PatentDe  


Dokumentenidentifikation DE10146901A1 15.05.2003
Titel Verfahren und System zur Bearbeitung von Fehlerhypothesen
Anmelder ABB Research Ltd., Zürich, CH
Erfinder Vollmar, Gerhard, Dipl.-Ing., 67149 Meckenheim, DE;
Hu, Zaijun, Dr.-Ing., 67061 Ludwigshafen, DE;
Kabore, Pousga, Dr.-Ing., 69221 Dossenheim, DE
Vertreter Fritsch, K., Dipl.-Ing., Pat.-Anw., 67126 Hochdorf-Assenheim
DE-Anmeldedatum 24.09.2001
DE-Aktenzeichen 10146901
Offenlegungstag 15.05.2003
Veröffentlichungstag im Patentblatt 15.05.2003
IPC-Hauptklasse G06F 17/50
Zusammenfassung Die Erfindung bezieht sich auf ein Verfahren und ein zu seiner Durchführung geeignetes System zur automatisierten Bearbeitung von Fehlerhypothesen im Rahmen einer Fehlerursachenanalyse im Fall eines Fehlerereignisses in einer technischen Anlage. Es wird ein Datenverarbeitungssystem (1) verwendet, in dem physikalische Modelle (31) von Anlagenfunktionen und Prozessen, die mittels der Anlage durchführbar sind, und wissensbasierte Modelle (33) zur Fehlerursachenanalyse, Mittel (21, 32) zur Berechnung und Speicherung von Anlagen- und Prozeßzuständen unter Zugriff auf die physikalischen Modelle (31) und auf Daten, die in einem Datenserver (40) der technischen Anlage gespeichert sind, sowie Mittel zur Hypothesenbearbeitung (22) und eine Ein/Ausgabe-Einrichtung (11) vorhanden sind.

Beschreibung[de]

Die Erfindung betrifft ein Verfahren und ein System zur Ermittlung von Fehlerursachen und zur Durchführung ihrer Verifikation im Rahmen einer Modell-basierten Fehlerursachenanalyse. Die Erfindung ist geeignet zur Unterstützung einer Fehlerursachenanalyse im Fall eines Fehlerereignisses in einer technischen Anlage bzw. in einem damit durchgeführten technischen Prozeß.

Die Modell-basierte Fehlerursachenanalyse ist beispielsweise beschrieben in G. Vollmar, R. Milanovic, J. Kallela: Model-based Root Cause Analysis, Conference proceedings, 2001 Machinery Reliability Conference, April 2-4, Phoenix Arizona, published by RELIABILITY Magazine, c/o Industrial Communications, Inc. 1704 Natalie Nehs, Dr. Knoxville, TN 37931 USA. Das Verfahren stellt im Fall eines eintretenden Fehlerereignisses einem Fehleranalysten Informationen in solcher Weise bereit, daß er schnell und zielgerichtet die Fehlerursache finden kann. Der Fehleranalyst benötigt dazu einen Computer, der mit einem Web Browser ausgestattet ist und über eine Internetverbindung auf die Fehlerursachenanalysemodelle zugreifen kann. Ein Fehlermodell ist eine hierarchische, baumartige Struktur. Die oberste Ebene besteht aus dem Fehlerereignis. Die Ebenen darunter bestehen aus Knotenweiche jeweils Hypothesen darstellen. Diese Knoten sind baumartig miteinander verkettet. Jeder Knoten verfügt über eine Checkliste, an Hand derer sich Hypothesen verifizieren oder negieren lassen. Eine Checkliste setzt sich aus mehreren Checklistenpunkten zusammen. Diese Checklistenpunkte geben Anweisungen welche Informationen der Analyst braucht und wie er sie verarbeiten muß, um die Hypothese zu verifizieren. Bei der Suche nach einer Betriebsstörung in einer Anlage navigiert der Fehleranalyst von Knoten zu Knoten und überprüft seine Anlage an Hand der angehängten Checklisten. Wenn er eine Hypothese auf diese Art akzeptiert, navigiert er zum unterliegenden Fehlermodell bzw. zum Fehler der zur Störung seiner Anlage geführt hat.

Das Abarbeiten der Checklistenpunkte zur Verifikation von Fehlerhypothesen kann allerdings sehr aufwendig sein. Sämtliche aussagekräftigen Daten müssen gesammelt und verarbeitet werden. Oftmals sind die Daten, die man zur Verarbeitung heranziehen müßte, nicht mehr vorhanden oder nur schwierig und zeitaufwendig zu beschaffen. Nicht selten müssen die Daten mit komplexen mathematischen Funktionen zu aussagekräftigen Informationen weiterverarbeitet werden. Probleme entstehen insbesondere dann, wenn der Zeitaufwand dafür sehr hoch ist, oder wenn kein Fachmann für diese Aufgabe zur Verfügung steht.

Leitsysteme und Datenbanken, die Signale mit Zeitbezug speichern, verfügen prinzipiell über Daten, die zur Verifikation von Hypothesen herangezogen werden können. Auch gibt es Softwareprogramme, die diese Daten zu höherwertigen Informationen verdichten und verarbeiten können. Ein signifikanter verbleibender Nachteil der bekannten Vorgehensweise bei der Fehlerursachenanalyse besteht aber darin, daß die Information von Leitsystemen und deren Datenbanken den Systemen für die Fehlerursachenanalyse nicht automatisch zugänglich gemacht wird, und auch nicht rechnerunterstützt eine Verifikation von Hypothesen ermöglicht wird.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und ein System zur automatisierten Bearbeitung einer vorgegeben Fehlerhypothese anzugeben.

Diese Aufgabe wird durch ein Verfahren zur Bearbeitung von Fehlerhypothesen im Rahmen einer Fehlerursachenanalyse gelöst, das die im Anspruch 1 angegebenen Merkmale aufweist. Ein entsprechendes System und vorteilhafte Ausgestaltungen sind in weiteren Ansprüchen angegeben.

Die Erfindung bezieht sich demnach auf ein Verfahren und ein System zur Ermittlung von Fehlerursachen und zur Durchführung ihrer Verifikation im Rahmen einer Fehlerursachenanalyse einschließlich einer rechnerunterstützten Bearbeitung von Checklistenpunkten auf Basis physikalischer Modelle zur Verifikation von Hypothesen. Das Verfahren und das System sind geeignet zur Unterstützung der Fehlerursachensuche im Fall von eintretenden Fehlerereignissen in industriellen Anlagen.

Online-Daten der industriellen Informationstechnologie, also z. B. aus einem Leitsystem oder Planungssystem werden dabei mit Hilfe physikalischer Modelle in Echtzeit in höherwertige Information für die Fehlerursachenanalyse überführt. Die physikalischen Modelle stellen somit die Information bereit, die zum Abarbeiten von Checklistenpunkten notwendig ist. Im Idealfall können sämtliche Checklistenpunkte durch physikalische Modelle automatisch abgearbeitet werden und somit eine vorgegebene Fehlerhypothese verifiziert werden. Damit erzielte Ergebnisse werden zweckmäßig über eine XML-Schnittstelle einem System für die Fehlerursachenanalyse bereitgestellt. Einem Fehleranalysten werden beim Abarbeiten eines Fehlerbaumes die Hypothesen und Checklistenpunkte signalisiert, die von den Modellen bereits abgearbeitet wurden.

Eine weitere Beschreibung des Verfahrens und eines zur Durchführung geeigneten Systems erfolgt nachstehend anhand eines in Zeichnungsfiguren dargestellten Ausführungsbeispiels.

Es zeigt:

Fig. 1 ein System zur automatischen Bearbeitung einer Fehlerhypothese,

Fig. 2 ein Verfahren zur automatischen Bearbeitung von Fehlerhypothesen,

Fig. 3 das physikalische Modell eines Prozesses,

Fig. 4 die prinzipielle Darstellung eines Fehlermodells,

Fig. 5 die Struktur eines Fehlerbaums,

Fig. 6 eine Fehlerhypothese "Energiezufuhr zu hoch", und

Fig. 7 eine automatisch verifizierte Checkliste.

Fig. 1 zeigt ein System 1 zur automatischen Bearbeitung von Fehlerhypothesen mit Hilfe physikalischer Modelle. Das System enthält eine Ein/Ausgabe Einrichtung 10, eine Hypothesenverarbeitungseinrichtung 20 und einen Datenspeicher 30.

Die Ein/Ausgabe Einrichtung 10 enthält einen Modell-Browser 11, mit dem ein Fehleranalytiker Fehlerbaum-basierte, mit RCA(root cause analysis)-Modelle bezeichnete wissensbasierte Modelle 33 bearbeiten kann. Es kann insbesondere damit eine Fehlerhypothese vorgegeben werden, deren Verifikation mittels des Systems automatisiert durchführbar ist.

Die Hypothesenverarbeitungseinrichtung 20 enthält eine mit Modell Engine bezeichnete Verarbeitungseinrichtung 21 für physikalische Modelle 31 und einen in Fig. 1 als RCA Modell Navigator bezeichneten Hypothesenbearbeiter 22. Die Verarbeitungseinrichtung 21 greift zyklisch auf Prozeßdaten zu, die ein Datenserver 40 bereitstellt, führt eine Berechnung von Anlagen- und Prozeßzuständen nach Vorgabe eines physikalischen Modells 31 durch, und speichert das Ergebnis in einem Datenspeicherbereich für Berechnungsergebnisse 32. Der Hypothesenbearbeiter 22 greift beim Bearbeiten einer Hypothese auf diese Berechnungsergebnisse 32, sowie auf Checklisten der wissensbasierten Modelle 33 zu.

Der Datenspeicher 30 enthält Speicherbereiche mit Dateien, in denen die physikalischen Modelle 31 und wissensbasierten Modelle 33 abgelegt sind, und in denen die Berechnungsergebnisse 32 gespeichert werden.

Fig. 2 zeigt das Verfahren zur automatischen Bearbeitung von Fehlerhypothesen mit Hilfe der in Fig. 1 generell, und in Fig. 3 beispielhaft dargestellten physikalischen Modelle. Der Fehleranalytiker navigiert zunächst zu einer Fehlerhypothese, um das Verfahren zu starten. In einem Verfahrensschritt 100 lädt der Hypothesenbearbeiter 22 die für die Verifikation der Hypothese erforderlichen Berechnungsergebnisse 32. In einem folgenden Schritt 200 lädt der Hypothesenbearbeiter 22 außerdem die Checkliste der betreffenden Hypothese aus den wissensbasierten Modellen 33. Fig. 6 zeigt ein Beispiel für eine solche Checkliste. In einem Schritt 300 führt der Hypothesenbearbeiter 22 einen Abgleich der Berechnungsergebnisse mit den Checklistenpunkten der Checkliste durch. Die Checklistenpunkte, für die Modelle hinterlegt sind, werden dabei automatisch ausgewertet. Jeder Checklistenpunkt enthält eine Bedingung zur Verifikation der Hypothese. In einem Schritt 400 wird durch den Hypothesenbearbeiter 22 gekennzeichnet, ob der Checklistenpunkt die Bedingung erfüllt oder nicht erfüllt. Fig. 7 zeigt beispielhaft, wie eine Checkliste nach der Bearbeitung ausgegeben wird.

Fig. 3 zeigt beispielhaft das physikalische Modell eines chemischen Prozesses in einem Reaktor. Das Modell ist in Form einer Differentialgleichung angegeben. Das Modell beschreibt die Prozeßparameter im fehlerfreien Zustand. Ein Fehler kann mit solch einem Modell durch den Vergleich des berechneten Parameters mit dem real gemessen Wert ermittelt werden. Beispielsweise können die Eintritts- und Austrittstemperaturen des Kühlwassers berechnet werden. Weicht die berechnete Austrittstemperatur vom gemessenen Wert ab, kann mit einem entsprechenden Gleichungssystem unter Beachtung bestimmter Randbedingungen auf einen Meßwertfehler geschlossen werden. Mit Hilfe der angegebenen Differentialgleichung kann z. B. mit T0 der Temperaturmeßfehler und mit V eine Leckage diagnostiziert werden.

Fig. 4 zeigt die prinzipielle Darstellung eines Fehlermodells als wissensbasiertes Modell 33. Die dargestellte oberste Ebene beinhaltet ein Prozeßmodell mit seinen Prozeßschritten. Jeder Prozeßschritt kann in weitere Prozeßschritte untergliedert sein. Zu jedem Prozeßschritt gibt es Fehlerereignisse und kritische Komponenten. Dazu gibt es wiederum Fehlerbäume mit Knoten. Die Knoten eines Fehlerbaumes repräsentieren Fehlerhypothesen. Wesentlicher inhaltlicher Bestandteil einer Fehlerhypothese ist eine Checkliste zur Verifikation. Auf die Inhalte einer Hypothese wird in Fig. 5 näher eingegangen.

Fig. 5 zeigt die Struktur eines Fehlerbaums. Das Modell hat einen hierarchischen Aufbau und enthält in der einfachsten Ausprägung zwei Ebenen. Die oberste Ebene repräsentiert das Fehlerereignis. Einem Fehlerereignis können mehrere Fehlerhypothesen unterlagert sein. Die logische Abhängigkeit kann folgendermaßen formuliert werden: Ein oder mehrere Fehlerhypothesen können Ursache für das Fehlerereignis sein. Fehlerereignis und Fehlerhypothese haben eine ähnliche inhaltliche Beschreibung. Die Fehlerhypothese kann zur tiefergehenden Analyse auf andere Fehlermodelle verweisen, d. h. ein Fehlerbaum kann sich aus mehreren Teilbäumen zusammensetzen. Die Verbindung wird durch das Attribut Fehlerbaumreferenz hergestellt.

Fig. 6 zeigt beispielhaft wie das System die Fehlerhypothese "Energiezufuhr zu hoch" einem Benutzer präsentiert. Eine Beschreibung der Fehlerhypothese erklärt dabei den Zusammenhang zwischen Fehler und möglicher Ursache. Eine Lokalisierung gibt den möglichen Fehlerort an; im Beispiel ist dies der Reaktor XY. Die Hypothese wird verifiziert, indem eine Verifikationscheckliste abgearbeitet wird. Die Prüfungen "Fehler Temperaturmessung" und "Leckage zum Kühlmantel" können durch ein physikalisches Modell automatisch verifiziert werden. eine Fehlerbaumreferenz ermöglicht für das Diagnosekriterium "Falsche Bedienanleitung" zur tieferen Diagnose den Zugang zu einem zugehörigen Fehlerbaum.

Fig. 7 zeigt beispielhaft, wie eine automatisch verifizierte Checkliste dargestellt wird. Bereits automatisch negativ verifizierte Diagnosekriterien sind dabei kursiv dargestellt. Ein positiv verifiziertes Diagnosekriterium wird fett dargestellt und mit Ausrufezeichen hervorgehoben. Noch zu prüfende Diagnosekriterien sind fett und mit Fragezeichen dargestellt.


Anspruch[de]
  1. 1. Verfahren zur automatisierten Bearbeitung von Fehlerhypothesen im Rahmen einer Fehlerursachenanalyse im Fall eines Fehlerereignisses in einer technischen Anlage, wobei
    1. a) ein Datenverarbeitungssystem (1) verwendet wird, in dem physikalische Modelle (31) von Anlagenfunktionen und Prozessen, die mittels der Anlage durchführbar sind, und wissensbasierte Modelle (33) zur Fehlerursachenanalyse, Mittel (21, 32) zur Berechnung und Speicherung von Anlagen- und Prozeßzuständen unter Zugriff auf die physikalischen Modelle (31) und auf Daten, die in einem Datenserver (40) der technischen Anlage gespeichert sind, sowie Mittel zur Hypothesenbearbeitung (22) und eine Ein/Ausgabe-Einrichtung (11) vorhanden sind, und
    2. b) nach der Vorgabe einer Fehlerhypothese durch einen Benutzer des Systems (1), das Mittel zur Hypothesenbearbeitung (22) unter Zugriff auf Ergebnisse einer Berechnung von Anlagen- und Prozeßzuständen, sowie unter Zugriff auf eine Checkliste der wissensbasierten Modelle (33), automatisiert eine Verifikation der Fehlerhypothese anhand von Bedingungen durchführt, die Checklistenpunkten der Checkliste zugeordnet sind, in einer Ergebnisliste das Verifikationsergebnis je Checklistenpunkt einträgt, und eine Ausgabe der Ergebnisliste bewirkt.
  2. 2. System zur automatisierten Bearbeitung von Fehlerhypothesen im Rahmen einer Fehlerursachenanalyse im Fall eines Fehlerereignisses in einer technischen Anlage, wobei ein Datenverarbeitungssystem (1) vorhanden ist, in dem physikalische Modelle (31) von Anlagenfunktionen und Prozessen, die mittels der Anlage durchführbar sind, und wissensbasierte Modelle (33) zur Fehlerursachenanalyse, Mittel (21, 32) zur Berechnung und Speicherung von Anlagen- und Prozeßzuständen unter Zugriff auf die physikalischen Modelle (31) und auf Daten, die in einem Datenserver (40) der technischen Anlage gespeichert sind, sowie Mittel zur Hypothesenbearbeitung (22) und eine Ein/Ausgabe-Einrichtung (11) enthalten sind.
  3. 3. System nach Anspruch 2, dadurch gekennzeichnet, daß das Datenverarbeitungssystem (1) dafür eingerichtet ist, daß nach der Vorgabe einer Fehlerhypothese durch einen Benutzer, das Mittel zur Hypothesenbearbeitung (22) unter Zugriff auf Ergebnisse einer Berechnung von Anlagen- und Prozeßzuständen, sowie unter Zugriff auf eine Checkliste der wissensbasierten Modelle (33), automatisiert eine Verifikation der Fehlerhypothese anhand von Bedingungen durchführt, die Checklistenpunkten der Checkliste zugeordnet sind, in einer Ergebnisliste das Verifikationsergebnis je Checklistenpunkt einträgt, und eine Ausgabe der Ergebnisliste bewirkt.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com