Warning: fopen(111data/log202008050203.log): failed to open stream: No space left on device in /home/pde321/public_html/header.php on line 107

Warning: flock() expects parameter 1 to be resource, boolean given in /home/pde321/public_html/header.php on line 108

Warning: fclose() expects parameter 1 to be resource, boolean given in /home/pde321/public_html/header.php on line 113
Bestrahlungsvorrichtung mit veränderlichem Spektrum - Dokument EP1293740
 
PatentDe  


Dokumentenidentifikation EP1293740 24.04.2003
EP-Veröffentlichungsnummer 1293740
Titel Bestrahlungsvorrichtung mit veränderlichem Spektrum
Anmelder arccure technologies GmbH, 59557 Lippstadt, DE
Erfinder Bisges, Michael, 59557 Lippstadt, DE;
Kisters, Knut, 59590 Geseke, DE
Vertragsstaaten AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, SK, TR
Sprache des Dokument DE
EP-Anmeldetag 17.08.2002
EP-Aktenzeichen 020185476
EP-Offenlegungsdatum 19.03.2003
Veröffentlichungstag im Patentblatt 24.04.2003
IPC-Hauptklasse F26B 3/28

Beschreibung[de]

Die Erfindung betrifft eine Bestrahlungsvorrichtung zur Bestrahlung von Objekten mit insbesondere ultravioletter elektromagnetischer Strahlung, mit einem Gehäuse, das eine auf das zu bestrahlende Objekt ausgerichtete Austrittsöffnung für die elektromagnetische Strahlung aufweist sowie mindestens zwei in dem Gehäuse angeordneten langgestreckten Strahlungsquellen für die elektromagnetische Strahlung mit einem bei einer vorgeschriebenen Betriebstemperatur definierten Spektrum.

Bestrahlungsvorrichtungen, insbesondere für Ultraviolett (Abk.: UV)-Licht kommen in der photochemischen Beeinflussung von Bestrahlungsobjekten zur Anwendung. Wichtige Anwendungen sind die Aushärtung von Druckfarben, Klebstoffen und Beschichtungen sowie die Sterilisation und die medizinische Bestrahlung. Abhängig von der Anwendung sind verschiedene Anteile aus dem UV-Spektrum von Bedeutung. Grundsätzlich lässt sich das UV-Spektrum in die Bereiche UV-C (100-280nm), UV-B (280-315nm), UV-A (315-380nm) und UV-VIS (380-450nm) unterteilen.

Als Strahlungsquellen in UV-Bestrahlungsvorrichtungen kommen vor allem Gasentladungslampen zum Einsatz, in denen durch das Verdampfen von metallischen Zusätzen ein Plasma erzeugt wird. Die Lampen bestehen dabei im wesentlichen aus einem röhrenförmigen Glaskörper, zwei Elektroden, zwei metallischen Folieneinschmelzungen sowie zwei Sockeln. In der UV-Bestrahlungstechnik haben sich drei Strahlungsquellen als Standard etabliert, die durch den Zusatz von Quecksilber (Hg) oder Eisen (Fe) oder Gallium (Ga) unterschiedliche Spektren aufweisen. Abhängig von dem Zusatz unterscheiden sich daher die Energieanteile im UV-A, -B,-C und -VIS Bereich der Strahlungsquellen.

Eine UV-Bestrahlungsvorrichtung kann somit immer nur das durch die verwendete Strahlungsquelle festgelegte Spektrum abstrahlen. Über eine Änderung der Leistungszufuhr kann nur die gesamt zugeführte Energiemenge erhöht oder reduziert werden, während die Verteilung der Energie über die Wellenlänge sich nur geringfügig ändert.

In der Praxis werden UV-Bestrahlungsvorrichtungen mit Quecksilber (Hg)-Strahlungsquellen hauptsächlich zur Härtung von Druckfarben eingesetzt. Die sehr energiereiche Strahlung um 254 nm wird gut in dünnen Farbschichten absorbiert und härtet daher effektiv den Farbauftrag. Zur Aushärtung von dickeren Schichten, wie beispielsweise Klebstoffschichten, benötigt man die UV-A Strahlung um 365 nm oder sogar den Anteil des sichtbaren Lichts, der mit Gallium (GA)-Strahlungsquellen erzeugt wird.

Um eine UV-Bestrahlungsvorrichtung für verschiedene Anwendungen einsetzen zu können, ist es nach dem Stand der Technik erforderlich, eine Abkühlzeit von einigen Minuten einzuhalten, um sodann die Strahlungsquelle auszuwechseln. Während dieser Zeit muss der Produktionsprozess angehalten werden.

Hinzu kommt, dass sich das Spektrum der Strahlungsquellen im Betrieb, insbesondere alterungsbedingt schon während der ersten 100 Betriebsstunden um bis zu 30% verändern kann. Die Veränderung des Spektrums äußert sich jedoch nicht als gleichmäßige Abnahme der Intensität über die Wellenlänge, sondern als vermehrte Abnahme einzelner Wellenlängenbereiche. Insbesondere bei Eisen als verdampfenden Zusatz ist diese ungleichmäßige Abnahme besonders deutlich zu beobachten, da das Eisen in die Wand des Glaskörpers eindringt und somit dem Verdampfungsprozess im Plasma entzogen wird. Außerdem werden während des Betriebs andere Elemente, beispielsweise Elektrodenmaterial, freigesetzt, die ebenfalls das Spektrum verändern können. Zur Kompensation des sich ändernden Spektrums wurde bisher die zugeführte Leistung angehoben, was jedoch aufgrund der ungleichmäßigen Änderungen keine zufriedenstellenden Ergebnisse mit sich bringt.

Auch produktionsbedingte Toleranzen im Spektrum der Strahlungsquellen lassen sich mit einer Leistungsänderung nicht wirksam ausgleichen.

Der Erfindung liegt die Aufgabe zu Grunde, eine Bestrahlungsvorrichtung zu schaffen, deren Spektrum im laufenden Betrieb veränderlich ist. Insbesondere soll die Bestrahlungsvorrichtung ohne Wartezeiten für verschiedene Anwendungen einsetzbar sein und einen wirksamen Ausgleich alterungs- oder herstellungsbedingter Änderungen und/oder Abweichungen des Spektrums ermöglichen.

Diese Aufgabe wird bei einer Bestrahlungsvorrichtung der eingangs erwähnten Art dadurch gelöst, dass wenigstens eine Strahlungsquelle ein von den übrigen Strahlungsquellen zumindest teilweise abweichendes Spektrum aufweist und dass die Leistung wenigstens einer Strahlungsquelle veränderlich ist.

In dem wenigstens eine Strahlungsquelle ein von den übrigen Strahlungsquellen zumindest teilweise abweichendes Spektrum aufweist, wird ein Mischspektrum aus den sich überlagernden Spektren der einzelnen Strahlungsquellen geschaffen. Für Bestrahlungsanwendungen, die vorwiegend einen speziellen Wellenlängenbereich der elektromagnetischen Strahlung, insbesondere der UV-Strahlung, benötigen, gleichzeitig aber auch geringe Anteile aus einem anderen Wellenlängenbereich erfordern, ist es zweckmäßig, dass beispielsweise zwei Strahlungsquellen ein übereinstimmendes Spektrum in dem speziellen Wellenlängenbereich aufweisen und eine weitere Strahlungsquelle das Spektrum aus dem anderen Wellenlängenbereich.

Die Einstellmöglichkeit für die Leistung wenigstens einer Strahlungsquelle bewirkt, dass sich das Spektrum der mit veränderter Leistung betriebenen Strahlungsquelle, wenn auch in recht geringem Umfang, ändert; gleichzeitig ändert sich in stärkerem Maße aber auch das von der Bestrahlungsvorrichtung abgestrahlte Mischspektrum, da sich die Intensität zumindest eines der sich überlagernden Spektren ändert.

Der Grund für die geringe Spektrumsänderung durch Verändern der der Strahlungsquelle zugeführten Leistung besteht darin, dass beim Betrieb mit geringerer Leistung, z.B. 40 % der maximalen Leistung, die verdampfenden metallische Zusätze, z.B. Eisen, in der Gasentladungslampe kondensieren. Da von den Zusätzen das abgestrahlte Spektrum maßgeblich beeinflusst wird, bewirkt die Kondensation von Zusätzen eine Spektrumsänderung.

In vorteilhafter Ausgestaltung der Erfindung sind sämtliche Strahlungsquellen unabhängig voneinander mit unterschiedlicher Leistung betreibbar. Die Einstellung der jeder Strahlungsquelle zugeführten Leistung kann stufenlos oder schrittweise zwischen einer minimalen und einer maximalen Leistung erfolgen. Bei minimaler Leistung ist die Strahlungsquelle abgeschaltet, während die maximale Leistung der höchstzulässigen Leistung der Strahlungsquelle entspricht.

Aus der unabhängigen Leistungsstellung für jede Strahlungsquelle resultieren zahlreiche Kombinationsmöglichkeiten für den Betrieb der Bestrahlungsvorrichtung. So kann beispielsweise eine der Strahlungsquellen mit maximaler Leistung betrieben werden, während die übrigen Strahlungsquellen mit niedriger Leistung betrieben werden, um die Gewichtung der einzelnen Strahlungsquellen zu verändern.

Wenn die Bestrahlungsvorrichtung zur Bestrahlung von Objekten mit ultravioletter elektromagnetischer Strahlung zum Einsatz kommen soll, ist es erforderlich dass die Spektren der Strahlungsquellen im Bereich der Wellenlänge der elektromagnetischen Strahlung von 100 nm - 450 nm zumindest teilweise voneinander abweichen.

Jeder Strahlungsquelle kann eine separate Steuerelektronik zugeordnet sein, die entweder eine manuelle oder im Zusammenwirken mit einem Regelkreis eine automatisierte Steuerung der zugeführten Leistung erlaubt.

Eine automatisierte Steuerung setzt voraus, dass die Bestrahlungsvorrichtung einen Spektralapparat, insbesondere ein Spektrometer, zur Messung und Überwachung der von der Bestrahlungsvorrichtung abgestrahlten elektromagnetischen Strahlung aufweist.

Um den Regelkreis zu schließen, ist darüber hinaus eine Auswerteeinheit erforderlich, die einen Eingang für das vom Spektralapparat gemessene Spektrum sowie einen Ausgang zur Veränderung der Leistung der einzelnen Strahlungsquellen aufweist. Die Auswerteinheit verändert die Leistung in Abhängigkeit eines Soll-Mischspektrums der von der Bestrahlungsvorrichtung abgestrahlten elektromagnetischen Strahlung. Selbstverständlich liegt es im Rahmen der Erfindung, die Leistung der einzelnen Strahlungsquellen anhand der Spektrometermessung manuell nachzuführen.

Mit Hilfe des Regelkreises lässt sich darüber hinaus eine durch Alterung der Strahlungsquellen eintretende Änderung des von der Bestrahlungsvorrichtung abgestrahlten Spektrums automatisch ausgleichen.

Die von der Bestrahlungsvorrichtung abgestrahlte elektromagnetische Strahlung kann über einen im Bereich der Austrittsöffnung angeordneten Lichtwellenleiter aus der Bestrahlungsvorrichtung bis zum Messkopf des Spektrometers geführt werden.

Wenn jede Strahlungsquelle eine Gasentladungslampe ist, und mindestens eine Strahlungsquelle als im Betrieb verdampfenden Zusatz Quecksilber (HG), mindestens eine Strahlungsquelle als verdampfenden Zusatz Eisen (FE) und mindestens ein Strahlungsquelle als verdampfenden Zusatz Gallium (GA) enthält, lassen sich die drei hauptsächlich in der UV-Bestrahlungstechnik zum Einsatz gelangenden Spektren mit nur einer UV-Bestrahlungsvorrichtung erzeugen sowie sämtliche sich daraus ergebenden Mischspektren.

Soll die Abstrahlcharakteristik der Bestrahlungsvorrichtung bezogen auf das zu bestrahlende Objekt dem einer herkömmlichen Bestrahlungsvorrichtung mit nur einer Strahlungsquelle entsprechen, werden die röhrenförmigen Strahlungsquellen mit einem Durchmesser von 10 - 20 mm sehr nah beieinander angeordnet, ohne sich jedoch an ihren Mantelflächen zu berühren. Der Abstand zwischen den Mantelflächen liegt zwischen 2 - 5 mm. Die Bündelung der Strahlungsquellen erfolgt hierzu in einem gedachten Kreiszylinder, dessen Durchmesser dem Außendurchmesser der zu ersetzenden Strahlungsquelle der herkömmlichen Bestrahlungsvorrichtung entspricht. Die abgestrahlte Gesamtleistung der gebündelten Strahlungsquellen entspricht der abgestrahlten Leistung der zu ersetzenden Strahlungsquelle.

Die Bündelung der Strahlungsquellen vergrößert darüber hinaus die effektive Kühloberfläche der Strahlungsquellen gegenüber einer herkömmlichen Strahlungsquelle bei gleicher abgestrahlter Leistung, da die gesamte Manteloberfläche des Rohrbündels in dem gedachten Kreiszylinder größer als die Oberfläche eines einzelnen Rohres mit dem gleichen Außendurchmesser ist. Auch die Gefahr und das Ausmaß von unerwünschten Durchbiegungen reduziert sich bei den gebündelten Strahlungsquellen gegenüber einer herkömmlichen, wesentlich größeren Strahlungsquelle gleicher Abstrahlleistung. Insbesondere bei Strahlungsquellen, die länger als 1 m sind, macht sich die erfindungsgemäß mögliche Aufteilung der benötigten Gesamtleistung auf mehrere Strahlungsquellen vorteilhaft bemerkbar. Die Aufteilung der Gesamtleistung erlaubt insgesamt höhere Leistungen der Bestrahlungsvorrichtung, ohne dass die bei herkömmlichen Strahlungsquellen mit sehr großen Durchmessern verbundenen Nachteile in Kauf genommen werden müssen.

Um das Auswechseln der Strahlungsquellen zu erleichtern, sind mehrere Strahlungsquellen in vorteilhafter Ausgestaltung der Erfindung in einer gemeinsamen Halterung zusammengefasst. Die Strahlungsquellen einer Bestrahlungsvorrichtung können sämtlich in nur einer Halterung, jedoch auch gruppenweise in mehreren Halterungen zusammengefasst sein.

Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1 a-d
vier Vorderansichten erfindungsgemäßer UV-Bestrahlungsvorrichtungen in schematischer Darstellung,
Fig. 2
eine Seitenansicht eines bevorzugten Ausführungsbeispiels einer erfindungsgemäßen UV-Bestrahlungsvorrichtung,
Fig. 3
Anordnungsvarianten von Strahlungsquellen in einer erfindungsgemäßen UV-Bestrahlungsvorrichtung,
Fig. 4
Spektren von Gasentladungslampen für die UV-Bestrahlung,
Fig. 5 a-d
von erfindungsgemäßen Bestrahlungsvorrichtungen abgestrahlte Mischspektren,
Fig. 6
eine Veranschaulichung der Änderungsmöglichkeiten des Mischspektrums nach Figur 5 a sowie
Fig. 7
eine erfindungsgemäße UV-Bestrahlungsvorrichtung mit einer Leistungsregelung für jede Strahlungsquelle in schematischer Darstellung.

Figuren 1a - 1d zeigen röhrenförmige, langgestreckte Strahlungsquellen (1), die innerhalb eines Gehäuses (2) zwischen einem Reflektor (3) und einem zu bestrahlenden Objekt (4) angeordnet sind. Die Strahlungsquellen (1) sind in einem durch eine gestrichelte Linie angedeuteten gedachten Kreiszylinder (5) gebündelt angeordnet, ohne sich jedoch an ihren Mantelflächen zu berühren. Der Strahlengang (6) von den Strahlenquellen (1) auf das Objekt (4) ist schematisch dargestellt. Das Objekt (4) wird mit der eingezeichneten Bewegungsrichtung (7) unter der UV-Bestrahlungsvorrichtung hindurchgeführt.

Die Unterschiede zwischen den Bestrahlungsvorrichtungen nach den Figuren 1a - 1d bestehen in der Anzahl und Anordnung der Strahlungsquellen (1) innerhalb des Kreiszylinders (5). Durch die Anordnung kann die Wirkung einzelner Strahlungsquellen hervorgehoben werden.

Figur 2 zeigt eine erfindungsgemäße UV-Bestrahlungsvorrichtung nach Figur 1b) in schematischer Seitenansicht. In der Seitenansicht ist erkennbar, dass die Strahlungsquellen (1) an den Enden (8) in gemeinsamen Halterungen (9) zusammengefasst sind, die ein gleichzeitiges und damit zeitsparendes Auswechseln der Strahlungsquellen (1) ermöglichen. An Kontakten der gemeinsamen Halterungen (9) setzen Leitungen (11, 12, 13) an, die jede Strahlungsquelle (1) mit einer separaten Steuerelektronik (14, 15, 16) verbinden. Die Steuerelektroniken (14, 15, 16) erlauben es, die jeder Strahlungsquelle (1) zugeführte elektrische Leistung zwischen einem Minimal- und einem Maximalwert unabhängig voneinander zu verändern.

Figur 3 zeigt das weitere erfindungswesentliche Merkmal, dass wenigstens eine Strahlungsquelle (1) ein von den übrigen Strahlungsquellen (1) zumindest teilweise abweichendes Spektrum aufweist. Die Anordnungen (17, 18, 19) betreffen den Grundfall, dass wenigstens eine Strahlungsquelle ein abweichendes Spektrum aufweist, während die Anordnungen (21, 22, 23) Fälle betreffen, in denen wenigstens 2 Strahlungsquellen ein von den übrigen Strahlungsquellen zumindest teilweise abweichendes Spektrum aufweisen.

Die in Figur 3 dargestellten Strahlungsquellen (1) sind Gasentladungslampen mit unterschiedlichen im Betrieb verdampfenden Zusätzen, nämlich Quecksilber (Hg), Eisen (Fe) oder Gallium (Ga). Bei diesen Zusätzen handelt es sich um in der UV-Bestrahlungstechnik standardisierte Zusätze. Figur 4 zeigt die Spektren von Strahlungsquellen mit den genannten Standardzusätzen bei der vorgeschriebenen Betriebstemperatur. Durch Zu- und Abschalten einzelner Strahlungsquellen kann im laufenden Betrieb der UV-Bestrahlungsvorrichtung zwischen den Spektren nach Figur 4 gewechselt werden. Werden indes einzelne oder mehrere Strahlungsquellen mit einer elektrischen Leistung zwischen dem Minimal- und Maximalwert betrieben, lässt sich eine Vielzahl überlagerter Spektren erzeugen, sogenannte Mischspektren, wie sie in den Figuren 5 und 6 dargestellt sind. Die größtmöglichen Veränderungen des Spektrums ergeben sich bei denjenigen Anordnungen, bei denen sämtliche Strahlungsquellen unterschiedliche Zusätze aufweisen, insbesondere bei der Anordnung (22, 23).

In jedem Diagramm nach Figur 5 ist auf der X-Achse die Wellenlänge in Nanometer aufgetragen, während auf der Y-Achse die relative Intensität der elektromagnetischen Strahlung aufgetragen ist. Die jeweils oberhalb des Diagramms wiedergegebenen Abkürzungen bezeichnen die verdampfenden Zusätze in den Strahlungsquellen. Sämtliche Diagramme zeigen das bei vorgeschriebener Betriebstemperatur und Höchstleistung von der Bestrahlungsvorrichtung abgestrahlte Mischspektrum.

Für eine universell einsetzbare UV-Bestrahlungsvorrichtung kann eine Kombination der Strahlungsquellen, wie in Figur 5a dargestellt, zum Einsatz kommen. Das dargestellte Mischspektrum enthält alle Anteile, die in der UV-Bestrahlungstechnologie erforderlich sind.

Figur 5b zeigt ein Mischspektrum mit einer Betonung der Intensität im Wellenlängenbereich um 360 Nanometer. Eine Kombination der Strahlungsquellen, wie sie für ein Spektrum nach Figur 5b erforderlich ist, wird insbesondere bei der Aushärtung von Klebstoffen eingesetzt. Durch ein Abschalten der Leistungszufuhr einer der Fe-Strahlungsquellen kann das Mischspektrum im laufenden Betrieb in das in Figur 5a dargestellte Mischspektrum überführt werden.

Figur 5c zeigt ein Mischspektrum, das insbesondere zur Beschichtung von Holzflächen mit Lacken geeignet ist.

Figur 5d zeigt ein Mischspektrum zur Aushärtung von Druckfarben.

Figur 6 zeigt die Aufteilung des Mischspektrum nach Figur 5 a) in die Einzel-Spektren von Strahlungsquellen gemäß der Anordnung (23) nach Figur 3 jeweils bei Betriebstemperatur und Höchstleistung. Mit Positionsziffer (24) ist der Verstellbereich der Ga-Strahlungsquelle, mit Position (25) der Verstellbereich der Fe-Strahlungsquelle und mit Position (26) der Verstellbereich der Hg-Strahlungsquelle bezeichnet. In jedem Wellenlängenbereich lässt sich durch Steuerung der Leistung der jeweiligen Strahlungsquelle die Intensität innerhalb des mit (24, 25) und (26) gekennzeichneten Verstellbereichs verändern.

Figur 7 zeigt schematisch eine Regelanordnung für das abgestrahlte Mischspektrum. Zu diesem Zweck besitzt die UV-Bestrahlungsvorrichtung zusätzlich einen Sensor (28), der die elektromagnetische Strahlung erfasst, ein Spektrometer (29) zur Messung des Spektrums der abgestrahlten elektromagnetischen Strahlung sowie eine Auswerteeinheit (31) mit einem Eingang für das von dem Spektrometer (29) gemessene Spektrum sowie einem Ausgang, der mit den Steuerelektroniken (14, 15, 16) zur Leistungsstellung der Strahlungsquellen (1) verbunden ist.

Das von der UV-Bestrahlungsvorrichtung abgestrahlte Licht wird von dem Sensor (28) erfasst und in das Spektrometer (29) geführt und dort gemessen. In der Auswerteeinheit (31) wird das gemessene Spektrum mit einem vom Anwender geforderten und in die Auswerteeinheit eingegebenen Sollspektrum für die von der Bestrahlungsvorrichtung abgestrahlte elektromagnetische Strahlung verglichen. Liegt eine Regelabweichung vor, wird über die Steuerelektroniken (14, 15, 16) die Leistung der einzelnen Strahlungsquellen nachgeführt. Erst wenn, wie in Figur 7 angedeutet, das Soll- und das Istspektrum übereinstimmen ist ein kontrollierter und sicherer UV-Härtungsprozess gewährleistet. Die Überwachung mittels des Sensors (28) kann entweder fortlaufend oder nur in bestimmten Intervallen erfolgen. Hierzu ist der Sensor (28) in den Bereich der Lichtaustrittsöffnung (34) der Bestrahlungsvorrichtung zu bringen.

Alternativ ist es möglich, den Sensor an dem Spektrometer anzuordnen und das Licht über einen Lichtwellenleiter in den Sensor einzukoppeln.

Bezugszeichenliste

Nr. Bezeichnung Nr. Bezeichnung 1. Strahlungsquelle 18. Anordnung Strahlenquelle 2. Gehäuse 19. Anordnung Strahlenquelle 3. Reflektor 20. - 4. Objekt 21. Anordnung Strahlenquelle 5. Kreiszylinder 22. Anordnung Strahlenquelle 6. Strahlengang 23. Anordnung Strahlenquelle 7. Bewegungsrichtung 24. Regelbereich Ga 8. Enden 25. Regelbereich Fe 9. Halterung 26. Regelbereich Hg 10. - 27. - 11. Leitungen 28. Sensor 12. Leitungen 29. Spektrometer 13. Leitungen 30. - 14. Steuerelektronik 31. Auswerteeinheit 15. Steuerelektronik 32. - 16. Steuerelektronik 33. - 17. Anordnung Strahlenquelle 34. Lichtaustrittsöffnung


Anspruch[de]
  1. Bestrahlungsvorrichtung zur Bestrahlung von Objekten mit insbesondere ultravioletter elektromagnetischer Strahlung, mit einem Gehäuse, das eine auf das zu bestrahlende Objekt ausgerichtete Austrittsöffnung für die elektromagnetische Strahlung aufweist sowie mindestens zwei in dem Gehäuse angeordneten langgestreckten Strahlungsquellen für die elektromagnetische Strahlung mit einem bei einer vorgeschriebenen Betriebstemperatur definierten Spektrum, dadurch gekennzeichnet, dass wenigstens eine Strahlungsquelle (1) ein von den übrigen Strahlungsquellen (1) zumindest teilweise abweichendes Spektrum aufweist und dass die Leistung wenigstens einer Strahlungsquelle (1) veränderlich ist.
  2. Bestrahlungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Spektrum im Bereich der Wellenlänge der elektromagnetischen Strahlung von 100nm - 450 nm abweicht.
  3. Bestrahlungsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sämtliche Strahlungsquellen (1) ein von den übrigen Strahlungsquellen zumindest teilweise abweichendes Spektrum aufweisen.
  4. Bestrahlungsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Strahlungsquellen (1) unabhängig voneinander mit unterschiedlicher Leistung betreibbar sind
  5. Bestrahlungsvorrichtung nach einem oder mehreren der Ansprüche 1-3, dadurch gekennzeichnet, dass jeder Strahlungsquelle (1) eine Steuerelektronik (14, 15, 16) zugeordnet ist.
  6. Bestrahlungsvorrichtung einem oder mehreren der Ansprüche 1-4, dadurch gekennzeichnet, dass sie einen Spektralapparat (29) zur Messung des Spektrums der von der Bestrahlungsvorrichtung (27) abgestrahlten elektromagnetischen Strahlung aufweist.
  7. Bestrahlungsvorrichtung nach Anspruch 6, gekennzeichnet durch eine Auswerteeinheit (31) mit einem Eingang für das vom Spektralapparat (29) gemessene Spektrum sowie einem Ausgang zur Veränderung der Leistung der einzelnen Strahlungsquellen (1) in Abhängigkeit eines Soll-Spektrums für die von der Bestrahlungsvorrichtung abgestrahlte elektromagnetische Strahlung.
  8. Bestrahlungsvorrichtung nach einem oder mehreren der Ansprüche 1-6, dadurch gekennzeichnet, dass jede Strahlungsquelle eine Gasentladungslampe ist, die einen im Betrieb verdampfenden Zusatz (Hg, Fe, Ga) enthält.
  9. Bestrahlungsvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Zusatz Quecksilber (Hg) oder Eisen (Fe) oder Gallium (Ga) ist.
  10. Bestrahlungsvorrichtung nach einem oder mehreren der Ansprüche 1-9, dadurch gekennzeichnet, dass die Längsachsen sämtlicher Strahlungsquellen (1) parallel verlaufen.
  11. Bestrahlungsvorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der Abstand zwischen sämtlichen Längsachsen übereinstimmt.
  12. Bestrahlungsvorrichtung nach einem oder mehreren der Ansprüche 1-11, dadurch gekennzeichnet, dass die Strahlungsquellen (1) gebündelt (5)angeordnet sind, ohne sich jedoch an ihren Mantelflächen zu berühren.
  13. Bestrahlungsvorrichtung nach einem oder mehreren der Ansprüche 1-12, dadurch gekennzeichnet, dass mehrere Strahlungsquellen (1) in einer gemeinsamen Halterung (9) zusammengefasst sind.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com