PatentDe  


Dokumentenidentifikation DE10148146A1 15.05.2003
Titel Verfahren zur Entsorgung eines mit mindestens einem Toxikum, insbesondere Radiotoxikum, kontaminierten Gegenstandes aus Keramik, Graphit und/oder Kohlestein
Anmelder Forschungszentrum Jülich GmbH, 52428 Jülich, DE
Erfinder Brücher, Heinz, Dr., 52428 Jülich, DE;
Lensa, Werner von, Dr., 52379 Langerwehe, DE;
Haag, Gerd, Dr., 52441 Linnich, DE;
Moormann, Rainer, Dr., 52070 Aachen, DE
Vertreter W. König und Kollegen, 52072 Aachen
DE-Anmeldedatum 28.09.2001
DE-Aktenzeichen 10148146
Offenlegungstag 15.05.2003
Veröffentlichungstag im Patentblatt 15.05.2003
IPC-Hauptklasse G21F 9/28
IPC-Nebenklasse B09B 3/00   A62D 3/00   
Zusammenfassung Es wird ein Verfahren zur Entsorgung eines mit mindestens einem Toxikum, insbesondere Radiotoxikum, kontaminierten Gegenstandes aus Keramik, Graphit oder Kohlestein vorgestellt. Es wird vorgeschlagen, zur teilweisen Dekontamination des Gegenstandes diesen aufzuheizen, gleichzeitig die entfernten Anteile der Toxika aufzufangen und anschließend den dekontaminierten Gegenstand und die aufgefangenen Toxika getrennt weiteren Entsorgungsschritten zuzuführen. Dabei wird der Gegenstand vor, während oder nach der thermischen Behandlung zu Granulat zerkleinert und derart mit einer Hüllmasse umgossen, dass das Granulat mit einer keramischen Umhüllung versehen wird. Nach Abkühlung des Gemenges aus Hüllmasse und Granulat entsteht ein massives, nicht brennbares Gebinde, das auslaugbeständig und abriebfest ausgebildet werden kann. Das Gebinde kann auch als Container für Gefahrgut ausgeformt werden oder als Umhüllung von kontaminiertem Abfall oder zur Verfüllung von Zwischenräumen mit großer Langzeit- und Auslaufbeständigkeit genutzt werden.

Beschreibung[de]

Die Erfindung betrifft ein Verfahren zur Entsorgung eines mit mindestens einem Toxikum, insbesondere Radiotoxikum kontaminierten Gegenstandes aus Keramik, Graphit und/oder Kohlestein.

Die Entsorgung mit Radiotoxika kontaminierter Gegenstände ist insbesondere im Zusammenhang mit dem Betrieb, der Stilllegung und der Beseitigung von kerntechnischen Anlagen ein bedeutender wirtschaftlicher Faktor. Um eine Belastung der Umwelt mit toxischen Materialien zu vermeiden bzw. möglichst gering zu halten, ist ein erheblicher technischer und damit finanzieller Aufwand notwendig. In kerntechnischen Anlagen werden Graphit, Kohlestein und solche Materialien mit keramischer Grundstruktur in vielfacher Weise verwendet, z. B. als Moderatoren oder als Struktur- und Isolationswerkstoffe. Zur radioaktiven Verunreinigung dieser Materialien kommt es durch Neutronenaktivierung vorhandener chemischer Verunreinigungen oder durch Adsorption bzw. Diffusion von Spaltprodukten. Die bekannte Entsorgung schwach radioaktiver Abfälle durch Versenken im Meer ist ökologisch bedenklich und wird seit vielen Jahren entsprechend dem diesbezüglichen Londoner Abkommen von den westlichen Ländern nicht mehr praktiziert.

Das Deponieren schwach radioaktiver Abfälle in Endlager oder Zwischenlager ist wegen der anfallenden hohen Mengen und der Brennbarkeit kohlenstoffhaltiger Materialien auf der einen Seite und den begrenzten Lagerkapazitäten auf der anderen Seite ebenfalls problematisch. So können bei einem stillgelegten kohlenstoffmoderierten Reaktor mehrere 100 Tonnen schwach radioaktiver Abfälle anfallen.

Das ebenfalls bekannte Verbrennen der schwach radioaktiven Abfälle ist insbesondere im Fall von Kohlenstoffstrukturen problematisch, da hierbei Radionuklide, wie Tritium und C14 in die Atmosphäre freigesetzt werden.

Aus der DE 197 37 891 A1 ist ein Verfahren der eingangs genannten Art bekannt, bei dem der zu entsorgende Gegenstand zunächst aufgeheizt wird, um ein Teil der Toxika durch Ausgasen oder thermische Zersetzung zu entfernen. Der entfernte Anteil des Toxikums wird aufgefangen und der zum Teil dekontaminierte Gegenstand und das aufgefangene Toxikum werden anschließend getrennt weiteren Entsorgungsschritten zugeführt. Die in hoher Konzentration vorliegenden aufgefangenen Toxika werden auf eine Weise entsorgt, wie sie bereits für stärker radioaktive Abfälle, z. B. Filter aus kerntechnischen Anlagen, bekannt ist. Der zum Teil dekontaminierte Gegenstand kann aufgrund der verminderten Konzentration der Radiotoxika unter geringeren Anforderungen gehandhabt sowie zwischen- oder endgelagert werden. Dabei kann zum Schutz gegen Brand und Auslaugen die Oberfläche des Gegenstandes behandelt werden, z. B. durch Reaktion mit flüssigem Silizium unter Bildung von SiC oder durch pyrolytische Abscheidung von Kohlenstoff zum verschließen der Poren. Außerdem wird auf diese Weise eventuell gespeicherte, durch strahlungsinduzierte Störung des Kristallgitters aufgebaute Energie (Wigner-Energie) und die damit verbundene Gefahr der Selbsterhitzung kontrolliert beseitigt.

Stammen die zu entsorgenden Gegenstände aus kerntechnischen Anlagen, handelt es sich dabei in der Regel um massive Blöcke mit Abmessungen von ca. 0,5 bis 1 m Höhe und Breite und bis ca. 2 m Länge, die erhebliche Mengen unterschiedlicher Radiotoxika enthalten. Sie fallen z. B. bei Stilllegung von graphitmoderierten Kernreaktoren oder auch bei Normalbetrieb gasgekühlter Reaktoren durch Austausch von keramischen Bauelementen, z. B. Brennelementhüllen oder in Form von Moderatorsäulen bei Materialtestreaktoren (MTR) oder in Form von keramischen oder kohlenstoffhaltigen Adsorbens aus Reinigungsanlagen aller Art an.

Das zu entsorgende Material ist in der Regel brennbar und stellt schon von daher für die Lagerung ein spezielles Problem dar. Zudem sind insbesondere Reaktorgraphit und Kohlestein sehr anfällig gegen chemischen Angriff und Auslaugung. Reaktorgraphit ist eine speziell für kerntechnische Anlagen verwendete Graphitform mit extrem hoher Porosität. Kohlestein ist ebenfalls hochporös.

Der hier betroffenen Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zur Verfügung zu stellen, mit dem die Ausnutzung gegebener Lagerkapazitäten optimiert werden kann und gleichzeitig ein effizienter Schutz vor Verbrennen und Auslaugen gegeben ist. Die Aufgabe wird bei einem Verfahren der eingangs genannten Art gelöst, bei dem der Gegenstand zu einem Granulat zerkleinert wird, der Gegenstand vor, während und/oder nach der Zerkleinerung zur Reduktion seiner Kontamination ausgeheizt wird und das Granulat entweder mit einer verflüssigten Hüllmasse umgossen wird, oder mit der Hüllmasse in Pulver- oder Körnerform vermengt und anschließend bis zur Verflüssigung der Hüllmasse erhitzt wird, wobei die verflüssigte Hüllmasse entweder selbst zu einer Keramik erstarrt oder mit dem Granulat chemisch zu einer Keramik reagiert.

Die Zerkleinerung des Gegenstandes ermöglicht eine Anpassung des zu entsorgenden Materials an vorgegebene Formen, z. B. die Form von Transportbehältern oder die Geometrie der Lagerstätte, und damit eine Optimierung der Raumnutzung. Eine Zerkleinerung zum Granulat mit Korngrößen von höchstens einigen cm erlaubt eine nahezu beliebige Formgebung. Im Falle einer verflüssigten Hüllmasse, die mit dem Material des Granulats chemisch reagiert, kann das Granulat bei entsprechenden Bedingungen vollständig durchreagieren. In der Regel werden zumindest die größeren Körner des Granulats lediglich im Bereich einer Oberflächenschicht von wenigen µm bis etwa 1 mm Dicke zu einer Keramik reagieren. Im Falle der Vermengung des Granulats mit der pulvrigen oder körnigen Hüllmasse kann diesem zusätzlich auch vor, während oder nach dem Erhitzen verflüssigte Hüllmasse beigefügt werden. In jedem Fall bewirkt die Zerkleinerung und das Umhüllen des Granulats mit der Hüllmasse zudem, dass sich die nach dem Ausheizen verbliebene Kontamination im Wesentlichen im Volumen des Gebindes verteilt. Dies ist insbesondere von Vorteil bei zu entsorgenden Gegenständen, die eine hohe Oberflächenkontamination und keine oder nur geringe Volumenkontaminationen aufweisen. Die Überführung in eine Volumenkontamination kann zu wesentlich geringeren Anforderungen an die Handhabung der Gebinde aufgrund der dann geringeren Oberflächendosisleistung und der gegebenen Selbstabschirmung führen. Somit ist es nicht erforderlich, nahezu die gesamte Menge der Toxika durch Ausheizen zu entfernen, wodurch die Dekontamination weniger aufwendig, z. B. bei relativ niedrigen Temperaturen, durchgeführt werden könnte. Ein weiterer Vorteil der Zerkleinerung ergibt sich, wenn das Ausheizen am Granulat selbst erfolgt, da wegen der kürzeren Diffusionswege ein effizienteres Ausheizen erreicht werden kann.

Die im erfindungsgemäßen Verfahren einzusetzenden Parameter, wie z. B. Temperatur, Verweilzeiten, Druck, Verhältnis der Masse der Hüllmasse zur Masse des Gegenstands, die Korngröße, sind jeweils abhängig von der Art der ursprünglichen Konzentrationen der Toxika sowie den angestrebten Eigenschaften des Gebindes. Sollte ein Toxikum aufgrund der hohen Stabilität seiner Bindung an den Gegenstand nicht oder nur über unwirtschaftlich lange Zeiträume hinweg durch Aufheizen des Gegenstandes im erforderlichen Maße ausgetrieben werden können, kann das entsprechende Toxikum durch chemische Reaktion mit einer geeigneten Substanz, z. B. einem Halogen, in eine thermisch aus dem Gegenstand entfernbare chemische Verbindung, z. B. einem Halogenid, überführt werden.

Die ausgeheizten Toxika werden - wie dies aus dem Stand der Technik bereits bekannt ist - gesondert aufgefangen und entsorgt.

Das aus dem Granulat und der Hüllmasse erzeugte Gemenge kann zur Herstellung eines zwischen- oder endlagerfähigen Gebindes in einen geeigneten Behälter verfüllt werden. Dies kann im fließfähigen oder formbaren Zustand des Gemenges erfolgen, um den Behälter vollständig mit dem Gemenge auszufüllen. Bekannt ist die Verwendung metallischer Behälter. Diese weisen allerdings den Nachteil auf, dass sich aufgrund von Oxidation des Metalls in wässriger Lösung Wasserstoff bilden und im Endlager sammeln kann.

Es kann daher vorteilhaft sein, das erfindungsgemäße Verfahren so auszuführen, dass das aus dem Granulat und der Hüllmasse erzeugte Gemenge in einen Behälter aus einer nicht kontaminierten Keramik vergossen wird. Hierdurch wird die oben beschriebene Wasserstoffbildung und damit eine Explosionsgefahr im Endlager vermieden.

Weiterhin kann das erfindungsgemäße Verfahren so ausgeführt werden, dass nach dem Vergießen des Gemenges der Behälter mit einer nicht kontaminierten, zur Keramik erstarrenden flüssigen Auffüllmasse vollständig gefüllt wird. Auf diese Weise wird der Behälter derart verschlossen, dass das Gemenge keinen Kontakt zur Umwelt hat. Die Auffüllmasse, die z. B. zu derselben Keramik erstarren kann, aus der der Behälter besteht, verschließt also letzteren.

Das erfindungsgemäße Verfahren kann aber auch so ausgeführt werden, dass das aus dem Granulat und der Hüllmasse erzeugte Gemenge im fließfähigen oder formbaren Zustand zur Auffüllung der Zwischenräume in andere kontaminierte Abfälle enthaltenden, zwischen- oder endlagerfähigen Gebinden verwendet wird.

Auf diese Weise können die Kapazitäten der verwendeten Behälter und damit die gegebene Lagerkapazitäten nahezu optimal genutzt werden. Die verbliebene Kontamination in den Gemengen ist so niedrig, dass durch das Verfüllen der Zwischenräume anderer endlagerfähiger Abfälle keine Grenzwerte überschritten werden können, die die Endlagerfähigkeit gefährden würden.

Weiterhin kann das erfindungsgemäße Verfahren so ausgeführt werden, dass zur Erzeugung eines zwischen- oder endlagerfähigen Gebindes das mit dem aus dem Granulat und der Hüllmasse erzeugten Gemenge im fließfähigen oder formbaren Zustand ein anderer kontaminierter Abfall vollständig umhüllt wird.

Das Gemenge kann ohne Zwischenraum die anderen kontaminierten Gegenstände umschließen und somit selbst einen optimal an den Inhalt angepassten Behälter bilden. Sollte die Restkontamination insbesondere im Bereich der Oberfläche des Gemenges hinreichend gering sein, kann das Gebinde ohne weitere Ummantelung zwischen- oder endgelagert werden. Hierzu kann ihm eine geeignete Form, z. B. eines Quaders oder Zylinders aufgegeben werden.

Werden die anderen Abfälle vollständig von dem Gemenge umschlossen, kann es sich dabei auch um solche handeln, die selbst erheblich stärker kontaminiert sind als das Gemenge, z. B. um hochradioaktive Abfälle, z. B. Brennelemente. Die Abschirmung durch die keramische Umhüllung kann zur Endlagerung völlig hinreichend sein. Anderenfalls sind weitere Abschirmmaßnahmen nach dem Stand der Technik zu ergreifen.

Sowohl das Verfüllen der Zwischenräume als auch das Umhüllen von Abfällen mit dem Gemenge kann vorteilhaft noch vor dessen vollständigem Erstarren durchgeführt werden. Es ist jedoch auch möglich, dieses in einem späteren Verfahrensschritt nach gesondertem Erhitzen des Gemenges vorzusehen.

Weiterhin kann das erfindungsgemäße Verfahren so ausgeführt werden, dass das aus dem Granulat und der Hüllmasse erzeugte Gemenge zu einem Behälter geformt, der Behälter mit weiterem kontaminiertem Abfall gefüllt, verschlossen und mit diesem Inhalt zwischen- oder endgelagert wird.

Das Gemenge wird somit zu einem Gebrauchsgegenstand verarbeitet, der zum Umhüllen selbst hochradioaktiver Abfälle geeignet sein kann. Der Behälter kann z. B. topfförmig sein. Auch Abdeckelemente, wie Deckel, können geformt werden. Ein Behälter aus zwei oder mehr Teilen kann z. B. mittels Silizium, das aus der Gasphase einer siliziumhaltigen Verbindung abgeschieden wird, oder durch Aufbringen von Siliziumcarbid, welches z. B. aus nicht kontaminierten Grundstoffen hergestellt wird, verschlossen werden. Es ist auch möglich, die Behälterteile mit einem Gewinde zu versehen.

Bei der Erzeugung keramischer Behälter können bei dessen Herstellung sowohl unter Verwendung des Gemenges als auch nicht kontaminierter Materialien Stoffe mit hohem spezifischen Gewicht, z. B. Barium, beigemengt werden, die die Abschirmungswirkung verbessern.

Das erfindungsgemäße Verfahren kann auch so ausgeführt werden, dass bei kohlestoffhaltigen Gegenständen als Hüllmasse ein Carbidbildner eingesetzt wird.

Hierfür eignet sich insbesondere flüssiges Silizium, das mit Kohlenstoff SiC bildet. Das keramische SiC bildet um die Körner des Granulats eine feuerfeste und auslaugbeständige sowie abriebfeste Schutzschicht. Weitere geeignete Carbidbildner sind z. B. Bor und Zirkon.

Das erfindungsgemäße Verfahren kann auch so ausgebildet werden, dass der Hüllmasse oder dem aus dem Granulat und der Hüllmasse erzeugten Gemenge verstärkende keramische Fasern zugefügt werden. Die Fasern können z. B. als gewickelte Fasern, Fasermatten oder Faserstücken von wenigen mm bis einigen cm Länge eingesetzt werden. Sie erhöhen die Duktilität und damit die Widerstandsfähigkeit des Gebindes gegen Rissbildung und Zersprödung, wenn sie im Behälter, in der keramischen Umhüllung oder auch im Behälterinhalt vorliegen. Zusätzlich können auch Phenolharze beigefügt werden. Bei ihrer Erhitzung werden sie zersetzt, und der entstehende Kohlenstoff kann mit dem Hüllstoff, z. B. Silizium zu SiC, reagieren. Alternativ zu keramischen Fasern sind auch Metallstrukturen zur Verstärkung der Keramik denkbar.

Weiterhin kann das erfindungsgemäße Verfahren so ausgeführt werden, dass die Zerkleinerung unter einer Inertgasatmosphäre erfolgt. Hierdurch wird das Entzündungs- und Verpuffungsrisiko gemindert und im Falle kohlenstoffhaltiger Gegenstände die Reaktion mit atmosphärischem Sauerstoff unter Bildung von CO oder CO2 vermieden, welches in der Regel C14 enthalten würde und daher nicht entweichen darf. Geeignete Atmosphären sind z. B. Stickstoff und Argon.

Das erfindungsgemäße Verfahren kann auch so ausgeführt werden, dass das Umgießen mit der verflüssigten Hüllmasse oder das Erhitzen des Gemenges aus Hüllmasse und Granulat in einem Vakuum erfolgt. Hierdurch kann insbesondere vermieden werden, dass Gaseinschlüsse die vollständige Benetzung der Granulatoberfläche durch die verflüssigte Hüllmasse behindern. Des Weiteren kann das Vakuum bereits während der Zerkleinerung des Gegenstandes erzeugt werden, um die Gefahr einer Verpuffung sowie die der CO- oder CO2-Bildung zu verringern.

Weiterhin kann das erfindungsgemäße Verfahren so ausgeführt werden, dass der Gegenstand und das entstehende Granulat während der Zerkleinerung mit einer nicht brennbaren Flüssigkeit befeuchtet werden.

Hierdurch ist ein weiterer Schutz gegen Brand oder Verpuffung gegeben. Zudem wird eine unerwünschte Verteilung von Stäuben vermieden.

Das erfindungsgemäße Verfahren kann auch so ausgeführt werden, dass der Gegenstand zur Zerkleinerung in eine nicht brennbare Flüssigkeit getaucht wird.

Sowohl für die Befeuchtung als auch die Zerkleinerung in Flüssigkeit ist insbesondere Wasser geeignet. Wird das Material des zu entsorgenden Gegenstandes von Wasser nicht benetzt, kann diesem ein geeignetes Lösungsmittel zugegeben werden.

Das erfindungsgemäße Verfahren kann auch so ausgeführt werden, dass während der Zerkleinerung des Gegenstandes entstehender und in der Flüssigkeit schwimmender Staub aufgefangen und zusammen mit dem Granulat mit der Hüllmasse umgossen wird. Der Staub kann mittels Filtern und/oder durch Verdampfen der Flüssigkeit aufgefangen werden. Der Staub wird somit wirkungsvoll der Entsorgung zugeführt.

Des Weiteren kann das erfindungsgemäße Verfahren so ausgeführt werden, dass die Flüssigkeit aufgefangen und dem Verfahren erneut zugeführt wird. Somit wird die Flüssigkeit im Kreislauf geführt, womit die Umwelt entlastet wird.

Das erfindungsgemäße Verfahren kann auch so ausgeführt werden, dass die Oberfläche des Gemenges oxidiert wird. In der Regel wird die Hüllmasse, soweit sie nicht bereits selbst eine verflüssigte Keramik ist, beim erfindungsgemäßen Verfahren nicht durchgehend eine chemische Verbindung unter Bildung einer Keramik eingehen. Durch ein Oxidieren der gesamten Oberfläche des Gebindes, auch in den Poren und Rissen, wird diese gegen spätere Angriffe durch Brand, Auslaugen oder gegen chemische Angriffe resistent gemacht. Im Falle von Silizium als Hüllmasse wird eine widerstandsfähige Oberfläche aus keramischem, abriebfesten SiO2 erzeugt. Das Oxidieren erfolgt durch Erhitzen des Gebindes in oxidierender Atmosphäre, z. B. O2oder Luft. Das gesonderte Erhitzen des Gebindes kann eingespart werden, wenn die oxidierende Atmosphäre möglichst zeitnah nach dem Umgießen des Granulats erzeugt wird. Eine hohe Abriebfestigkeit ist wünschenswert, um den unkontrollierten Verlust an Gebindematerial möglichst gering zu halten. Mohs'sche Härten größer oder gleich 4 wären vorteilhaft.

Weiterhin kann das erfindungsgemäße Verfahren so ausgebildet werden, dass Gebinde, die das aus dem Granulat und der Hüllmasse erzeugte Gemenge enthalten, derart geformt werden, dass sie mit flächigem Kontakt aneinander gestellt werden können. Beispielhafte Formen sind solche mit rechteckigem oder hexagonalem Querschnitt. Sie lassen eine lückenlose Aneinanderreihung und damit eine optimierte Raumausnutzung zu. Das flächige Aufeinanderwirken verhindert zudem, dass ein in Richtung der Seitenflächen wirkender, benachbarte Gebinde gegeneinander pressender Gebirgsdruck in Endlagern, nicht so schnell zu Rissen oder Zersprödungen im Gebinde führt wie dies bei zylinderförmigen Gebinden der Fall ist, die seitlich lediglich einen linienhaften Kontakt zueinander aufweisen.

Schließlich kann das erfindungsgemäße Verfahren so ausgeführt werden, dass es am Einsatzort des Gegenstandes durchgeführt wird.

Auf diese Weise kann ein je nach Kontaminationsart mit Risiken verbundener Transport der zu entsorgenden Gegenstände vermieden werden. Es ist selbstverständlich auch möglich, nur einzelne Verfahrensschritte, z. B. allein das Zerkleinern, am Einsatzort des zu entsorgenden Gegenstandes durchzuführen.

Im Folgenden wird eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens dargestellt.

Als Beispiel für einen zu entsorgenden Gegenstand wird von einem in einem Kernkraftwerk eingesetzten Moderatorelement aus Kohlenstoff ausgegangen. Derartige Moderatoren weisen eine sich aus hochreinem und porösem Graphit (Reaktorgraphit) und Kohlestein zusammensetzende keramische Struktur auf. Üblicherweise ist ein derartiger Moderator mit unterschiedlichen toxischen Stoffen kontaminiert. Um diese toxischen Stoffe möglichst weitgehend zu entfernen, wird das Moderatorelement in einem Hochtemperaturofen durch direkten Stromdurchgang erhitzt. Alternativ kann auch induktiv oder durch gesonderte Heizelemente geheizt werden. Das Aufheizen geschieht in Vakuum oder unter Schutzgas, um zu verhindern, dass beim Erhitzen durch Reaktion mit dem atmosphärischen Sauerstoff Kohlenmonoxid und Kohlendioxid entstehen, die das in bestrahltem Kohlenstoff in der Regel vorhandene radioaktive C14 enthalten und daher nicht unkontrolliert entweichen dürfen. Dieses Verfahren ist schon in der DE 197 37 891 A1 ausführlich beschrieben.

Der Gegenstand wird nach dem Ausheizen oder auch schon vorher oder währenddessen zerkleinert. Diese Zerkleinerung kann entweder außerhalb des Reaktordruckbehälters erfolgen oder innerhalb. Im letzteren Fall wird das Verbringen großer Blöcke und ein Öffnen der Umschließung vermieden. Zu diesem Zweck müsste die Zerkleinerungseinrichtung in den Reaktorbehälter eingebracht werden. Bei entsprechender Anbringung an einem Manipulatorarm ist es möglich, die Blöcke in-situ zu zerlegen und zu zerkleinern und dann nur das Stückgut oder Granulat abzuführen. Falls die thermische Behandlung erst anschließend erfolgt, kann diese ebenfalls innerhalb des Reaktordruckbehälters durchgeführt werden, da die erforderlichen Heizeinrichtungen sehr kompakt sein können.

Da bei der Zerkleinerung mit erheblichen Staubmengen zu rechnen ist, wird u. a. zur Vermeidung einer Verpuffung die Zerkleinerung unter Inertgas durchgeführt. Zusätzlich kann das Stückgut angefeuchtet oder komplett in Flüssigkeit, z. B. in Wasser, eingetaucht werden. Ein vorheriges thermisches Austreiben von Tritium sollte erfolgen, um die Flüssigkeit nicht damit zu versetzen. Der den Staub enthaltende Schlamm kann getrocknet dem Entsorgungsprozess wieder zugeführt und die Flüssigkeit nach Kondensation rezykliert werden.

Im Falle des Ausheizen des Granulats kann dieses kontinuierlich oder diskontinuierlich unter Inertgas erfolgen. Die Höhe der Temperatur richtet sich nach der Art der toxischen Stoffe und der angestrebten Dekontaminationsfaktoren. Hierbei kann im Wesentlichen auf die in der Graphitindustrie bekannte Vorgehensweise zur Graphitreinigung zurückgegriffen werden. Leicht flüchtige toxische Stoffe, wie z. B. Tritium oder Cäsium werden bereits bei relativ niedrigen Temperaturen ausgetrieben. Chemisch an Kohlenstoff gebundene toxische Stoffe müssen bei höheren Temperaturen durch Pyrolyse von der keramischen Struktur abgelöst werden. Sind einzelne toxische Stoffe hierdurch nicht aus dem Moderatormaterial zu entfernen, z. B. schwer zersetzbare Carbide, können diese durch Zugabe und Infiltration gasförmiger Halogenverbindungen in flüchtige Halogenide umgewandelt werden. Die aus dem Moderatormaterial entfernten toxischen Stoffe werden an Kondensationsplatten abgeschieden oder mittels Fallen oder Filtern (z. B. für Tritium) aufgefangen, wo sie dann in einer erheblich höheren Konzentration als in Moderatormaterial vorliegen.

Das zum Teil dekontaminierte Moderatormaterial enthält nun allenfalls noch toxische Stoffe, die mit thermischer und/oder thermochemischer Behandlung nicht zu entfernen waren. Daraus folgt, dass ein Herausdiffundieren oder Auslaugen dieser toxischen Stoffe auch über extrem lange Zeiträume nicht stattfinden würde.

Das thermisch und/oder chemisch vorbehandelte zerkleinerte Moderatormaterial wird mit flüssigem Silizium durchsetzt, wobei unter entsprechend hoher Temperatur die Oberflächen des kohlenstoffhaltigen Granulats zu SiC reagieren und sich ein Gebinde aus Si und SiC mit eingelagerten Granulatstücken abgießen oder extrudieren lässt. Die Form, z. B. Zylinder, Quader oder flache aneinander reihbare Zylindersegmente richtet sich nach den Transport- und Lagerbehältergeometrien zur möglichst optimalen Raumnutzung.

Da ein Teil des Siliziums noch nicht mit Kohlenstoff reagiert haben kann, wird eine Nachbehandlung unter oxidierender Atmosphäre durchgeführt, wobei sich Siliziumdioxid an den für den Sauerstoff zugänglichen Stellen bildet, welches einen zusätzlichen Oxidationsschutz darstellt, der auch langfristigen Korrosionsangriffen widersteht.

Da aufgrund der Vorbehandlung davon ausgegangen werden kann, dass die Oberflächendosisleistung des Gebindes sehr niedrig ist und SiC auch die Herstellung komplexer Formen erlaubt, kann das Material auch zu kleinen Behältern abgegossen werden, die dann ihrerseits andere Gefahrstoffe aufnehmen können und vor Korrosion und Auslaugung schützen. Des weiteren kann das noch flüssige Gemenge zum Ausgießen von Zwischenräumen oder zum Umhüllen von ganzen oder zerlegten Reaktorbrennelementen verwendet werden. Dabei zeichnet sich Siliziumcarbid neben der vorzüglichen Korrosionsbeständigkeit auch durch gute Wärmeleitung aus.

Eine Umhüllung aus SiC ist wesentlich beständiger als aus Metall. Ein weiterer Nachteil des Metalls gegenüber dem SiC ist, dass bei der Oxidation von Metallen in wässriger Lösung große Mengen an Wasserstoff entstehen, die sich im Endlager anreichern und eine Gefahrenquelle bilden können.


Anspruch[de]
  1. 1. Verfahren zur Entsorgung eines mit mindestens einem Toxikum, insbesondere Radiotoxikum kontaminierten Gegenstandes aus Keramik, Graphit und/oder Kohlestein, bei dem
    1. a) der Gegenstand zu einem Granulat zerkleinert wird,
    2. b) der Gegenstand vor, während und/oder nach der Zerkleinerung zur Reduktion seiner Kontamination ausgeheizt wird und
    3. c) das Granulat entweder
      1. a) mit einer verflüssigten Hüllmasse umgossen wird, oder
      2. b) mit der Hüllmasse in Pulver- oder Körnerform vermengt und anschließend bis zur Verflüssigung der Hüllmasse erhitzt wird,
    wobei die verflüssigte Hüllmasse entweder selbst zu einer Keramik erstarrt oder mit dem Granulat chemisch zu einer Keramik reagiert.
  2. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das aus dem Granulat und der Hüllmasse erzeugte Gemenge im fließfähigen oder formbaren Zustand in einen Behälter aus einer nicht kontaminierten Keramik vergossen wird.
  3. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass nach dem Vergießen des Gemenges der Behälter mit einer nicht kontaminierten Keramik vollständig gefüllt wird.
  4. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das aus dem Granulat und der Hüllmasse erzeugte Gemenge im fließfähigen oder formbaren Zustand zur Auffüllung der Zwischenräume in andere kontaminierte Abfälle enthaltenden, zwischen- oder endlagerfähigen Gebinden verwendet wird.
  5. 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung eines zwischen- oder endlagerfähigen Gebindes das mit dem aus dem Granulat und der Hüllmasse erzeugten Gemenge im fließfähigen oder formbaren Zustand ein anderer kontaminierter Abfall vollständig umhüllt wird.
  6. 6. Verfahren nach Anspruch 1 oder 4, dadurch gekennzeichnet, dass das aus dem Granulat und der Hüllmasse erzeugte Gemenge zu einem Behälter geformt, der Behälter mit weiterem kontaminiertem Abfall gefüllt, verschlossen und mit diesem Inhalt zwischen- oder endgelagert wird.
  7. 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass bei kohlestoffhaltigen Gegenständen als Hüllmasse ein Carbidbildner eingesetzt wird.
  8. 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Hüllmasse oder dem aus dem Granulat und der Hüllmasse erzeugten Gemenge verstärkende keramische Fasern zugefügt werden.
  9. 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Zerkleinerung unter einer Inertgasatmosphäre erfolgt.
  10. 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Umgießen mit der verflüssigten Hüllmasse oder das Erhitzen des Gemenges aus Hüllmasse und Granulat in einem Vakuum erfolgt.
  11. 11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Gegenstand und das entstehende Granulat während der Zerkleinerung mit einer nicht brennbaren Flüssigkeit befeuchtet werden.
  12. 12. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Gegenstand zur Zerkleinerung in eine nicht brennbare Flüssigkeit getaucht wird.
  13. 13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass während der Zerkleinerung des Gegenstandes entstehender und in der Flüssigkeit schwimmender Staub aufgefangen und zusammen mit dem Granulat mit der Hüllmasse umgossen wird.
  14. 14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Flüssigkeit aufgefangen und dem Verfahren erneut zugeführt wird.
  15. 15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Oberfläche des Gemenges oxidiert wird.
  16. 16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass Gebinde, die das aus dem Granulat und der Hüllmasse erzeugte Gemenge enthalten, derart geformt werden, dass sie mit flächigem Kontakt aneinander gestellt werden können.
  17. 17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass es am Einsatzort des Gegenstandes durchgeführt wird.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com