Rotorebene, die durch einen entsprechend ausgerichteten Beschleunigungssensor 14 erfasst werden. Erzwungene Schwingungen, die z. B. durch Unwuchten am Rotor entstehen können, sind Schwingungen, die im Wesentlichen parallel zur Rotorebene ablaufen. Diese werden durch einen zweiten Beschleunigungssensor 14 erfasst. Dabei laufen solche erzwungenen Schwingungen keineswegs mit der 1. Eigenfrequenz des Turmes 16 bzw. einer Harmonischen davon ab. Sie werden dem Turm 16 aufgezwungen und können derart große Amplituden erreichen, dass eine sofortige Abschaltung erforderlich ist.

Dabei gestattet die Überwachung des Schwingweges senkrecht zur Rotorebene auch eine Überwachung der Steuerung des Anstellwinkels der Rotorblätter, denn das Schwingverhalten des Turmes bei einwandfrei arbeitender Steuerung des Rotorblatt-Anstellwinkels unterscheidet sich erheblich von dem Schwingverhalten bei nicht einwandfreier Steuerung. Daher treten auch bei nicht einwandfreier Steuerung des Rotorblatt-Anstellwinkels Schwingungen auf, die zu einer Abschaltung führen können.

Gegebenenfalls können die ermittelten Schwingungsdaten auch mit den Windrichtungsdaten verknüpft werden, so dass auch ein Zusammenhang darüber ermittelt werden kann, ob bei bestimmten Windrichtungen sich größere Schwingungswege als in anderen Windrichtungen eingestellt haben. Schließlich hat u. U. die die Windenergieanlage umgebende Landschaftsgeografie auch Auswirkungen - bei gleichbleibender Windgeschwindigkeit -, je nachdem aus welcher Windrichtung der Wind kommt.

Fig. 2 zeigt ein Flussdiagramm, dass den Ablauf des erfindungsgemäßen Verfahrens zur Steuerung der Windenergieanlage verdeutlicht. Der Ablauf beginnt mit Schritt 20. Im nachfolgenden Schritt 22 erfolgt eine Erfassung der Schwingung des Turmes durch die Beschleunigungssensoren 10, 14. Die Schwingungserfassung erfolgt für einen Zeitraum von 20 Sekunden. Dabei werden in diesen 20 Sekunden sämtliche Beschleunigungen kumuliert. Nach Ablauf dieses Zeitintervalls wird aus der Summe aller Beschleunigungen und der ersten Eigenfrequenz des Turmes der Effektivwert des Schwingweges in Nabenhöhe nach der Formel S(eff) = a(eff)/ω2 berechnet. Dabei ist S(eff) der Effektivwert des Turmschwingweges, a(eff) ist der Effektivwert aller Beschleunigungen über ein Zeitintervall von 20 Sekunden und ω2 ist das Quadrat von 2πf, wobei f die erste Eigenfrequenz des Turmes darstellt. Der Wert von S(eff) wird dann mit √2 multipliziert, um die Schwingungsamplitude zu erhalten, also die durchschnittliche Auslenkung des Turmes aus der Ruhelage.

Die erste Eigenfrequenz des Turmes ist in der Regel durch Messungen bzw. Berechnungen relativ genau bekannt, so dass dieser Wert bei einer Neuinbetriebnahme für die Berechnung des Schwingweges zunächst herangezogen wird. Da jedoch in Abhängigkeit von fertigungsbedingten Toleranzen der Steifigkeit des Turmes bzw. unterschiedlicher Gründungsarten die tatsächliche Turmeigenfrequenz vom theoretischen Wert abweichen kann, wird durch die Steuerungsvorrichtung beim Auftreten von Turmschwingungen, die in den Berechnungen verwendete Turmeigenfrequenz durch die Auswertung der Periodendauer des Signals der Beschleunigungssensoren allmählich korrigiert. Dadurch passt sich die Messung des Schwingweges den jeweiligen Verhältnissen einer Anlage an.

Für das weitere Verfahren werden noch eine Reihe von Grenzwerten festgelegt, die im Rahmen einer Auswertung des erfassten Schwingweges berücksichtigt werden.

Ein erster Grenzwert Smax bestimmt einen maximal zulässigen Schwingweg. Dieser sei in dem vorliegenden Beispiel 500 mm. Ein zweiter Grenzwert definiert einen minimal zulässigen Schwingweg Smin. Dieser betrage im vorliegenden Beispiel 220 mm. Ein dritter Grenzwert bestimmt die Abschaltgrenze und wird stets dann als Abschaltkriterium herangezogen, wenn zwar der erste Grenzwert Smax nicht überschritten wird, der zweite Grenzwert Smin jedoch überschritten wird. Dieser dritte Grenzwert erhält die Bezeichnung Sgrenz und sein numerischer, einheitenloser Wert ist z. B. 1 612 800.

In Schritt 23 des Flussdiagrammes in Fig. 2 wird jetzt geprüft, ob der ermittelte Schwingweg den ersten Grenzwert Smax überschreitet. Ist dies der Fall, wird in Schritt 29 die Anlage sofort angehalten und der Ablauf endet.

Ergibt die Prüfung in Schritt 23, dass der Schwingweg den ersten Grenzwert Smax nicht überschreitet, wird in Schritt 24 des Flussdiagrammes die Summe der Quadrate der gesamten Schwingwege gebildet. Dazu wird der im Zeitintervall erfasste Schwingweg S quadriert und von diesem wird das Quadrat des zweiten Grenzwertes Smin, also Smin2, subtrahiert. Die sich daraus ergebende Differenz wird zu der bereits in den vorausgehenden Intervallen ermittelten Summe addiert.

Daraus ergibt sich frühestens eine Abschaltung der Anlage, wenn der gemessene Schwingweg über 8 Messintervalle gleich dem maximal zulässigen Schwingweg Smax ist. Schwingwege, die zwischen dem minimalen und dem maximalen Schwingweg liegen, führen durch die quadratische Summenbildung und Abhängigkeit der Amplitude des Schwingweges zu einer überproportionalen Verkürzung der Abschaltzeiten. Wird der minimale Schwingweg (zweiter Grenzwert Smin) unterschritten, sinkt die Summe der Schwingweg-Quadrate. Wird nun der dritte Grenzwert Sgrenz durch die Summe der Quadrate erreicht oder überschritten, wird die Anlage wiederum angehalten.

Es ist auch möglich, die Anlage statt sofort anzuhalten eventuell auch so zu betreiben, dass der erste Grenzwert Smax danach umgehend sinkt. Hierzu kann beispielsweise eine Verstellung der Rotorblätter oder das Herausdrehen der Gondel aus dem Wind (store) durchgeführt werden. Eine Maßnahme kann auch sein, die Rotorblattdrehzahl heraufzusetzen, so dass die Anlage aus dem kritischen Bereich ihrer eigenen Frequenz herauskommt.

In der vorstehenden Anmeldung ist insbesondere die Verwendung von Beschleunigungssensoren zur Ermittlung des Schwingweges (Schwingungsamplitude) aufgezeigt. Es können auch andere Einrichtungen verwendet werden, um den Schwingweg (Amplitude) zu ermitteln. Der Fachmann wird sich im Bedarfsfall einer für den jeweiligen Einsatz geeigneten Einrichtung bedienen. Alternativ zu den Beschleunigungssensoren und alternativ zur Ermittlung des Schwingungsweges mittels Beschleunigungssensoren kann auch eine optische Messung durchgeführt werden, was hier regelmäßig jedoch recht aufwendig ist.

Alternativ zu einer Beschleunigungsmesseinrichtung lässt sich die Schwingung des Turmes unter Umständen auch durch Dehnungsmessstreifen am Turmfuß der Windenergieanlage feststellen. Hierzu sollten wenigstens zwei Dehnungsmessstreifen, in etwa um 90° gegenüber versetzt im Turmfußbereich angebracht sein. Solche Dehnungsmessstreifen können nicht nur die Dehnung, sondern auch die Stauchung des Materials erfassen. Je größer hierbei die Schwingungsamplitude des Turmes ist, umso größer ist auch die entsprechende Dehnung/Stauchung im Bereich der Dehnungsmessstreifen, die bevorzugt in der Hauptwindrichtung der Windenergieanlage ausgerichtet sind. Mit solchen Dehnungsmessstreifen lassen sich nicht nur Belastungen des Turmes im Bereich des Turmfußes messen, sondern auch ableiten, wie groß die Auslenkung des Turms im Bereich der Gondel bzw. des Turmkopfes ist, da je nach Auslenkungsamplitude des Turmkopfes auch die Belastung im Bereich des Turmfußes zunimmt. Selbstverständlich könnten die vorbeschriebenen Dehnungsmessstreifen (oder ein anderer Sensor, der die Belastung des Turmes feststellt) auch in anderen Bereichen des Turmes angebracht sein, z. B. auch auf halber Höhe des Turmes.


Anspruch[de]
  1. 1. Verfahren zur Steuerung einer Windenergieanlage, mit einem Turm, einer Steuereinrichtung zur Betriebsführung der Windenergieanlage oder Teile hiervon, wobei Mittel vorgesehen sind, mit denen eine Schwingung des Turms der Windenergieanlage erfasst wird, wobei die Mittel zur Erfassung der Turmschwingung den Schwingweg und/oder die absolute Auslenkung des Turms im oberen Teil des Turms aus seiner Ruhelage erfassen und die von dem Mittel zur Erfassung der Turmschwingung ermittelten Werte in der Steuerungseinrichtung verarbeitet werden und zwar derart, dass die Betriebsführung der Windenergienanlage oder Teile hiervon verändert wird, wenn der Schwingweg und/oder die absolute Auslenkung des Turms einen vorgebbaren ersten Grenzwert überschreitet.
  2. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Einrichtung zur Ermittlung der Schwingung des Turmes wenigstens eine Beschleunigungsmesseinrichtung aufweist.
  3. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zum Ermitteln des Schwingweges die erste Turmeigenfrequenz herangezogen wird.
  4. 4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass Schwingwege in wenigstens zwei verschiedenen Richtungen in einer im Wesentlichen horizontalen Ebene erfasst werden.
  5. 5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Rotoreinstellung verändert wird, wenn der Schwingweg einen vorgebbaren ersten Grenzwert überschreitet.
  6. 6. Verfahren nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass die Rotoreinstellung verändert wird, wenn der Schwingweg einen vorgebbaren Grenzwert innerhalb einer vorgebbaren Zeitspanne überschreitet.
  7. 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Zeitspanne abhängig vom Betrag des Schwingweges verändert wird.
  8. 8. Verfahren nach einem der Ansprüche 5-7, dadurch gekennzeichnet, dass der Rotor angehalten wird.
  9. 9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Parameter zur Ermittlung des Schwingweges zunächst vorgegeben und im laufenden Betrieb anhand der tatsächlich erfassten Messwerte korrigiert wird.
  10. 10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Schwingweg während eines vorgebbaren Zeitabschnittes ermittelt wird.
  11. 11. Windenergieanlage mit einem Turm und einer Steuerungseinrichtung zur Betriebsführung der Windenergieanlage sowie einer Einrichtung zur Erfassung des Schwingweges des Turmes.
  12. 12. Windenergieanlage nach Anspruch 11, dadurch gekennzeichnet, dass als Einrichtung zur Ermittlung des Schwingweges eine Einrichtung zur Erfassung der Beschleunigung des Turms vorgesehen ist und der Schwingweg des Turmes aus der erfassten Beschleunigung ermittelt wird.
  13. 13. Windenergieanlage nach Anspruch 12, gekennzeichnet durch eine Einrichtung zur Überwachung der Vorrichtung zur Erfassung von Beschleunigungen des Turmes.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

  Patente PDF

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com