PatentDe  


Dokumentenidentifikation EP1288432 10.04.2003
EP-Veröffentlichungsnummer 1288432
Titel Bohrmeissel mit unterschiedlich geneigten PCD-Elementen
Anmelder Smith International, Inc., Houston, Tex., US
Erfinder Mensa-Wilmot, Graham, 77014, US
Vertreter derzeit kein Vertreter bestellt
Vertragsstaaten AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, SK, TR
Sprache des Dokument EN
EP-Anmeldetag 07.08.2002
EP-Aktenzeichen 021021118
EP-Offenlegungsdatum 05.03.2003
Veröffentlichungstag im Patentblatt 10.04.2003
IPC-Hauptklasse E21B 10/42
IPC-Nebenklasse E21B 10/54   

Beschreibung[en]
Background of the Invention Field of the Invention

The invention relates generally to the field of polycrystalline diamond compact (PDC) insert drill bits used to drill wellbores through earth formations. More specifically, the invention relates to selected arrangements of PDC cutting elements on such drill bits to improve drilling performance.

Background Art

Polycrystalline diamond compact (PDC) insert drill bits are used to drill wellbores through earth formations. PDC bits generally include a bit body made from steel or matrix metal. The bit body has blades or similar structures in it to which are attached a plurality of PDC cutting elements in a selected arrangement. The way in which the blades are structured, and the way in which the PDC cutting elements are arranged on the blades depend on, among other factors, the type of earth formations to be drilled with the particular PDC bit and the structure of a drilling assembly (known as a bottom hole assembly - " BHA") to which the drill bit is attached.

One feature of the arrangement of the cutting elements is known as the "backrake" angle. This is an angle subtended between the plane of the cutting face (diamond table) of the PDC cutting element and a line parallel to the longitudinal axis of the drill bit, or perpendicular to the profile of the bit. Typically, PDC drill bits are designed so that the cutting elements have a relatively low backrake angle. Low backrake angle provides the drill bit with relatively high performance, by reducing the weight on bit (WOB) required to fail a given earth formation, meaning that rates of penetration through earth formations are high. However, low backrake angle increases the risk that the cutting elements will be subjected to impact damage, which normally appears as chipping or fracturing of the diamond table on the cutting elements, having the cutting elements break off the bit body, or otherwise prematurely and catastrophically fail. Another feature of low backrake angle is that wear flats which ultimately form on the cutting elements have a very large areal extent across the cutting element.

Several types of PDC bits known in the art include different backrake angles on the same bit in attempts to reduce cutting element wear and damage, while maintaining the relatively good performance provided by low backrake angle. One type of PDC bit known in the art includes cutting elements having backrake angle that increases with respect to the lateral or radial position of each cutting element with respect to the longitudinal axis of the bit. Typically, such bits have the cutting elements segregated into at least two groups of cutting elements. The first such group is located laterally inward, approximately from the longitudinal (bit) axis to a first selected radial extent. Cutting elements in the first group typically have a relatively low backrake angle, because these cutting elements are closer to the axis of the bit and as a result have smaller moment arms and do not create high torque. A second group of cutting elements starts at the radial limit of the first group and extends to the gage radius of the bit. Cutting elements in the second group have a higher backrake angle than those in the first group, because their moment arms are bigger. At higher backrake angles, the elements in this second group will have lower resulting forces, which helps to reduce the torque they will have created due to their bigger moment arms. Still other bits having this general arrangement of PDC cutting elements include a third group of cutting elements having higher backrake angle than the second group. The third group of cutting elements starts at a radial limit of the second group and continues out to the gage radius of the bit. Generally speaking, this type of PDC bit has increasing cutting element backrake angle as the radial distance of the cutting element increases. Increased backrake angle is usable because they make the cutting elements comparatively more passive, and thus less susceptible to impact damage in events of vibration behavior. U.S. Pat. No.5,549,171 describes a fixed cutter drill bit. The bit includes a bit body and a cutting face, which includes a plurality of sets of cutter elements mounted on the bit face. Each set may consist of two, three or more cutters elements. A set of cutting element includes a first cutter element at a first backrake angle and a second cutter element at a second backrake angle that differs from said first backrake angle. The first and second cutter elements of a set are mounted in said bit face at a common radial position."

Low backrake angles in general improve the penetration rates of PDC bits. However, low backrake angles also reduce the amount of useable diamond on a PDC cutting element, and thus the bit's life or durability. High backrake angles reduce rates of penetration, but cutting elements in such configurations are less susceptible to impact damage and present more useable diamond and thus improve bit life.

Another type of PDC bit known in the art includes PDC cutting elements having a first backrake angle on selected blades, and PDC cutting elements having a second backrake angle on other selected blades. Typically the selected backrake angle will alternate between successive blades.

The backrake arrangements known in the art, however, have not proven to be very suitable for use with high speed drilling tools and/or assemblies. Such drilling tools or assemblies, as known in the art, include "turbines" hydraulic motors, and sometimes high rotary speed assemblies. What is needed, therefore, is a drill bit having cutting elements arranged to improve performance when used with high speed tools or drilling assemblies, especially turbines What is also needed is a bit which combines the increased life characteristics of high backrake angle with the increased rates of penetration associated with low backrake angle.

Summary of the Invention

One aspect of the invention is a drill bit which includes a bit body having a plurality of blades thereon. The blades have a plurality of cutting elements affixed to them at selected positions. The cutting elements are disposed into at least two groups. A first one of the groups has at least 60 percent of its cutting elements disposed at a second mean backrake angle. The second mean backrake angle is at least about fifteen degrees more than the first mean backrake angle. The bottom hole coverage of the cutting elements in the second group is at least about eighty percent.

In some embodiments, each cutting element on the bit has a unique radial position with respect to the bit geometric axis. In some embodiments, the cutting elements in the second group have a higher abrasion resistance than the cutting elements in the first group. Each of the cutting elements has a backrake angle which is related to the radial distance of the cutting element from the bit axis.

In some embodiments, at least one cutting element is disposed at substantially the same radial position as a corresponding cutting element in either the first group or the second group. In some embodiments, the at least one cutting element has the same backrake angle as the corresponding cutting element. In some embodiments, the at least one cutting element is a different diameter than the corresponding cutting element. In some embodiments, at least one of the blades on the bit body has at least one cutting element from the first group and from the second group, and has at least one alternation of backrake angle thereon.

Other aspects and advantages of the invention will be apparent from the following description and the appended claims.

Brief Description of the Drawings

Figure 1A shows an end view of one embodiment of a bit according to the invention.

Figure 1B shows a "profile" view of the embodiment shown in Figure 1A.

Figure 2 shows a side view of a cutting element to illustrate backrake angle and typical construction of a PDC cutting element.

Figure 3A shows an end view of another embodiment a bit according to the invention.

Figure 3B shows a cutting element placement profile of the bit in Figure 3A.

Detailed Description

One embodiment of a drill bit according to the invention is shown in an end view in Figure 1A. The view in Figure 1A is of the cutting end of the bit 10. The bit 10 includes a body 14 which may be made from steel, or a matrix material of any type known in the art for the formation of fixed cutter bit bodies. The bit body 14 has formed therein an arrangement of blades B1 through B9. The blades B1-B9 form attachment surfaces, to which are affixed a plurality of cutting elements 12, which in this embodiment are polycrystalline diamond compact (PDC) inserts. While the cutting elements in the example bit of Figure 1A are PDC inserts, it should be clearly understood that other types of cutting elements used in fixed-cutter bits, such as cubic boron nitride, or other super hard material, or hard material such as metal carbide, may also be used in a bit made according to the invention. The bit 10 typically includes a plurality of drilling fluid discharge orifices, called nozzles or jets, shown generally at N1 through N8 in Figure 1A. The cutting elements 12 are arranged on the blades B1-B9 so that the bit 10 has desired drilling characteristics, for example, a particular type of formation most suited to be drilled by the particular bit. This example is not intended to limit the factors affecting any design of a bit according to the invention, however. Typically, the cutting elements 12 will each have a selected backrake angle. Backrake angle, as illustrated at &bgr; in Figure 2, is defined as the angle subtended between a plane 23 of the cutting face of the diamond table 22 of the cutting element 12 and a line 24 parallel to the bit axis (not shown in Figure 2). Figure 2 also illustrates typical construction of a PDC cutting element 12. The cutting element 12 includes the diamond table 22, formed from sintered polycrystalline diamond, bonded to a substrate or cutter body 20. The substrate 20 is typically formed from tungsten carbide or similar material.

The bit shown in Figure 1A is known in the art as a "single set" bit. Such bits have a unique radial position, with respect to the rotational axis (not shown) of the bit, for each cutting element on the bit. The unique radial position of each cutting element on the bit of Figure 1A is better shown in a "profile" view of the bit in Figure 1B. The view in Figure 1B represents each blade (B1-B9 in Figure 1A) being rotationally projected about the longitudinal axis 10A so that it is in the same cross-sectional plane as all the other blades. Note that each cutting element 12 has a unique radial position with respect to the bit axis 10A. The profile view in Figure 1B also indicates that the cutting elements 12 in the aggregate establish substantially "full bottom hole coverage", which can be defined as having the cutting elements arranged to "overlap" such that at least some cutting surface from the cutting elements contacts substantially the entire distance from the axis 10A to the gage radius 10B of the bit 10. Thus, when the bit is rotated, substantially the entire "bottom hole" is covered by the cutting elements.

Notably, the cutting elements 12 have substantial radial overlap when viewed in profile view. The significance of the radial overlap is that even for single set drill bits, there can exist more than one subset (called a "group" for purposes of explaining the invention) of all the cutting elements on the drill bit which may be characterized as having substantially "full coverage." The significance of having more than one full or nearly full, coverage group of cutting elements will be further explained.

In one aspect of a drill bit according to the invention, the cutting elements are arranged on the bit so that there exist at least two distinct groups of cutting elements, each of which groups has preferably a coverage of at least about 80 percent of the surface from the bit axis (10A in Figure 1B) to the gage radius (10B in Figure 1B) of the bit. More preferably, the cutting elements in each of the at least two groups have coverage of at least about 90 percent of the area from the axis to the gage radius, this coverage referred to as "bottom hole coverage". The at least two distinct groups of cutting elements may be placed on any combination of one or more blades (such as B1-B9 in Figure 1A) on any particular drill bit.

In a bit according to this aspect of the invention, at least 60% of the cutting elements in the first group has a first mean backrake angle, which may be within a range of about 5 degrees of a selected mean value thereof suitable for drilling earth formations. These cutting elements in the first group may be referred to as "low backrake angle" cutting elements. In some embodiments, the backrake angle selected for the cutting elements in first group may be related to the radial position of the individual cutting elements in the first group. Such arrangements are known in the art and include, for example, an increasing backrake angle with respect to radial distance of each cutting element from the bit axis (10A in Figure 1B).

At least 60% of the cutting elements in the second group of cutting elements have a second mean backrake angle, which may be within a range of about 5 degrees of a selected mean value thereof. The selected mean value of backrake angle for the cutting elements in the second group is at least about 15 degrees, and more preferably is at least about 25 degrees, more than the selected mean value of backrake angle for the first group of cutting elements. For purposes of explanation of the invention, these cutting elements in the second group may be referred to as "high backrake angle" cutting elements.

In any bit according to this aspect of the invention, the cutting elements in the second group must have at least 80 percent, and more preferably, at least about 90 percent bottom hole coverage. The cutting elements in the first group preferably, but not necessarily, should have at least about 80 percent, and more preferably at least about 90 percent bottom hole coverage. Some embodiments of a bit according to this aspect of the invention may include a backrake angle which is related to the radial distance of each cutting element in the second group from the bit axis (10A in Figure 1B). Having a backrake angle related to the radial position of each cutting element in the second group would typically be combined in an embodiment of a bit according to the invention where the first group of cutting elements also includes a backrake angle related to the radial position of each of the cutting elements in the first group.

In particular embodiments of a bit made according to this aspect of the invention, the high backrake angle cutting elements may be selected to have increased resistance to abrasive wear as compared to the cutting elements in the first group. Such increased resistance to abrasive wear may include either one or both of smaller grain sizes for the polycrystalline diamond and a thicker diamond table, where the cutting elements are PDC inserts. Thicker diamond table may be defined for purposes of these embodiments as having 50 percent or more greater diamond table thickness than the low backrake angle cutting elements. In particular embodiments, the diamond table thickness of the low backrake angle cutting elements is about 0.120 inches (3.05 mm), and the diamond table thickness of the high backrake angle cutting elements is about 0.180 inches (4.57 mm). In other embodiments, cutting element sizes and/or geometries may differ within a given group or between different groups of cutting elements.

Another type of drill bit which can be made according to various aspects and embodiments of the invention is shown in end view in Figure 3A. The bit shown in Figure 3A is a so called "plural set" bit. The plural set bit 110 includes a bit body 114 made from steel or matrix material and having a plurality of blades 1B1 through 1B12. Cutting elements 112, 212 are arranged at selected positions on the blades 1B1-1B12.

A plural set bit includes more than one cutting element at at least approximately one radial position with respect to the bit axis. Expressed alternatively, at least one cutting element includes therefor a "backup" cutting element disposed at about the same radial position with respect to the bit axis. The radial positions of each of the cutting elements should be selected so that the cutting elements, in the aggregate, provide substantially full coverage, just as in the single set embodiments explained earlier herein. In embodiments of a plural set bit according to the invention, the cutting elements 112, 212 may include one or more "back up" cutting elements for one or more "primary" cutting elements. A back up cutting element is positioned rotationally behind a primary cutting element and has a radial position which is approximately equal to that of the primary cutting element with respect to the axis of the bit. The cutting elements shown in Figure 3A include some having a low backrake angle, such as cutting element 112, and include some others having a high backrake angle, such as cutting element 212.

Just as in the single set embodiments of a bit according to the invention, the cutting elements in plural set embodiments are segregated into at least two groups. Each of the groups has at least 80 percent bottom hole coverage, and more preferably at least 90 percent bottom hole coverage. A first group has a first selected mean backrake angle, for at least 60% of its cutting elements, which may be within a range of about 5 degrees about the selected mean value. A second group has a second selected mean backrake angle which may be within a range of about 5 degrees about the second mean value for at least 60% of its cutters, when the second selected mean backrake angle is at least about 15 degrees, and more preferably is at least about 25 degrees more than the first selected mean back rake angle of the first group.

In a plural set bit according to the invention, a backup cutting element may have the same backrake angle as the corresponding primary cutting element, or may have a different backrake angle than the corresponding primary cutting element. In some embodiments of a plural set bit, a backup cutting element may be a different diameter than the corresponding primary cutting element. Alternatively, the backup cutting element may have the same diameter as the primary cutting element. A profile view of the bit of Figure 3A is shown in Figure 3B. The example bit of Figure 3A is more clearly shown in Figure 3B as having more than one cutting element diameter, for example small diameter cutting elements 212A, and larger diameter cutting elements 112A. For this embodiment, the different sized cutting elements are in different groups. In other embodiments, the backup cutting element may have a different geometry than the primary cutting element. Cutting element geometries other than right cylindrical are known in the art.

Plural set embodiments of a bit according to the invention preferably include at least one blade (1B1-1B12 in Figure 3A) having thereon at least one cutting element having the first backrake angle (in the first group), and at least one cutting element having the second backrake angle (in the second group), and this at least one blade also has at least one alternation of backrake angle thereon. Alternation of backrake angle means that where the at least one blade has two high backrake angle cutting elements, they are disposed so as to be on radially opposed sides of one of the low backrake angle cutting elements. Conversely, where the at least one blade includes two of the low backrake angle cutting elements and at least one high backrake angle cutting element, the low backrake angle cutting elements should similarly "bracket" the high backrake angle cutting element. An additional embodiment of the alternation includes that when all the different groups of cutters are rotated onto a single radial plane, there will exist an alternation of the backrake angles along the bit's profile, similar in nature to that described for the individual blades.

As in the single set embodiments, in plural set embodiments the high backrake angle cutting elements preferably are selected to have higher abrasion resistance than the low backrake angle cutting elements. Higher abrasion resistance, as previously explained with respect to single set embodiments, may result from either or both a thicker diamond table and finer diamond grain size in the polycrystalline diamond.

A drill bit made according to various embodiments of the invention such as disclosed herein may have improved drilling performance at high rotational speeds as compared with prior art drill bits. Such high rotational speeds are typical when a drill bit is turned by a turbine, hydraulic motor, or used in high rotary speed applications.

While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.


Anspruch[de]
Eine Bohrkrone (10), umfassend: einen Körper (14) der Bohrkrone (10) mit einer Mehrzahl von Klingen (B1-B9) daran; die Klingen (B1-B9) weisen eine Mehrzahl von Schneidelementen (12) auf, die daran an ausgewählten Positionen befestigt sind; wobei die Schneidelemente (12) in wenigstens zwei Gruppen von Schneidelementen (112, 212) angeordnet sind, die an jeder Kombination von einer oder mehreren Klingen (B1-B9) angeordnet sind, eine erste der wenigstens zwei Gruppen weist wenigstens sechszig Prozent von Schneidelementen (112) auf, die darin in einem ersten mittleren Neigungswinkel angeordnet sind, eine zweite der wenigstens zwei Gruppen weist wenigstens sechzig Prozent von Schneidelementen (212) auf, die darin in einem zweiten mittleren Neigungswinkel angeordnet sind, wobei der zweite mittlere Neigungswinkel wenigstens ungefähr fünfzehn Grad mehr als der erste mittlere Neigungswinkel beträgt, wobei eine untere Bohrungsüberdeckung der Schneidelemente in der zweiten Gruppe wenigstens achtzig Prozent beträgt, dadurch gekennzeichnet, dass der Neigungswinkel eines jeden der Schneidelemente (112, 212) in der ersten Gruppe und der zweiten Gruppe sich auf einen radialen Abstand eines jeden der Schneidelemente (112, 212) von der Bohrkronenachse (10A) bezieht. Bohrkrone (10), wie in Anspruch 1 definiert, worin eine untere Bohrungsüberdeckung der Schneidelemente (112) in der ersten Gruppe wenigstens ungefähr achtzig Prozent beträgt. Bohrkrone (10), wie in Anspruch 1 definiert, worin eine untere Bohrungsüberdeckung der Schneidelemente (212) in der zweiten Gruppe wenigstens ungefähr neunzig Prozent beträgt. Bohrkrone (10), wie in Anspruch 1 definiert, worin der mittlere Neigungswinkel der Schneidelemente (212) in der zweiten Gruppe wenigstens ungefähr fünfundzwanzig Grad mehr als der mittlere Neigungswinkel der Schneidelemente (112) in der ersten Gruppe beträgt. Bohrkrone (10), wie in Anspruch 1 definiert, worin die Schneidelemente (212) in der zweiten Gruppe einen größeren Verschleißwiderstand als die Schneidelemente (112) in der ersten Gruppe aufweisen. Bohrkrone (10), wie in Anspruch 5 definiert, worin die Dicke einer Diamantauflage (22) der Schneidelemente (212) in der zweiten Gruppe wenigstens etwa fünfzig Prozent größer ist als die Dicke der Diamantauflage (22) der Schneidelemente (121) in der ersten Gruppe. Bohrkrone (10), wie in Anspruch 5 definiert, worin eine Diamantkorngröße von Schneidelementen (212) in der zweiten Gruppe kleiner ist, als die Diamantkorngröße der Schneidelemente (112) der ersten Gruppe. Bohrkrone (10), wie in Anspruch 1 definiert, worin jedes Schneidelement (12) an der Bohrkrone (10) eine eindeutige radiale Position mit Bezug zu einer Achse (10A) der Bohrkrone (10) aufweist. Bohrkrone (10), wie in Anspruch 1 definiert, worin das wenigstens eine Schneidelement (12) eine radiale Position aufweist, die ungefähr gleich zu der eines entsprechenden Schneidelementes (112) in der ersten Gruppe ist, wobei das entsprechende Schneidelement (112) an einer anderen Klinge (B1-B9) angeordnet ist als das wenigstens eine Schneidelement (12). Bohrkrone (10), wie in Anspruch 1 definiert, worin das wenigstens eine Schneidelement (12) eine radiale Position aufweist, die ungefähr gleich zu der eines entsprechenden Schneidelementes (212) in der zweiten Gruppe ist, wobei das wenigstens eine Schneidelement (12) an einer anderen Klinge (B1-B9) angeordnet ist als das entsprechende Schneidelement (212). Bohrkrone (10), wie in einem der Ansprüche 9 oder 10 definiert, worin das wenigstens eine Schneidelement (12) den gleichen Neigungswinkel wie das entsprechende Schneidelement (112, 212) aufweist. Bohrkrone (10), wie in einem der Ansprüche 9 oder 10 definiert, worin das wenigstens eine Schneidelement (12) einen höheren Neigungswinkel als das entsprechende Schneidelement (112, 212) aufweist. Bohrkrone (10), wie in einem der Ansprüche 9 oder 10 definiert, worin das wenigstens eine Schneidelement (12) einen anderen Durchmesser als das entsprechende Schneidelement (112, 212) aufweist. Bohrkrone (10), wie in einem der Ansprüche 9 oder 10 definiert, worin wenigstens eine der Klingen (B1-B9) daran wenigstens ein Schneidelement (112) in der ersten Gruppe und wenigstens ein Schneidelement (212) in der zweiten Gruppe aufweist, und die wenigstens eine der Klingen (B1-B9) wenigstens eine Änderung des Neigungswinkels daran aufweist. Bohrkrone (10), wie in einem der Ansprüche 9 oder 10 definiert, worin das wenigstens eine Schneidelement (12) eine andere Geometrie als das entsprechende Schneidelement (112, 212) aufweist. Bohrkrone (10), wie in Anspruch 1 definiert, worin die Schneidelemente (12) polykristalline Diamantkompakteinsätze aufweisen. Bohrkrone (10), wie in Anspruch 1 definiert, des weiteren umfassend wenigstens ein Schneidelement (12), das einen anderen Durchmesser als die anderen der Schneidelemente (112, 212) aufweist. Bohrkrone (10), wie in Anspruch 17 definiert, worin das wenigstens eine Schneidelement (12) mit anderem Durchmesser in der ersten Gruppe ist. Bohrkrone (10), wie in Anspruch 17 definiert, worin das wenigstens eine Schneidelement (12) mit anderem Durchmesser in der zweiten Gruppe ist. Bohrkrone (10), wie in Anspruch 1 definiert, des weiteren umfassend wenigstens ein Schneidelement (12), das eine andere Geometrie als weitere der Schneidelemente (112, 212) aufweist. Bohrkrone (10), wie in Anspruch 20 definiert, worin das wenigstens eine Schneidelement (12) mit anderer Geometrie in der ersten Gruppe ist. Bohrkrone (10), wie in Anspruch 20 definiert, worin das wenigstens eine Schneidelement (12) mit anderer Geometrie in der zweiten Gruppe ist. Bohrkrone (10), wie in Anspruch 1 definiert, worin wenigstens für eine der Schneiden (B1-B9), die Schneidelemente (112) der ersten Gruppe mit den Schneidelementen (212) der zweiten Gruppe abgewechselt werden.
Anspruch[en]
A drill bit (10) comprising: a bit (10) body (14) having a plurality of blades (B1-B9) thereon; the blades (B1-B9) having a plurality of cutting elements (12) affixed thereon at selected positions; the cutting elements (12) being disposed into at least two groups of cutting elements (112, 212) placed on any combination of one or more blades (B1-B9), a first one of the at least two groups having at least sixty percent of the cutting elements (112) therein disposed at a first mean backrake angle, a second one of the at least two groups having at least sixty percent of the cutting elements (212) therein disposed at a second mean backrake angle, the second mean backrake angle being at least about fifteen degrees more than the first mean backrake angle, a bottom hole coverage of the cutting elements in the second group being at least about eighty percent, characterized in that,

the backrake angle of each of the cutting elements (112,212) in the first group and second group is related to a radial distance of each of the cutting elements (112,212) from the bit axis 10A .
The drill bit (10) as defined in claim 1 wherein a bottom hole coverage of the cutting elements (112) in the first group is at least about eighty percent. The drill bit (10) as defined in claim 1 wherein a bottom hole coverage of the cutting elements (212) in the second group is at least about ninety percent. The drill bit (10) as defined in claim 1 wherein the mean backrake angle of the cutting elements (212) in the second group is at least about twenty-five degrees more than the mean backrake angle of the cutting elements (112) in the first group. The drill bit (10) as defined in claim 1 wherein the cutting elements (212) in the second group have a higher abrasion resistance than the cutting elements (112) in the first group. The drill bit (10) as defined in claim 5 wherein a diamond table (22) thickness of the cutting elements (212) in the second group is at least about 50 percent greater than a diamond table (22) thickness of the cutting elements (112) in the first group. The drill bit (10) as defined in claim 5 wherein a diamond grain size of the cutting elements (212) in the second group is smaller than a diamond grain size of the cutting elements (112) in the first group. The drill bit (10) as defined in claim 1 wherein each cutting element (12) on the bit (10) has a unique radial position with respect to an axis (10A) of the bit (10). The drill bit (10) as defined in claim 1 wherein at least one cutting element (12) has a radial position that is approximately equal to that of a corresponding cutting element (112) in the first group, the corresponding cutting element (112) being on a different blade (B1-B9) than the at least one cutting element (12). The drill bit (10) as defined in claim 1 wherein at least one cutting element (12) has a radial position that is approximately equal to that of a corresponding cutting element (212) in the second group, the at least one cutting element (12) being on a different blade (B1-B9) than the corresponding cutting element (212). The drill bit (10) as defined in anyone of claims 9 or 10, wherein the at least one cutting element (12) has a same backrake angle as the corresponding cutting element (112, 212). The drill bit (10) as defined in anyone of claims 9 or 10, wherein the at least one cutting element (12) has a higher backrake angle than the corresponding cutting element (112,212). The drill bit (10) as defined in anyone of claims 9 or 10, wherein the at least one cutting element (12) has a different diameter than the corresponding cutting element (112,212). The drill bit ((10) as defined in anyone of claims 9 or 10, wherein at least one of the blades (B1-B9) has thereon at least one cutting element (112) in the first group and at least one cutting element (212) in the second group, and the at least one of the blades (B1-B9) has at least one alternation of backrake angle thereon. The drill bit (10) as defined in anyone of claims 9 or 10, wherein the at least one cutting element (12) has a different geometry than the corresponding cutting element (112,212). The drill bit (10) as defined in claim 1 wherein the cutting elements (12) comprise polycrystalline diamond compact inserts. The drill bit (10) as defined in claim 1 further comprising at least one cutting element (12) having a different diameter than other ones of the cutting elements (112,212). The drill bit (10) as defined in claim 17 wherein the at least one different diameter cutting element (12) is in the first group. The drill bit (10) as defined in claim 17 wherein the at least one different diameter cutting element (12) is in the second group. The drill bit (10) as defined in claim 1 further comprising at least one cutting element (12) having a different geometry than other ones of the cutting elements (112,212). The drill bit (10) as defined in claim 20 wherein the at least one different geometry cutting element (12) is in the first group. The drill bit (10) as defined in claim 20 wherein the at least one different geometry cutting element (12) is in the second group. The drill bit (10) as defined in claim 1 wherein, at least for one of the blades (B1-B9), the cutting elements (112) of the first group are alternate with the cutting elements (212) of the second group.
Anspruch[fr]
Trépan (10) comprenant : un corps (14) de trépan (10) portant une pluralité de dents (B1-B9) ; les dents (B1-B9) ayant une pluralité d'éléments coupants (12) fixés sur celles-ci à des positions sélectionnées ; les éléments coupants (12) étant disposés en au moins deux groupes d'éléments coupants (112, 212) placés sur n'importe quelle combinaison d'une ou de plusieurs dents (B1-B9), un premier des au moins deux groupes ayant au moins 60 pour cent des éléments coupants (112) disposés à un premier angle d'attaque moyen, un deuxième des au moins deux groupes ayant au moins 60 pour cent des éléments coupants (212) disposés à un deuxième angle d' attaque moyen, le deuxième angle d' attaque moyen étant supérieur d' au moins environ quinze degrés au premier angle d' attaque moyen, une couverture du fond du forage assurée par les éléments coupants du deuxième groupe étant d'au moins environ quatre-vingts pour cent, caractérisé en ce que

l'angle d'attaque de chacun des éléments coupants (112, 212) du premier groupe et du deuxième groupe est fonction d'une distance radiale de chacun des éléments coupants (112, 212) par rapport à l'axe 10A du trépan.
Trépan (10) selon la revendication 1, dans lequel une couverture du fond du forage par les éléments coupants (112) du premier groupe est d'environ quatre-vingts pour cent. Trépan (10) selon la revendication 1, dans lequel une couverture du fond du forage par les éléments coupants (212) du deuxième groupe est d'environ quatre-vingt-dix pour cent. Trépan (10) selon la revendication 1, dans lequel l'angle d'attaque moyen des éléments coupants (212) du deuxième groupe est supérieur d'au moins environ vingt-cinq degrés à l'angle d'attaque moyen des éléments coupants (112) du premier groupe. Trépan (10) selon la revendication 1, dans lequel les éléments coupants (212) du deuxième groupe ont une résistance à l'abrasion supérieure à celle des éléments coupants (112) du premier groupe. Trépan (10) selon la revendication 5, dans lequel une épaisseur de la plaquette en diamant (22) des éléments coupants (212) du deuxième groupe est supérieure au moins d'environ 50 pour cent à une épaisseur de la plaquette en diamant (22) des éléments coupants (112) du premier groupe. Trépan (10) selon la revendication 5, dans lequel une grosseur de grain de diamant des éléments coupants (212) du deuxième groupe est inférieure à une grosseur de grain de diamant des éléments coupants (112) du premier groupe. Trépan (10) selon la revendication 1, dans lequel chaque élément coupant (12) du trépan (10) occupe une position radiale unique par rapport à un axe (10A) du trépan (10). Trépan (10) selon la revendication 1, dans lequel au moins un élément coupant (12) occupe une position radiale approximativement égale à celle d'un élément coupant correspondant (112) du premier groupe, l'élément coupant correspondant (112) se trouvant sur une autre dent (B1-B9) que l'au moins un élément coupant (12). Trépan (10) selon la revendication 1, dans lequel au moins un élément coupant (12) occupe une position radiale approximativement égale à celle d'un élément coupant correspondant (212) du deuxième groupe, l'au moins un élément coupant (12) se trouvant sur une autre dent (B1-B9) que l'élément coupant correspondant (212). Trépan (10) selon l'une des revendications 9 ou 10, dans lequel l'au moins un élément coupant (12) a un même angle d'attaque que l'élément coupant correspondant (112, 212). Trépan (10) selon l'une des revendications 9 ou 10, dans lequel l'au moins un élément coupant (12) a un angle d'attaque supérieur à celui de l'élément coupant correspondant (112, 212). Trépan (10) selon l'une des revendications 9 ou 10, dans lequel l'au moins un élément coupant (12) a un diamètre différent de celui de l'élément coupant correspondant (112, 212). Trépan (10) selon l'une des revendications 9 ou 10, dans lequel au moins une des dents (B1-B9) porte au moins un élément coupant (112) du premier groupe et au moins un élément coupant (212) du deuxième groupe, et l'au moins une des dents (B1-B9) présente au moins une alternance d'angle d'attaque. Trépan (10) selon l'une des revendications 9 ou 10, dans lequel l'au moins un élément coupant (12) a une géométrie différente de celle de l'élément coupant correspondant (112, 212). Trépan (10) selon la revendication 1, dans lequel les éléments coupants (12) comportent des inserts en diamant polycristallin compact. Trépan (10) selon la revendication 1, comportant en outre au moins un élément coupant (12) ayant un diamètre différent de celui des autres éléments coupants (112, 212). Trépan (10) selon la revendication 17, dans lequel l'au moins un élément coupant (12) de diamètre différent se trouve dans le premier groupe. Trépan (10) selon la revendication 17, dans lequel l'au moins un élément coupant (12) de diamètre différent se trouve dans le deuxième groupe. Trépan (10) selon la revendication 1, comportant en outre au moins un élément coupant (12) ayant une géométrie différente de celle des autres éléments coupants (112, 212). Trépan (10) selon la revendication 20, dans lequel l'au moins un élément coupant (12) ayant une géométrie différente se trouve dans le premier groupe. Trépan (10) selon la revendication 20, dans lequel l'au moins un élément coupant (12) ayant une géométrie différente se trouve dans le deuxième groupe. Trépan (10) selon la revendication 1, dans lequel, au moins pour l'une des dents (B1-B9), les éléments coupants (112) du premier groupe alternent avec les éléments coupants (212) du deuxième groupe.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com