PatentDe  


Dokumentenidentifikation DE10115015C1 15.05.2003
Titel Verfahren zur Herstellung eines Kernbrennstoff-Sinterkörpers
Anmelder Framatome ANP GmbH, 91058 Erlangen, DE
Erfinder Gradel, Gerhard, 91301 Forchheim, DE;
Dörr, Wolfgang, Dr., 91074 Herzogenaurach, DE
Vertreter Mörtel & Höfner, 90402 Nürnberg
DE-Anmeldedatum 27.03.2001
DE-Aktenzeichen 10115015
Veröffentlichungstag der Patenterteilung 15.05.2003
Veröffentlichungstag im Patentblatt 15.05.2003
IPC-Hauptklasse G21C 3/62
Zusammenfassung Zur Herstellung eines Kernbrennstoff-Sinterkörpers aus einem wenigstens ein spaltbares Schwermetalloxid enthaltendem Pulver wird dem Pulver, das mindestens ein aus einem trocken-chemischen Konversionsverfahren gewonnenes UO2-haltiges Pulver und ggf. ein weiteres spaltbares Schwermetalloxid enthaltendes Pulver (U3O8, PuO2 u. a.) umfaßt, im Zuge der Weiterbehandlung des Pulvers im Verlauf des Verfahrens vor einem Sintervorgang ein Dotierungsstoff zugeführt, der mindestens 100 ppm einer Eisenoxid-Verbindung enthält. Dem Sinterkörper wird dadurch eine hohe Plastizität bei gleichzeitig hoher Korngröße verliehen. Dadurch wird in vorteilhafter Weise eine Wechselwirkung zwischen einem solchen Kernbrennstoff-Sinterkörper und einem Brennstabhüllrohr während des Reaktorbetriebs verringert.

Beschreibung[de]

Die Erfindung betrifft ein Verfahren zur Herstellung eines Kernbrennstoff- Sinterkörpers, bei dem ein ein spaltbares Schwermetalloxid enthaltendes Pulver hergestellt, weiterbehandelt und gesintert wird, sowie einen Kernbrennstoff- Sinterkörper hergestellt aus einem ein spaltbares Schwermetalloxid enthaltendes Pulver.

Für Nuklearreaktoren werden Kernbrennstoffe in der Regel in Brennelementen bereitgestellt. Diese können je nach Reaktortyp unterschiedliche Bauweisen und geometrische Formen (z. B. Platten oder Stäbe) aufweisen. Bei üblichen Leichtwasserreaktoren werden Kernbrennstoffe in Form von Brennstäben bereitgestellt, die gebündelt zu einem Brennelement zusammengefaßt sind. Dabei sind die Brennstäbe in der Regel entlang einer Brennelementachse angeordnet und in mehreren Ebenen senkrecht zur Brennelementachse jeweils durch die Maschen eines Abstandhalters geführt, wodurch sie seitlich beabstandet gehalten und zum Teil federnd gelagert sind. Die in einem Leichtwasserreaktorkern nebeneinander angeordneten Brennelemente werden in der Regel von unten mit Wasser angeströmt, das die durch den Kernspaltungsprozeß im Kernbrennstoff erzeugte Wärme abführt und gleichzeitig als Neutronenmoderator wirkt. Unter Leichtwasserreaktoren sind alle mit Leichtwasser als Kühlmittel arbeitenden Reaktoren zu verstehen, insbesondere Siedewasserreaktoren, Druckwasserreaktoren und auch Reaktoren russischer Bauart (VVER-Reaktoren).

Das den Kernbrennstoff umschließende Hüllrohr eines Brennstabs weist in der Regel zu überwiegendem Teil eine nur wenig neutronenabsorbierende Zirkonium- Legierung auf. Der Kernbrennstoff ist üblicherweise in Form einer aus zylindrischen, gesinterten Formkörpern (Pellets, Kernbrennstoff-Sinterkörper, Sinterkörper) gestapelten Säule im Hüllrohr angeordnet. Das Hüllrohr sollte dabei auf der Außenseite gegenüber dem Kühlmittel u. a. möglichst gute Korrosionseigenschaften, also eine hohe Korrosionsbeständigkeit, aufweisen. Außerdem sollte es sicher und zuverlässig in der Lage sein, den Kernbrennstoff und auch bei der Kernreaktion entstehende Kernspaltprodukte, wie z. B. Spaltgase, mindestens über den gesamten Einsatzzeitraum eines Brennelements sicher einzuschließen, um eine Kontamination des Kühlmittels sicher zu vermeiden. Dazu eignen sich Zirkonium-Legierungen, insbesondere Zirkaloy- Legierungen und Zirkonium-Legierungen im Verbund mit weiteren Materialien (z. B. als Beschichtung). In DWR und SWR können jedoch unterschiedliche Bedingungen, z. B. variierende Temperatur- und Druckbedingungen sowie transiente Schwankungen dieser Parameter auftreten, die jeweils unterschiedliche Anforderungen an Hüllrohre und auch an den Brennstoff in diesen Reaktoren zur Folge haben. Dementsprechend sind unterschiedliche Materialien in Siedewasserreaktoren bzw. Druckwasserreaktoren üblich.

Da das Hüllrohr die Kernbrennstoff-Sinterkörper in der Regel eng umschließt, sollte dieses auf der Innenseite insbesondere Formänderungen der Kernbrennstoff-Sinterkörper während des Reaktorbetriebs aufnehmen können. Da die Außenseite und die Innenseite eines Hüllrohrs also unterschiedlichen Anforderungen genügen sollen, sind inzwischen zweischichtige Hüllrohre gebräuchlich. Insbesondere werden Hüllrohre auf ihrer Innenseite möglichst duktil ausgelegt, um u. a. die Formänderungen der Kernbrennstoff-Sinterkörper und die daraus resultierenden Brennstoff/Hüllrohr-Wechselwirkungen (Pellet-Cladding- Interaction - PCI) aufnehmen zu können. Das Hüllrohr sollte dazu ausreichend dehnbar sein und zum Teil auf kleiner Fläche und zeitlich zum Teil sehr kurzfristig und variabel und/oder statisch auftretende hohe Drücke aufnehmen können. Dies ist vor allem der Fall, wenn sich beispielsweise Bruchstücke eines Kernbrennstoff- Sinterkörpers im Hüllrohr verklemmen.

Als Kernbrennstoffe können im Prinzip alle Arten von spaltbarem Schwermetall, insbesondere Schwermetalloxid, enthaltende Stoffe Verwendung finden. Diese umfassen insbesondere für Leichtwasserreaktoren gebräuchliche Kernbrennstoffe, die Uran und/oder Plutonium und/oder Thorium enthalten und als Pulver und/oder Sinterkörper vorliegen. Üblicherweise wird zur Herstellung eines Kernbrennstoff-Sinterkörpers zunächst ein Kernbrennstoffpulver mittels eines Konversionsverfahrens gewonnen.

Die bekannten Konversionsverfahren lassen sich grundsätzlich anhand eines Verfahrens zur Herstellung von UO2 aus UF6 unterscheiden. Dies sind zum einen trockenchemische Konversionsverfahren und zum anderen naßchemische Konversionsverfahren. Bei den naßchemischen Verfahren wird ein UO2-Pulver indirekt aus Uranhexafluorid (UF6) nach der Ausfällung und Abtrennung einer Zwischenstufe aus einer Lösung gewonnen. Bekannte Verfahren sind nach ihren Zwischenstufen benannt, so das AUC-Verfahren (Ammonium Uranylcarbonat)und das ADU-Verfahren (Ammonium-Diuranat). Die naßchemischen Konversionsverfahren weisen eine besonders hohe radioaktive Abfallerzeugung auf, was erhebliche ökologische und ökonomische Nachteile im Vergleich zu den trockenchemischen Verfahren mit sich bringt.

Bei trockenchemischen Konversionsverfahren (Dry Conversion, DC) wird in der Regel Uranhexafluorid (UF6) mit Wasser und Wasserstoff direkt zu Urandioxid umgesetzt, und zwar in der Regel entsprechend der folgenden Gesamtgleichung:



UF6 + 2H2O + H2 → UO2 + 6HF.

Das dabei entstehende UO2-haltige Pulver (DC-Pulver) kann als überwiegender Grundstoff zur Herstellung eines üblichen Kernbrennstoffpulvers und/oder eines Mischoxid-Kernbrennstoff-Pulvers (MOX-Kernbrennstoffpulver) genutzt werden. Zur Herstellung eines MOX-Kernbrennstoffpulvers kann beispielsweise ein UO2- haltiges Pulver mit weiteren Pulvern, die spaltbare Schwermetalloxide enthalten, beispielsweise U2O3, PuO2 oder ThO2 oder Verbindungen daraus, zu einem MOX- Kernbrennstoffpulver gemischt werden.

Das Kernbrennstoffpulver wird nach seiner Herstellung weiterbehandelt. Dabei werden zum Teil u. a. zur Beeinflussung der Eigenschaften eines Kernbrennstoff- Sinterkörpers und/oder aus für das Herstellungsverfahren relevanten Gründen einem Kernbrennstoffpulver Additive zugegeben.

Dieses Pulver wird üblicherweise zu Formkörpern verpreßt und die Formkörper werden zu Kernbrennstoff-Sinterkörpern gesintert. Beim Sintern wachsen die Kristallite des Ausgangspulvers zu Körnern im Sinterkörper zusammen. Die Größe der Körner eines Kernbrennstoff-Sinterkörpers ist durch eine Vielzahl von Parametern beim Herstellungsprozeß und/oder beim Ausgangspulver beeinflußbar. Die Korngröße hat dabei maßgeblichen Einfluß u. a. auf die mechanischen Eigenschaften, insbesondere die Plastizität des Sinterkörpers und/oder auf seine Eigenschaften hinsichtlich der Spaltgasrückhaltung.

Aus der US 4,869,866 ist bekannt, daß ein Sinterkörper mit sowohl guter Spaltgasrückhaltung als auch verbesserten PCI-Eigenschaften von Interesse ist. Dazu ist allerdings das vollständige Einschließen so gut wie aller Körner eines Kernbrennstoff-Sinterkörpers mit einer glasartigen Aluminium-Silikat-Phase vorgesehen. Gemäß der US 4,869,867 und der US 4,869,868 kann dazu auch eine vollumschließende glasartige Magnesium-Silikat-Phase oder eine vollumschließende Magnesium-Aluminium-Silikat-Phase vorgesehen sein.

Gemäß der JP 01029796 ist es zur Verbesserung der Spaltgasrückhaltung und der PCI-Eigenschaften vorteilhaft, Cr2O3 in einer Menge von 1000-3000 ppm einem Kernbrennstoffpulver zuzugeben, um das Kornwachstum beim Sinterprozeß zu beschleunigen.

Weitere Veröffentlichungen beschränken sich entweder nur auf Maßnahmen zur bloßen Förderung des Kornwachstums oder aber nur auf Maßnahmen zur bloßen Verminderung der PCI.

Die JP 55151292 sieht eine Zugabe einer Additiv-Komposition ausschließlich zur Erhöhung der Korngröße vor. Neben einer Vielzahl weiterer Additiven ist in einem Beispiel auch Fe2O3 in einer Menge von 50 ppm erwähnt.

Gemäß der JP 55087993 soll eine Reihe von Oxiden in hoher Dosierung 2000-50000 ppm als Additive zu einem Kernbrennstoffpulver zugegeben werden, um eine hohe Anzahl von Sauerstoff-Fehlstellen zu erzeugen, die als Spaltgasfangstellen dienen.

Gemäß der JP 55104791 ist ein zweischaliger Kernbrennstoff-Sinterkörper mit einer Vielzahl von Additiven in einer hohen Menge bis 50000 ppm vorgesehen, um mittels der äußeren Schale ausschließlich die PCI-Eigenschaften des Kernbrennstoff-Sinterkörpers zu verbessern, während mittels der inneren Schale die mechanische Härte des Kernbrennstoff-Sinterkörpers verbessert werden soll.

Kernbrennstoffe für Leichtwasserreaktoren setzen im Normalbetrieb und vor allem auch bei Leistungsrampen des Kernreaktors Spaltgase frei. Die Freisetzungsrate hängt dabei unter anderem von der Korngröße ab, die der Kernbrennstoff- Sinterkörper aufweist. Desweiteren unterliegt der Kernbrennstoff-Sinterkörper während des Einsatzes im Kernreaktor Dimensionsschwankungen, die insbesondere bei einer Dimensionszunahme zu einer Wechselwirkung des Kernbrennstoff-Sinterkörpers mit dem Hüllrohr führen (PCI-Eigenschaften). Auch diese Wechselwirkung hängt unter anderem von der Korngröße ab, die der Kernbrennstoff-Sinterkörper aufweist.

Aus der WO 00/00985 ist ein Kernbrennstoff-Pellet bekannt, bei dem durch Zugabe eines Nb enthaltenden Dotierungsstoffes ein besonders günstiges Kornwachstum sowie ein besonders günstiges Kriechverhalten eingestellt werden soll.

Der Erfindung liegt die Aufgabe zugrunde, ein verbessertes Verfahren zur Herstellung eines Kernbrennstoff-Sinterkörper aus einem ein spaltbares Schwermetalloxidpulver enthaltenden Pulver anzugeben, der sowohl hinsichtlich der Spaltgasfreisetzung als auch der Kernbrennstoff-Sinterkörper/Hüllrohr- Wechselwirkung (PCI-Eigenschaften) verbesserte Eigenschaften aufweist. Dabei sind insbesondere die Eigenschaften eines Kernbrennstoffpulvers aus einem trockenchemischen Konversionsverfahren sowohl hinsichtlich einer verbesserten Spaltgasrückhaltung als auch verbesserten PCI-Eigenschaften zu berücksichtigen.

Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung eines Kernbrennstoff-Sinterkörpers, bei dem ein ein spaltbares Schwermetalloxid enthaltendes Pulver hergestellt, weiterbehandelt und gesintert wird, wobei das Pulver ein sinteraktives Schwermetalloxidpulver umfaßt, welches zu überwiegendem Teil aus einem trocken-chemischen Konversionsverfahren gewonnen wird, und dem Pulver ein sowohl die Korngröße als auch die Plastizität des Sinterkörpers erhöhender Dotierungsstoff, der mindestens 100 ppm einer Eisenverbindung, insbesondere einer Eisenoxid-Verbindung, enthält, zugegeben wird.

Dabei gibt die Mengenangabe 100 ppm den Gewichtsanteil der Eisenverbindung, insbesondere der Eisenoxid-Verbindung, im Verhältnis zum Gesamtgewichtsanteil des Schwermetalloxids im fertigen Kernbrennstoff-Sinterkörper an (also in µg/g, was Gewichts-ppm entspricht). Bei der Eisenverbindung kann es sich gegebenenfalls auch um Eisen handeln.

Das Verfahren gemäß der Erfindung weist zunächst insbesondere den Vorteil auf, daß es sich im Rahmen bestehender Fertigungswege und -abfolgen einer Trockenkonversion durchführen läßt. Eine Eisenverbindung, insbesondere eine Eisenoxid-Verbindung, läßt sich leicht (beispielsweise durch direkte Zugabe) zum Kernbrennstoffpulver, z. B. vor oder nach einem Granulierungsvorgang oder beim Mahlen, zugeben. Auch läßt sich aufgrund des ferromagnetischen Verhaltens der Eisenpartikel ein Kernbrennstoff-Sinterkörper leicht in einem Hüllrohr lokalisieren, was Vorteile beim Fertigungsprozeß und bei der Prozeßüberwachung, insbesondere bei der Brennelementfertigung, hat.

Der Erfindung liegt dabei die überraschende Erkenntnis zugrunde, daß eine gezielte Zugabe des eisenhaltigen Dotierungsstoffs im Vergleich zu einem herkömmlichen Brennstoff sowohl eine Erhöhung der Korngröße als auch eine Erhöhung der Plastizität bewirkt. Somit können diese beiden eigentlich gegenläufigen Parameter besonders günstig eingestellt werden, so daß der Sinterkörper sowohl hinsichtlich der Freisetzung von Spaltgasen als auch hinsichtlich seiner PCI-Eigenschaften ein besonders günstiges Betriebsverhalten zeigt. Aufwendige oder zusätzliche Maßnahmen, wie z. B. ein vollständiges Umschließen von Körnern mit einer Silikat-Phase eines Additivs, werden unter anderem dann überflüssig, wenn das Korn gemäß der Erfindung bereits eine gezielt günstige Größe aufweist.

Bei Tests und Versuchen zu dieser Erfindung an unterschiedlichsten Kernbrennstoff-Sinterkörpern im Reaktoreinsatz hat sich deutlich gezeigt, daß die Freisetzungsrate von Spaltgasen bei Sinterkörpern mit grobem Korn, also hoher Korngröße, geringer ist, d. h. die Freisetzungsrate nimmt mit zunehmender Korngröße des Sinterkörpers ab. Einerseits verbleiben nämlich die Spaltgase bei grobem Korn zum großen Teil im Korn und andererseits ist bei grobem Korn die Diffusion von Spaltgasen an den Korngrenzen stark herabgesetzt. Demgegenüber ist weiterhin in Tests und Versuchen zu dieser Erfindung festgestellt worden, daß bei Sinterkörpern mit feinem Korn, also kleiner Korngröße, die Wechselwirkung des Sinterkörpers mit dem Hüllrohr geringer ist, d. h. insbesondere das Hüllrohr trotz einer Dimensionsänderung des Sinterkörpers eine geringere Dehnung aufweist. Feinkörnige Sinterkörper weisen nämlich im Vergleich zu grobkörnigen Sinterkörpern ein höhere Plastizität auf, was sich in einer besseren Kriechfähigkeit bei feinkörnigen Sinterkörpern äußert. Dadurch ist eine Beanspruchung und gegebenenfalls eine Dehnung eines Hüllrohrs infolge einer Dimensionszunahme des Sinterkörpers deutlich herabsetzbar.

Es besteht also eine Diskrepanz zwischen einem Bestreben, bei einem Kernbrennstoff-Sinterkörper eine Spaltgasfreisetzung zu verringern und ebenso eine Kernbrennstoff-Sinterkörper/Hüllrohr-Wechselwirkung zu verringern. Nach der Erkenntnis der Erfindung wird diese Diskrepanz aber überwunden durch eine gezielte Dotierung mit einer Eisenverbindung, die eine günstige Einstellung der Korngröße und zusätzlich eine günstige Einstellung weiterer charakteristischer Parameter, insbesondere der Plastizität, ermöglicht.

Durch die Dotierung des Kernbrennstoffs mit einem Dotierungsstoff, der mindestens 100 ppm einer Eisenverbindung, insbesondere einer Eisenoxid- Verbindung, enthält (und gegebenenfalls gemäß einer Weiterbildung der Erfindung mit einem Dotierungsstoff, der zusätzlich Verbindungen von Silizium, Aluminium oder Chrom enthält), wird nach der Erkenntnis der Erfindung die Korngröße moderat und gezielt erhöht. Sie wird genauso eingestellt, daß zum einen die Spaltgasfreisetzung erniedrigt und zum anderen die Plastizität gegenüber herkömmlichen Brennstoffen mit gleicher oder kleinerer Korngröße erhöht wird. Gemäß der Erfindung hat diese Maßnahme die kombinierte Wirkung sowohl einer geringeren Spaltgasfreisetzung als auch einer geringeren Brennstoff/Hüllrohr-Wechselwirkung. Durch die gezielte Dotierung des Brennstoffs mit mindestens 100 ppm einer Eisenverbindung, insbesondere mit einer Eisenoxid- Verbindung, und insbesondere gegebenenfalls zusätzlich mit einer Silizium- und/oder Aluminium- und/oder Chrom-Verbindung, ist ein Kernbrennstoff- Sinterkörper herstellbar mit Eigenschaften, die sich bisher auszuschließen schienen, nämlich sowohl Grobkörnigkeit als auch verbesserte Plastizität.

Nach der Erkenntnis der Erfindung ist vorteilhafterweise vorgesehen, die Dotierungsstoffzugabe unter Berücksichtigung der Eigenschaften eines Pulvers vorzunehmen, welches nämlich zu überwiegendem Teil in einem trockenchemischen oder einem anderen direkten Konversionsverfahren gewonnen wird.

Bei aus naßchemischen Verfahren gewonnenen Pulvern liegt die Größe der beim Sintern zu Körnern verschmelzenden Kristallite nämlich mit üblicherweise weniger als 100 nm deutlich unter der Kristallitgröße von aus trockenchemischen Verfahren gewonnen Pulvern (250 nm +/- 100 nm). U. a. deshalb sintern die naßchemischen Pulver zu einem früheren Zeitpunkt beim Sinterprozeß und ausgehend von einer geringen Sinterdichte. Dagegen ist das Sinterverhalten von aus trockenchemischen Verfahren gewonnenen Pulvern träger und erfolgt ausgehend von einer größeren Sinterdichte. Aus dem ADU-Verfahren gewonnenes Pulver hat beispielsweise eine BET-Oberfläche von mindesten 4 m2/g, dagegen hat aus einem trockenchemischen Verfahren gewonnenes Pulver beispielsweise eine Oberfläche von 0.5-4 m2/g, i. d. R. um 2 m2/g (BET-Oberfläche: eine nach dem BET-Verfahren gemessene spezifische Oberfläche).

Würde man von einem aus einem naßchemischen Konversionsverfahren gewonnenen Pulver ausgehen (z. B. ADU-Pulver), so löste sich ein Dotierungsstoff in den kleinen Kristalliten des ADU-Pulvers besser als in einem Kristallit eines aus einem trockenchemischen Konversionsverfahren gewonnen Pulver, so daß das Korn des ADU-Pulvers schneller wachsen würde und damit der Sinterkörper aufgrund eines zu großen Korns zu hart würde. Gleiche Mengen an Dotierungsstoff haben damit bei einem aus einem naßchemischen Verfahren gewonnen Pulver einerseits und bei einem aus einem trockenchemischen Verfahren gewonnen Pulver andererseits ganz unterschiedliche Auswirkungen.

Bei einem DC-Pulver löst sich nämlich ein Dotierungsstoff in vorteilhafter Weise insgesamt weniger gut im Kristallit des Ausgangspulver und dem daraus entstehenden Korn während des Sinterprozesses, da die Kristallite von vornherein größer sind und langsamer sintern als bei einem Pulver aus einem naßchemischen Verfahren z. B. einem ADU-Pulver. Diese zunächst nachteilig erscheinende Eigenschaft des DC-Pulvers wird nach der Erkenntnis der Erfindung aber in vorteilhafter Weise genutzt. Das hat erhebliche Vorteile sowohl für ein Verfahren als auch für einen Sinterkörper gemäß der Erfindung. Damit ist beim Sintern eines DC-Pulvers gemäß der Erfindung nämlich zum einen das Kornwachstum nicht zu stark aber groß genug, um eine ausreichende Plastizität bei guter Spaltgasrückhaltung zu gewährleisten, führt also zu einem moderat großen Korn. Zum anderen verbleibt ein Teil des Dotierungsstoffs außerhalb des Korns und erhöht die Korngrenzengleitung bei moderat großem Korn und damit die Plastizität bei moderat großem Korn. Der Dotierungsstoff wird also insbesondere in einer Menge zugegeben, die eine moderat großkörnige Mikrostruktur und eine hohe Plastizität des Kernbrennstoff-Sinterkörpers bewirkt.

Insbesondere mit zunehmendem Reaktoreinsatz erfährt ein Kernbrennstoff- Sinterkörper eine Volumen- und demzufolge eine Durchmesserzunahme, was zu einer beträchtlichen Beanspruchung und gegebenenfalls Dehnung des Hüllrohrs führen kann. Dies wird umso wichtiger, desto länger die Einsatzzeit eines Brennelements mit einem solchen Kernbrennstoff-Sinterkörper ist, beispielsweise drei und mehr Einsatzzyklen. Dies ist der Fall bei Brennstoffen mit einem Abbrandpotential von 30 MWd/kgSM bis hin zu 80 MWd/kgSM oder mehr (High- Burn-Up). Eisenverbindungen und insbesondere Eisenoxid-Verbindungen als Dotierungsstoff haben dabei im Vergleich zu anderen Dotierungsstoffen den Vorteil, daß sie eine Plastizität eines Kernbrennstoff-Sinterkörpers gemäß der Erfindung auch für lange Einsatzzeiten eines Brennelements ermöglichen. Hinsichtlich des über das genannte Verfahren hergestellten Kernbrennstoff-Sinterkörpers hat dieser also den Vorteil, daß er seine Plastizität auch bei drei und mehr Einsatzzyklen eines Brennelements weitgehend behält und auch noch eine ausreichende Spaltgasrückhaltung aufweist.

Speziell eine Eisenverbindung und insbesondere eine Eisenoxid-Verbindung wirkt im Vergleich zu üblichen Dotierungsstoffen bei moderatem Korn im übrigen auch nicht so stark diffusionsbeschleunigend hinsichtlich der Spaltgasrückhaltung. Üblicherweise ist mit der Korngrößenerhöhung durch eine Dotierungsstoffzugabe zwar auch eine schlechtere Spaltgasrückhaltung durch eine auch durch den Dotierungsstoff erhöhte Grenzflächendiffusion für Spaltgase verbunden. Dieser Nachteil anderer Dotierstoffe ist bei einer Eisen-Verbindung und insbesondere einer Eisenoxid-Verbindung als Dotierungsstoff jedoch nicht vorhanden, wie sich überraschenderweise herausgestellt hat.

Speziell eine Eisenoxid-Verbindung löst sich vorteilhaft gut im Fluorit-Gitter des Schwermetalloxids und gibt dabei Sauerstoff ab. Dieser ist maßgeblich für das Kornwachstum verantwortlich, da er die Beweglichkeit der Schwermetallatome beträchtlich erhöht.

Andererseits behält speziell Eisenoxid im Vergleich zu anderen Dotierstoffen aufgrund seiner hohen Wertigkeit beim Sintern ausreichend lang den Sauerstoff (Fe2O3, FeO, FeOH) und fördert deshalb das Kornwachstum besser als andere Dotierungsstoffe bei einem aus einem trockenchemischen Konversionsverfahren gewonnenen Kernbrennstoffpulver (DC-Pulver). Übliche Dotierungsstoffe reduzieren für den oben beschriebenen etwas trägeren Kornwachstumsprozeß oder Sinterprozeß bei einem DC-Pulver (beispielsweise im Vergleich zu einem ADU-Pulver) zu schnell zu Metallen. Trotzdem erhöht Eisenoxid als Dotierungsstoff die Korngröße vorteilhaft nur bis auf eine moderate Größe von 10 µm bis 25 µm oder auch 30 µm, so daß sowohl der Aufbau großer, also auch scharfkantiger Körner unterbunden wird und damit eine ausreichende Plastizität des Kernbrennstoff-Sinterkörpers gewährleistet ist. Dies ist äußerst vorteilhaft für die PCI-Eigenschaften des Kernbrennstoff-Sinterkörpers. Durch andere Dotierungsstoffe, wie Ti, Nb und Cr, zum Teil erzielbare Korngrößen von 30 µm bis 80 µm sind für die PCI-Eigenschaften weniger vorteilhaft.

Gemäß einer vorteilhaften Weiterbildung der Erfindung enthält der Dotierungsstoff also eine Eisenoxid-Verbindung, insbesondere eine aus der Gruppe bestehend aus: FeO, Fe2O3, Fe3O4, Fe(OH)2 und Fe(OH). Insgesamt zeigt Eisenoxid als Dotierungsstoff damit eine gute Verträglichkeit mit den Eigenschaften eines DC- Brennstoffpulvers, insbesondere auch bei Herstellungsverfahren hinsichtlich des Untermischverhaltens und des Sinterverhaltens.

Vorteilhafte Weiterbildungen der Erfindung, insbesondere bezüglich des Verfahrens, sind im folgenden aufgeführt sowie den Unteransprüchen zu entnehmen.

Das spaltbare Schwermetalloxid enthält vorteilhafterweise ein Oxid eines Schwermetalls aus der Gruppe bestehend aus: Uran, Plutonium und Thorium, und/oder eine Verbindung des Schwermetalls, insbesondere UO2 und/oder PuO2 und/oder ThO2. Dies betrifft vor allem auch die Herstellung von MOX- Brennstoffen.

Gegebenenfalls enthält das Pulver günstigerweise auch ein Element aus der Gruppe bestehend aus Beryllium und Molybdän, und/oder eine Verbindung der Elemente. Dadurch wird die Wärmeleitfähigkeit des Kernbrennstoff-Sinterkörpers in vorteilhafter Weise erhöht.

Vorzugsweise enthält das Pulver ein U3O8-Pulver, das durch Oxidation eines aus einem trocken-chemischen oder einem anderen direkten Konversionsverfahren gewonnenem UO2-Pulver gewonnen wird. Es ist gegebenenfalls allerdings auch möglich, daß das Pulver ein U3O8-Pulver enthält, das durch Oxidation eines aus einem naßchemischen Verfahren, insbesondere einem AUC- oder ADU- Verfahren, gewonnenem UO2-Pulver gewonnen wird.

Günstigerweise weist das Pulver feindisperse Teilchen von im wesentlichen 1-1000 µm Größe, insbesondere von im Mittel 50 µm bis 150 µm Größe, auf. Insbesondere weist ein solches Pulver auch Kristallite von im wesentlichen 50-500 nm Größe, insbesondere von im Mittel 100 nm bis 350 nm Größe, auf. Dies sind besonders vorteilhafte Eigenschaften eines Pulvers aus einem trockenchemischen oder einem anderem direkten Konversionsverfahren, die sich gemäß der Erkenntnis der Erfindung insbesondere auf die sich beim Sintervorgang einstellende Korngröße vorteilhaft auswirken.

Vorteilhafterweise wird das Pulver zur Weiterbehandlung homogenisiert und/oder gemahlen. Insbesondere wird das Pulver zur Weiterbehandlung vorkompaktiert und/oder granuliert, günstigerweise bis zu einer Teilchengröße von im wesentlichen weniger als 2 mm. Dies verbessert die Rieselfähigkeit des Pulvers, erleichtert also den Verfahrensablauf, insbesondere das Einfüllen des Pulvers in Preßmatrizen zum Pressen des Pulvers (vor dem Sintervorgang). Günstigerweise enthält der Dotierungsstoff neben einer Eisenverbindung eine Chrom-Verbindung aus der Gruppe bestehend aus: Cr2O3 und CrO3.

Weiter enthält der Dotierungsstoff günstigerweise eine Silizium- und/oder Silikat- Verbindung, insbesondere eine Verbindung aus der Gruppe bestehend aus: Silizium-Oxid, Eisensilikat und Magnesium-Silikat. Vorzugsweise enthält der Dotierungsstoff auch eine Verbindung eines Elements aus der Gruppe bestehend aus: Magnesium, Niob, Titan, Aluminium, Vanadium und Platin, insbesondere ein Oxid des Elements. Dadurch können die erläuterten Vorteile der Erfindung in Kombination mit einer Eisenverbindung, insbesondere einer Eisenoxid- Verbindung, weiter verbessert werden. Dies gilt vor allem für eine Silizium- oder Aluminium-Verbindung, günstigerweise nicht in zu großer Menge.

Vorzugsweise wird der Dotierungsstoff zugegeben in einer Menge, die eine Mikrostruktur des Kernbrennstoff-Sinterkörpers zur Folge hat, die eine Kornabmessung von im wesentlichen mehr als 8 µm, insbesondere eine Kornabmessung im Bereich von etwa 10-25 µm aufweist. Besonders bevorzugt ist eine Korngröße von 10-15 µm.

Desweiteren wird der Dotierungsstoff günstigerweise zugegeben in einer Menge, die eine günstige Plastizität des Kernbrennstoff-Sinterkörpers zur Folge hat, welche durch ein moderates Kriechverhalten des Sinterkörpers bei Temperaturen zwischen 1100°C und 1700°C und Drücken von etwa 70-160 N/mm2, insbesondere bei Temperaturen um etwa 1200°C und bei Drücken von etwa 70-90 N/mm2 bestimmt ist.

Insbesondere übersteigt diese Menge eine im Gitter des Schwermetalloxids lösliche Menge des Dotierungsstoffs. Es erweist sich als besonders günstig, den Dotierungsstoff in einer Menge zwischen 100 ppm und 5000-6000 ppm, vorzugsweise in einer Menge zwischen 500 ppm und 3000 ppm, zuzugeben. Als besonders günstig haben sich Mengen zwischen 750 ppm und 2500 ppm erwiesen. Eine solche Menge ist dabei nicht so hoch, als daß ein Korn durch die Additivzugabe vollständig umschlossen würde (z. B. bei Silikaten).

Vorteilhaft wird der Dotierungsstoff dem Pulver in einem Schritt zu dessen Herstellung und/oder zu dessen Weiterbehandlung zugegeben, vorzugsweise vor einem Granulierungsschritt. Gegebenenfalls ist es auch günstig, den Dotierungsstoff bei einem und/oder nach einem Granulierungsschritt zuzugeben. Dazu wird der Dotierungsstoff günstigerweise pulverförmig zugegeben, wobei das Dotierungsstoffpulver eine Teilchengröße von im wesentlichen weniger als 5 µm, vorzugsweise eine Teilchengröße von im wesentlichen weniger als 2 µm, aufweist.

Nach einer Weiterbildung der Erfindung wird dem Pulver ein weiterer Dotierungsstoff zugegeben, der wenigstens eine Verbindung eines Stoffes aus der Gruppe bestehend aus: Zirkonium, Cer, Yttrium, Lanthan, Ytterbium, Cäsium, Calcium, alle weiteren Nebengruppen-Elemente, Lanthanid-Elemente und Actinid- Elemente, enthält. Dabei handelt es sich insbesondere um ein Oxid des Stoffes.

Günstigerweise wird dem Pulver ein Neutronengift zugegeben, insbesondere eine Gadolinium-Verbindung und/oder eine Bor-Verbindung und/oder eine Erbium- Verbindung. Dies erweist sich insbesondere zur Erreichung eines hohen Abbrands (High-Burn-Up) bei einem Brennelement als günstig. Dazu liegt vorteilhaft eine höhere Anreicherung des Schwermetalloxid-Pulvers vor. Diese kann zweckmäßigerweise 3,5% oder 4% überschreiten oder sogar 4,5-5% betragen. Die Anreicherung könnte auch 5% überschreiten, z. B. bei 6,5% liegen.

Zur besseren Verarbeitung des Pulvers erweist es sich als günstig, dem Pulver ein Gleitmittel zuzugeben, insbesondere einen Stoff aus der Gruppe bestehend aus: Stearatverbindung, Stearinsäure, Amid- Verbindung, Glycol-Verbindung und Paraffin-Verbindung.

Ebenso erweist es sich zur Einstellung der Sinterdichte und aus Gründen der Spaltgasrückhaltung als vorteilhaft, dem Pulver einen Porenbildner zuzugeben, insbesondere einen Stoff aus der Gruppe bestehend aus: Ammoniumsalz, Ammonium-Carbonat, Acetat-Verbindung, Oxalat-Verbindung und Zuckerstärke. Besonders vorteilhaft erweist es sich, einen Porenbildner derart zuzugeben, daß sich im Sinterkörper eine Porengröße etwa zwischen 2-200 µm, insbesondere etwa zwischen 5-80 µm, einstellt.

Günstigerweise werden der Dotierungsstoff oder mehrere weitere Additive, z. B. ein weiterer Dotierungsstoff, ein Neutronengift, ein Porenbildner oder ein Gleitmittel, dem Pulver und/oder dem weiterbehandelten Pulver gemeinsam zugegeben. Dies vereinfacht das Verfahren gemäß der Erfindung zusätzlich.

Vorteilhaft wird das Pulver vor dem Sintern zu Formkörpern gepreßt, die günstigerweise eine Dichte von etwa 4.5-7 g/cm3 aufweisen.

Das Pulver (ein Formkörper) wird vorteilhaft im wesentlichen bei Temperaturen zwischen 1500°C und 1900°C und in einer Atmosphäre mit einem Druck im Bereich des Normaldrucks für eine Dauer von 2-8 h gesintert.

Insbesondere wird das Pulver (ein Formkörper) etwa auf 93-98.5% der theoretischen Dichte gesintert. Die gesinterten Formkörper weisen danach günstigerweise eine Dichte von 10-20 g/cm3, insbesondere eine Dichte von 10,0-10,8 g/cm3, auf.

Dazu wird das Pulver (ein Formkörper) günstigerweise in einer reduzierenden Inertgas-Atmosphäre gesintert. Die Inertgas-Atmosphäre enthält vorzugsweise zu überwiegendem Teil Inertgase, insbesondere He und/oder Ar, gegebenenfalls auch vorteilhaft mindestens ein weiteres Gas aus der Gruppe bestehend aus: H2, N2 und Co2. Das Verhältnis von H2 zu N2 in der Inertgas-Atmosphäre wird vorteilhaft im wesentlichen zwischen 1 : 1 bis 3 : 1 eingestellt. Das Verhältnis zwischen der Menge der weiteren Gase und der Menge der Inertgase wird günstigerweise zwischen 0,02 : 1 und 0,08 : 1 eingestellt.

Beim Sintern wird dabei günstigerweise ein Sauerstoffpartialdruck der Inertgas- Atmosphäre derart eingestellt, daß U3O8-Anteile des Pulvers zu UO2-Anteilen des Pulvers reduziert werden. Insbesondere wird ein Sauerstoffpartialdruck der Inertgas-Atmosphäre aber auch ebenso derart eingestellt, daß eine Reduzierung der Eisen-Oxid-Anteile des Pulvers zu Eisenanteilen des Pulvers vermieden wird.

Dazu ist es besonders günstig, den Bereich des Partialdrucks etwa von einem um 5% erniedrigten bis zu einem um 5% erhöhten Normaldruck einzustellen. Vorzugsweise wird der Sauerstoffpartialdruck der Inertgas-Atmosphäre zwischen 10-20 und 10-6 atm eingestellt.

In einer ganz besonders vorteilhaften Ausgestaltung der Erfindung bezüglich des Verfahrens wird die Aufgabe demnach gelöst durch ein Verfahren zur Herstellung eines Kernbrennstoff-Sinterkörpers, bei dem ein wenigstens ein Schwermetalloxid enthaltendes Pulver hergestellt wird, wobei das Pulver ein sinteraktives UO2- Schwermetalloxid-Pulver enthält, welches zu überwiegendem Teil in einem trocken-chemischen Konversionsverfahren gewonnen wird, und insbesondere Teilchen von 1-1000 µm Größe mit Kristalliten von 50-500 nm Größe aufweist, und ein U3O8-Schwermetalloxid-Pulver enthält, welches zu überwiegendem Teil durch Oxidation aus einem Teil des sinteraktiven UO2-Schwermetalloxid-Pulvers gewonnenen wird, und ggf. ein rückgeführtes U3O8-Schwermetalloxid-Pulver enthält, wobei das Pulver weiterbehandelt wird, und dem Pulver ein sowohl die Korngröße als auch die Plastizität des Sinterkörpers erhöhender Dotierungsstoff, der mindestens 100 ppm einer Eisenverbindung, insbesondere einer Eisenoxid-Verbindung, enthält, zugegeben wird, das Pulver zu Formkörpern gepreßt wird, und die Formkörper bei Temperaturen zwischen 1500°C und 1900°C und in einer Atmosphäre mit einem Druck im Bereich des Normaldrucks für eine Dauer von 2-8 h gesintert werden.

Vorteilhafte Weiterbildungen der Erfindung, insbesondere bezüglich des Kernbrennstoff-Sinterkörpers, sind im folgenden aufgeführt sowie den Unteransprüchen zu entnehmen.

Vorzugsweise enthält der Kernbrennstoff-Sinterkörper nämlich eine Eisenoxid- Verbindung, insbesondere eine aus der Gruppe bestehend aus: FeO, Fe2O3, Fe3O4 Fe(OH)2 und Fe(OH)3.

Zur Erreichung der Vorteile gemäß der Erfindung weist der Kernbrennstoff- Sinterkörper besonders vorteilhaft eine Mikrostruktur auf, die durch eine Kornabmessung von im wesentlichen mehr als 8 µm, insbesondere bis 15 µm, also einer Kornabmessung im Bereich von etwa 10-25 µm, gekennzeichnet ist. Besonders bevorzugt ist eine Korngröße von 10-15 µm.

Ebenso weist der Kernbrennstoff-Sinterkörper nach einer Weiterbildung der Erfindung vorzugsweise eine Porengröße von etwa zwischen 2-200 µm, insbesondere von etwa zwischen 5-80 µm auf. Vorzugsweise weist er eine u. a. durch die Porengröße beeinflußte Dichte von 10-20 g/cm3, insbesondere eine Dichte von 10,0-10,8 g/cm3 auf.

Ein Kernbrennstoff-Sinterkörper gemäß der Erfindung oder einer Weiterbildung der Erfindung weist demnach ebenso eine günstige Plastizität auf, die durch ein moderates Kriechverhalten bestimmt ist, insbesondere bei Temperaturen zwischen 1100°C und 1700°C und Drücken von etwa 70-160 N/mm2 insbesondere bei Temperaturen um etwa 1200°C, und bei Drücken von etwa 70-90 N/mm2.

Zur weitestgehenden Vermeidung der PCI sollte auch eine Anpassung des Brennstoffs an das Hüllrohr gemäß obiger Auslegungsmöglichkeiten erfolgen.

Anhand einer Zeichnung werden vorteilhafte Ausführungsbeispiele der Erfindung näher beschrieben. Im einzelnen zeigen:

Fig. 1 einen Prozeßablauf für ein Verfahren gemäß der Erfindung unter Verwendung eines aus einer Trockenkonversion (DC) gewonnenen UO2-Pulvers,

Fig. 2 einen ersten Sinterkörper mit seiner Porenstruktur gemäß der Erfindung, mit einem Maßstab von 10 µm, hergestellt unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2- Pulvers mit 750 ppm Fe2O3 als Dotierstoff,

Fig. 3 einen zweiten Sinterkörper mit seiner Kornstruktur gemäß der Erfindung, mit einem Maßstab von 50 µm, hergestellt unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2- Pulvers mit 750 ppm Fe2O3 als Dotierstoff,

Fig. 4 einen dritten Sinterkörper mit seiner Kornstruktur gemäß der Erfindung, mit einem Maßstab von 20 µm, hergestellt unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2- Pulvers mit 750 ppm Fe2O3 als Dotierstoff,

Fig. 5 einen vierten Sinterkörper mit seiner Kornstruktur gemäß der Erfindung, mit einem Maßstab von 50 µm, hergestellt unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2- Pulvers mit 2500 ppm Fe2O3 als Dotierstoff,

Fig. 6 transientes Kriechverhalten von Sinterkörpern gemäß der Erfindung, hergestellt unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2-Pulvers mit 1500 ppm Fe2O3 als Dotierstoff, bei einer Temperatur von 1400°C und einem Druck von 120 MPa, im Vergleich zum transienten Kriechverhalten anderer Sinterkörper,

Fig. 7 Kriechraten von Sinterkörpern gemäß der Erfindung, hergestellt unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2-Pulvers mit 750 pp-4000 ppm Fe2O3 als Dotierstoff, bei einer Temperatur von 1400°C, im Vergleich mit Kriechraten anderer Sinterkörper,

Fig. 8 Kriechraten von Sinterkörpern gemäß der Erfindung, hergestellt unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2-Pulvers mit 750 ppm Fe2O3 als Dotierstoff, bei Temperaturen von 1400°C, 1500°C und 1600°C.

Der in Fig. 1 gezeigte Verfahrensablauf eignet sich in besonders vorteilhafter Weise zur Herstellung eines Kernbrennstoff-Sinterkörpers mit einem Abbrandpotential von bis zu 80 MWd/kgSM oder mehr. Selbstverständlich kann das gezeigte Verfahren standardmäßig auch für die Herstellung bereits jetzt und in der Vergangenheit üblicher Brennstoffe mit geringerem Abbrandpotential eingesetzt werden. Dies ist ein Vorteil, der in der einfachen und an bisherige Verfahren angepaßten Verfahrensführung begründet liegt.

Das Ausgangspulver umfaßt in einer ersten Mischung mit einem Anteil von etwa 90% ein sinteraktives UO2-Pulver aus einem trocken-chemischen Konversionsverfahren und mit einem Anteil von etwa 10% ein U3O8-Pulver, das durch Oxidation eines aus einem trocken-chemischen Konversionsverfahren gewonnenen Pulvers gewonnen wird. Das U3O8-Pulver kann Rücklaufmaterial, wie z. B. beim Schleifen von Formkörpern anfallenden Schleifschlamm, umfassen. Der Anteil von U3O8-Pulver kann dabei auch bis zu etwa 15% betragen. Vor dem Mischprozeß wird das UO2-Pulver vorzugsweise einer Homogenisierung unterzogen, um die Rieselfähigkeit zu erhöhen und beispielsweise Agglomerate und zusammenhängende Pulveranteile zu beseitigen. Zur wahlweise auch möglichen, hier aber nicht näher erläuterten Herstellung von MOX-Pulvern würden auch entsprechende Anteile z. B. von PuO2-Pulver der Pulvermischung zugegeben werden.

Einem Teil dieser Mischung von UO2- und U3O8-Pulver wird ein sowohl die Korngröße als auch die Plastizität des Sinterkörpers erhöhender Dotierstoff zugegeben. Dazu wird dem Teil der Mischung ein Dotierstoff zugegeben, der etwa 10000 ppm Fe2O3, bezogen auf den Teil der Mischung (in Gewichts-ppm), enthält. Der Dotierstoff enthält bei diesem Ausführungsbeispiel auch weitere Anteile, z. B. von Al2O3 oder SiO. Die Anteile von Al2O3 oder SiO können aber auch in einem der folgenden Verfahrensschritte zusammen oder auch getrennt voneinander in verschiedenen Verfahrensschritten zugegeben werden. Sie können bevorzugt auch als Stearate oder in anderer Form getrennt voneinander zugegeben werden. Der Dotierstoff wird dem Teil der Mischung in einem Mischer untergemischt. Dies geschieht beispielsweise in einem Turbula-Mischer oder auch einem Nauta- Mischer. Zuvor oder währenddessen wird bei Bedarf der Teil der Mischung homogenisiert oder gemahlen. Im letzteren Fall spricht man auch von einem Mastermix-Vorgang.

Wie in der Figur angedeutet, kann der Teil der Mischung etwa 8% der Gesamtmenge der Mischung betragen. In diesem Fall führt dies zu einem Anteil von etwa 750 ppm Fe2O3 bezogen auf die Gesamtmenge der Mischung. In einer ebenfalls bevorzugten Verfahrensführung beträgt der Teil der Mischung 26% der Gesamtmenge der Mischung. Dies führt dann zu einem Anteil von etwa 2500 ppm Fe2O3 bezogen auf die Gesamtmenge der Mischung. Im Prinzip wird durch die Wahl der Menge des Teils der Mischung der Anteil des Fe2O3 bezogen auf die Gesamtmenge des Mischung eingestellt. Auf diese Weise ist die Zugabemenge des Dotierstoffs bezogen auf die Gesamtmenge der Mischung variabel zwischen 100 ppm und einer Obergrenze, z. B. 6000 ppm, festlegbar.

Die Zusammenführung der verbliebenen Mischung und des Teils der Mischung umfassend den Dotierstoff erfolgt in einem Siebschritt. Dabei wird die Gesamtmenge vorzugsweise in einer Hammermühle gesiebt. Die Menge des Dotierstoffs bezogen auf die Menge der Pulvermischung ist im wesentlichen die gleiche wie die Menge des Dotierstoffs bezogen auf die Gesamtmaterialmenge beim späteren Sinterkörper (in Gewichts-ppm), d. h. beim weiteren Verfahrensverlauf, insbesondere beim Sintervorgang, geht kaum Dotierstoff verloren.

Das gemäß Fig. 1 ausgeführte Zumischverfahren des Dotierstoffs hat den Vorteil, daß dadurch eine besonders intensive mechanische Mischung des Dotierstoffs und der Pulvermischung erreicht wird. Dies führt zu einer besonders homogenen Verteilung des Dotierstoffs im Kernbrennstoff-Sinterkörper, was der Erreichung der Vorteile der Erfindung besonders zuträglich ist.

In weiteren Verfahrensschritten wird die Pulvermischung granuliert und anschließend homogenisiert. Die Granulierung wird vorteilhafterweise mittels eines Rollkompaktors durchgeführt, wobei insbesondere die oben angegebenen Dichtewerte und Granulenabmessungen erreicht werden.

Vor und/oder nach dem Granulierungsvorgang kann ebenfalls eine Zugabe von Al2O3 oder SiO erfolgen. Die Anteile von Al2O3 und SiO können dabei bis zu 500 ppm an der Pulvermischung betragen. Bei der Homogenisierung erfolgt die Zugabe eines Schmiermittels und eines Porenbildners. Schmiermittel wird dabei in einer Menge von etwa 2000 ppm zugegeben, während die Menge des Porenbildners abhängig von der gewünschten Enddichte des Sinterkörpers erfolgt. Dies ist nicht zuletzt auch von der Menge des verwendeten Dotierstoffs abhängig.

Die Pulvermischung wird danach zu Formkörpern gepreßt, die eine Dichte von etwa 6 g/cm3 aufweisen sollten. Der Sintervorgang erfolgt etwa 2 h lang bei einer Temperatur von 1780°C und einer feuchten H2/N2-Atmosphäre, deren Taupunkt bei etwa 68-70°F liegt.

Je nach Wahl der Menge von Fe2O3 als Dotierstoff in den bereits genannten Mengenbereichen kann bei moderat großem Korn und ausreichender Plastizität des Sinterkörpers eine leicht unterschiedliche Mikrostruktur des Sinterkörpers eingestellt werden. Dies könnte beispielsweise vorteilhaft zur Abstimmung des Kernbrennstoffs auf eine bestimmte Hüllrohrart erfolgen. Dabei könnten beispielsweise die Eigenschaften eines zweischichtigen Duplex- oder eines einschichtigen Simplexrohres berücksichtigt werden. Auch könnten dabei die Eigenschaften einer Zirkaloy-4-Legierung für einen DWR-Reaktor oder einer Zirkaloy-2-Legierung für einen SWR-Reaktor berücksichtigt werden.

Bei Konzentrationen von 750 ppm Fe2O3, also insbesondere von mehr als 100 ppm, löst sich das Fe2O3 so gut wie vollständig im Korn des Sinterkörpers. Deutlich darüber, jedenfalls etwa bei Konzentrationen von 2500 ppm Fe2O3 oder anderen Eisenverbindungen, wird ein Teil des Fe2O3 oder der anderen Eisenverbindungen auch an den Korngrenzen abgeschieden, was zusätzlich zu der allein schon durch die moderate Korngröße bewirkten Plastizität des Sinterkörpers zu einer höheren Korngrenzengleitfähigkeit beiträgt und damit der Plastizität weiter zuträglich ist. Bei sehr hohen Mengen von Dotierstoff, insbesondere bei Mengen von 4000 ppm Fe2O3 oder mehr, bilden sich eisenhaltige, grobe, inselförmige oder clusterartige Ausscheidungen, die zum Teil auch Uran enthalten. Dies ist den Fig. 2 bis 5 zu entnehmen, welche bei Raumtemperatur aufgenommene Schliffbilder von Sinterkörpern gemäß der Erfindung zeigen.

Fig. 2 zeigt einen ersten Sinterkörper mit seiner Porenstruktur gemäß der Erfindung, mit einem Maßstab von 10 µm. Hergestellt ist der Sinterkörper unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2-Pulvers mit 750 ppm Fe2O3 als Dotierstoff. Die dunklen Bereiche des Schliffbildes zeigen Poren an, die eine mittlere Größe von etwa 5-10 µm aufweisen. Die hellen Bereiche sind nur bei Raumtemperatur sichtbare Eisenausscheidungen, welche bei den im Reaktorbetrieb herrschenden Temperaturen in Lösung gehen.

Fig. 3 zeigt einen zweiten Sinterkörper mit seiner Kornstruktur gemäß der Erfindung, mit einem Maßstab von 50 µm, Hergestellt ist der Sinterkörper unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2-Pulvers mit 750 ppm Fe2O3 als Dotierstoff. Hier ist die Mikrostruktur zu erkennen, welche Korngrößen im wesentlichen zwischen 10-25 µm aufweist.

Fig. 4 zeigt einen dritten Sinterkörper mit seiner Kornstruktur gemäß der Erfindung, mit einem Maßstab von 20 µm. Hergestellt ist der Sinterkörper unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2-Pulvers mit 750 ppm Fe2O3 als Dotierstoff. Hier sind die Korngrenzen deutlich zu erkennen. Die Korngrößen liegen wiederum im Mittel im Bereich um 10-25 µm. Die Figur zeigt auch, daß lediglich vereinzelte Körner durchaus kleiner als 10 µm, wieder andere, lediglich vereinzelte Körner größer als 25 µm sein können.

Fig. 5 zeigt einen vierten Sinterkörper mit seiner Kornstruktur gemäß der Erfindung, mit einem Maßstab von 50 µm. Hergestellt ist der Sinterkörper unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2-Pulvers mit 2500 ppm Fe2O3 als Dotierstoff. Die Körner fallen im Mittel etwas größer aus als bei einem Sinterkörper mit 750 ppm Fe2O3 enthaltenden Dotierstoffzusatz. Da das Fe2O3 sich nicht mehr vollständig im Korn des Sinterkörpers löst, wird ein Teil des Fe2O3 an den Korngrenzen ausgeschieden, was die Korngrenzengleitung erhöht.

Die Menge an zugesetztem Dotierstoff ist jedoch andererseits zu gering, als das ein vollständiges Umschließen der Körner durch den Dotierstoff erfolgen könnte.

Das Ausmaß der Plastizität eines Sinterkörpers wird vor allem durch sein Kriechverhalten beschrieben. Dies zeigen die Fig. 6 bis 8. Der Ursprung des Kriechprozesses im vorliegenden Fall ist im wesentlichen ein Diffusionskriechen, weniger eine Korngrenzengleiten (wie bei einer Si-Zugabe als Additiv), denn die Körner sind für das Korngrenzengleiten schon zu groß. Beim Diffusionskriechen wandern die Gitterfehlstellen zu den Stellen hoher Spannung und werden dort ausgepreßt, während die Atome zu den Stellen niedriger Spannung oder spannungsfreien Stellen wandern. Eine Eisenverbindung und insbesondere ein Eisenoxid erzeugt einerseits solche Fehlstellen im Kristallit - andererseits wird Fe im Fluorit Gitter des UO2 eingebaut - erhöht also das Diffusionskriechen beträchtlich - zum Teil um einen Faktor von bis zu oder sogar mehr als 100.

Fig. 6 zeigt das transiente Kriechverhalten von Sinterkörpern gemäß der Erfindung im Vergleich zum transienten Kriechverhalten anderer Sinterkörper. Hergestellt sind die Sinterkörper gemäß der Erfindung unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2-Pulvers mit 1500 ppm Fe2O3 als Dotierstoff. Das transiente Kriechverhalten gibt dabei den zeitlichen Verlauf der Deformation eines zylindrischen Sinterkörpers unter Einwirkung einer auf die Grundfläche des Sinterkörpers wirkenden Stempelkraft wieder. Das transiente Kriechverhalten der Fig. 6 ist bei einer Temperatur von 1400°C und einem Druck von 120 Mpa festgehalten. Dabei zeigt sich, daß ein obiger Sinterkörper gemäß der Erfindung im Vergleich zu einem bisherigen Standard und erst recht im Vergleich zu einem mit Cr2O3 dotierten Sinterkörper gemäß dem Stand der Technik eine höhere Kriechfähigkeit aufweist und schneller kriecht. Letzteres ist insbesondere wichtig, da bei zum Teil häufig variablen Leistungsschwankungen im Reaktorbetrieb mit steilen Rampen auch eine entsprechend rasche plastische Anpassung des Brennstoffs zur Verbesserung der PCI-Eigenschaften vorteilhaft ist. Dabei kann über die Menge des Dotierstoffs und insbesondere des Anteils einer Eisenverbindung, z. B. von Fe2O3, auch eine Anpassung an die transiente Dehnfähigkeit eines Hüllrohrs vorgenommen werden.

Aus einem transienten Kriechverhalten wie in der Fig. 6 lassen sich Kriechraten ermitteln, welche in Fig. 7 und Fig. 8 für Sinterkörper gemäß der Erfindung gezeigt sind.

In Fig. 7 sind Kriechraten von Sinterkörpern gemäß der Erfindung, hergestellt unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2-Pulvers mit 750 ppm -4000 ppm Fe2O3 als Dotierstoff gezeigt. Im Übrigen enthält die Pulvermischung der Sinterkörper 10% U2O3. Der Pulvermischung wurde außerdem 0.2% ADS als Schmiermittel sowie 0.5% AZB als Porenbildner zugegeben. Gesintert wurden die Formkörper in einer H2/Co2-Atmosphäre für 3 h bei einer Temperatur von 1775°C. Das Kriechverhalten solcher Sinterkörper wurde bei einer Temperatur von 1400°C, im Vergleich zum Kriechverhalten anderer Sinterkörper ermittelt. Dabei zeigt sich, daß selbst bei relativ kleinen Druckspannungen die Plastizität der Sinterkörper gemäß der Erfindung gegenüber herkömmlichen Sinterkörpern mit gleicher oder kleinerer Korngröße deutlich erhöht ist - unter Berücksichtigung der logarithmischen Auftragung handelt es sich um eine Erhöhung der Kriechrate um einen Faktor von wenigstens 2 bis 3.

Fig. 8 zeigt Kriechraten von Sinterkörpern gemäß der Erfindung, die unter Verwendung eines aus einer Trockenkonversion gewonnenen UO2-Pulvers mit 750 ppm Fe2O3 als Dotierstoff hergestellt wurden. Im Übrigen wurden diese Sinterkörper in einer 100% Helium-Atmosphäre gesintert. Die Figur zeigt die Temperaturabhängigkeit der Kriechraten. Insbesondere sind die Kriechraten bei Temperaturen von 1400°C, 1500°C und 1600°C gezeigt. Dabei wird deutlich, daß ein vorteilhaft moderates Kriechverhalten gerade unter Temperaturbedingungen, wie sie im Reaktorbetrieb herrschen, erreicht werden. Bei 1100°C liegt ein ausreichendes Kriechverhalten vor, das im wesentlichen auf eine Verformung des Korns zurückzuführen ist. Bei 1400°C liegt ein besonders erwünschtes moderates Kriechverhalten vor, das insbesondere besser als das bei einer Nb-Zugabe ist. Für deutlich darüber liegende Temperaturen nimmt die Plastizität der Sinterkörper zu. Ein lineares Verhalten der Kriechrate mit Erhöhung der Druckspannung ist bei sehr hohen Temperaturen nicht mehr zu erwarten. Dennoch ist das Kriechverhalten nicht zu stark. Dann verlören nämlich aufgrund fehlender Adhäsion die Korngrenzen den Zusammenhalt im Gefüge und würden zerfallen. Dies ist z. B. bei einer übermäßigen Silizium-Zugabe der Fall. Ein Zerfließen des Korns ist unerwünscht, da dann scharfe Kanten auftreten, die die PCI- Eigenschaften verschlechtern.


Anspruch[de]
  1. 1. Verfahren zur Herstellung eines Kernbrennstoff-Sinterkörpers, bei dem ein ein spaltbares Schwermetalloxid enthaltendes Pulver hergestellt, weiterbehandelt und gesintert wird, wobei das Pulver ein sinteraktives Schwermetalloxid-Pulver umfaßt, welches zu überwiegendem Teil aus einem trocken-chemischen Konversionsverfahren gewonnen wird, und wobei dem Pulver ein sowohl die Korngröße als auch die Plastizität des Sinterkörpers erhöhender, eine Eisenverbindung enthaltender Dotierungsstoff derart zugegeben wird, dass der Gewichtsanteil der Eisenverbindung im Verhältnis zum Gewichtsanteil des Schwermetalloxids im fertigen Kernbrennstoff-Sinterkörper mindestens 100 ppm beträgt.
  2. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das spaltbare Schwermetalloxid ein Oxid eines Schwermetalls aus der Gruppe bestehend aus Uran, Plutonium und Thorium und/oder eine Verbindung eines Schwermetalls aus dieser Gruppe, insbesondere UO2 und/oder PuO2 und/oder ThO2 enthält.
  3. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Pulver ein U3O8-Pulver enthält, das durch Oxidation eines aus einem trocken-chemischen oder einem anderen direkten Konversionsverfahren gewonnenem UO2-Pulver gewonnen wird.
  4. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Pulver feindisperse Teilchen von im wesentlichen 1-1000 µm Größe, insbesondere einer Größe von im Mittel 50 µm bis 150 µm, aufweist.
  5. 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Pulver Kristallite von im wesentlichen 50-500 nm Größe, insbesondere von im Mittel 150 nm bis 350 nm Größe, aufweist.
  6. 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Pulver zur Weiterbehandlung homogenisiert und/oder gemahlen wird.
  7. 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Pulver zur Weiterbehandlung vorkompaktiert und/oder granuliert wird.
  8. 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Pulver vor dem Sintern zu Formkörpern gepreßt wird.
  9. 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Dotierungsstoff eine Eisenoxid- Verbindung, insbesondere FeO, Fe2O3, Fe3O4 Fe(OH)2 und/oder Fe(OH)3, enthält.
  10. 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Dotierungsstoff eine Chrom- Verbindung aus der Gruppe bestehend Cr2O3 und CrO3, enthält.
  11. 11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Dotierungsstoff eine Silizium- und/oder Silikat-Verbindung, insbesondere eine Verbindung aus der Gruppe bestehend aus Silizium-Oxid, Eisensilikat und Magnesium-Silikat, enthält.
  12. 12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Dotierungsstoff eine Verbindung eines Elements aus der Gruppe bestehend aus Magnesium, Niob, Titan, Aluminium, Vanadium und Platin, insbesondere ein Oxid des jeweiligen Elements, enthält.
  13. 13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Dotierungsstoff zugegeben wird in einer Menge, die eine Mikrostruktur des Kernbrennstoff-Sinterkörpers zur Folge hat, die eine Kornabmessung von im wesentlichen mehr als 8 µm, insbesondere eine Kornabmessung im Bereich von etwa 10-25 µm, aufweist.
  14. 14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Dotierungsstoff zugegeben wird in einer Menge, die eine Plastizität des Kernbrennstoff-Sinterkörpers zur Folge hat, welche durch ein moderates Kriechverhalten des Sinterkörpers bei Temperaturen zwischen 1100°C und 1700°C und Drücken von etwa 70-160 N/mm2, insbesondere bei Temperaturen um etwa 1200°C und bei Drücken von etwa 70-90 N/mm2, bestimmt ist.
  15. 15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß der Dotierungsstoff zugegeben wird in einer Menge, welche eine im Gitter des Schwermetalloxids lösliche Menge des Dotierungsstoffs übersteigt.
  16. 16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der Dotierungsstoff zugegeben wird in einer Menge zwischen 100 ppm und 5000-6000 ppm, vorzugsweise in einer Menge zwischen 500 ppm und 3000 ppm, insbesondere in einer Menge zwischen 750 ppm und 2000 ppm.
  17. 17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß der Dotierungsstoff dem Pulver in einem Schritt zu dessen Herstellung und/oder zu dessen Weiterbehandlung, vorzugsweise vor einem Granulierungsschritt, zugegeben wird.
  18. 18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß der Dotierungsstoff pulverförmig zugegeben wird, wobei das Dotierungsstoffpulver eine Teilchengröße von im wesentlichen weniger als 5 µm, vorzugsweise eine Teilchengröße von im wesentlichen weniger als 2 µm, aufweist.
  19. 19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß dem Pulver ein weiterer Dotierungsstoff zugegeben wird, der wenigstens eine Verbindung eines Stoffes aus der Gruppe bestehend aus Zirkonium, Cer, Yttrium, Lanthan, Ytterbium, Cäsium, Calcium, alle weiteren Nebengruppen-Elemente, Lanthanid-Elemente und Actinid-Elemente, insbesondere ein Oxid des Stoffes, enthält.
  20. 20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß dem Pulver ein Neutronengift zugegeben wird, insbesondere eine Gadolinium-Verbindung und/oder eine Bor- Verbindung und/oder eine Erbium-Verbindung.
  21. 21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß dem Pulver ein Gleitmittel zugegeben wird, insbesondere ein Stoff aus der Gruppe bestehend aus Stearatverbindung, Stearinsäure, Amid- Verbindung, Glycol-Verbindung und Parafin-Verbindung.
  22. 22. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß dem Pulver ein Porenbildner zugegeben wird, insbesondere ein Stoff aus der Gruppe bestehend aus Ammoniumsalz, Ammonium-Carbonat, Acetat-Verbindung, Oxalat-Verbindung und Zuckerstärke.
  23. 23. Verfahren nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß das Pulver im wesentlichen bei Temperaturen zwischen 1500°C und 1900°C und in einer Atmosphäre mit einem Druck im Bereich des Normaldrucks für eine Dauer von 2-8 h gesintert wird.
  24. 24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß das Pulver etwa auf 93-98.5% der theoretischen Dichte gesintert wird.
  25. 25. Verfahren nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß das Pulver in einer reduzierenden Inertgas-Atmosphäre gesintert wird.
  26. 26. Verfahren nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, daß beim Sintern ein Sauerstoffpartialdruck der Inertgas-Atmosphäre derart eingestellt wird, daß U3O8- Anteile des Pulvers zu UO2-Anteilen des Pulvers reduziert werden.
  27. 27. Verfahren nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, daß ein Sauerstoffpartialdruck der Inertgas-Atmosphäre derart eingestellt wird, daß eine Reduzierung der Eisen- Oxid-Anteile des Pulvers zu Eisen-Anteilen des Pulvers vermieden wird.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com