PatentDe  


Dokumentenidentifikation EP0866035 07.08.2003
EP-Veröffentlichungsnummer 0866035
Titel Vorichtung und deren Nutzung zur Herstellung eines Überfangglasstroms
Anmelder Owens-Brockway Glass Container Inc., Toledo, Ohio, US
Erfinder Scott, Garrett L., Toledo, OH 43617, US;
Dembicki, Michael T., Pemberville, OH 43450, US
Vertreter Blumbach, Kramer & Partner GbR, 65187 Wiesbaden
DE-Aktenzeichen 69815912
Vertragsstaaten AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 19.03.1998
EP-Aktenzeichen 981050347
EP-Offenlegungsdatum 23.09.1998
EP date of grant 02.07.2003
Veröffentlichungstag im Patentblatt 07.08.2003
IPC-Hauptklasse C03B 7/088

Beschreibung[en]

The present invention is directed to delivery of a glass stream for-forming glass charges or gobs for glassware manufacture, and more particularly to an apparatus for delivering a so-called cased glass stream in which an inner or core glass is surrounded by an outer or casing glass layer.

Background of the Invention

It has heretofore been proposed to provide a cased glass stream for forming glassware having layered wall segments. EP-A-0 722 907 and EP-A-0 722 908 disclose techniques for delivering such a cased glass stream in which core glass from a first source is delivered through a first orifice. A second orifice is vertically spaced beneath and aligned with the first orifice. An annular chamber has an annular gap between the first and second orifices. A heated tube delivers casing glass from a second glass source to the annular chamber that surrounds the gap. Glass flows by force of gravity from the first and second sources through the first orifice and the gap in such a way that a cased glass stream emerges from the second orifice. This cased glass stream may be sheared by conventional techniques to form individual cased glass gobs for delivery to conventional individual section glassware forming machines.

Although the techniques disclosed in the noted documents address and overcome problems theretofore extant in the art, further improvements remain desirable. For example, a problem remains concerning uniformity of distribution of casing glass thickness around the circumference of the core glass stream. EP-A-0 722 908, on which the preamble of claim 1 is based, teaches that the dimensions of the annular gap between the first and second orifices, both in the direction parallel to local glass flow therethrough and the direction perpendicular to local glass flow therethrough, are chosen to provide flow resistance sufficient to create a uniform inward flow of casing glass at all points circumferentially around each gap. This means a high resistance in the gap, compared to a relative low resistance along the remaining flow lines in the supply passage. In implementation of this technique, it has been found that the casing glass can vary in thickness by a ratio of up to 2/1 around the circumference of the core glass stream.

Summary of the Invention

It is therefore a general object of the present invention to provide an apparatus for delivering a cased glass stream that obtains improved uniformity of casing glass thickness around the circumference of the cased glass stream.

The invention is defined in claims 1 and 9.

In the apparatus of the invention, the metering gap between the aligned orifices is dimensioned with respect to the surrounding chamber, and the feed from the source of casing glass is made so as to provide a more uniform resistance to casing glass flow throughout the entire casing glass flow path - i.e., from the casing glass feed around the chamber and through the metering gap.

In a preferred embodiment of the present invention, a plurality of cased glass streams are formed by feeding core and casing glass through a plurality of orifice pairs surrounded by the casing glass chamber, and in which the metering gaps between all pairs of orifices are dimensioned with respect to each other and with respect to the surrounding chamber and the casing glass feed so as to provide substantially uniform and identical casing glass thickness at all of the cased glass streams.

The apparatus for forming the cased glass stream includes a first orifice for receiving core glass from a first source, and a second orifice vertically spaced beneath and aligned with the first orifice. A chamber surrounds portions of the orifices and communicates therewith through a metering gap arranged between the first and second orifices. Casing glass is delivered from a second source to one side of the chamber such that glass flows by gravity from both the first and second sources through the orifices to form the cased glass stream. In accordance with one aspect of the present invention, the metering gap between the orifices is of non-uniform dimension around the chamber, providing greater resistance to glass flow through the metering gap on a side thereof adjacent to the inlet side of the chamber that receives casing glass from the second source, and less resistance to glass flow through the metering gap an the side thereof remote from the inlet side of the chamber.

In the preferred embodiments of the present invention, the metering gap between the orifices is dimensioned such that resistance to glass flow varies as a predetermined function of angle, preferably a uniform function of angle, around the annular chamber and the metering gap. The dimension of the metering gap parallel to glass flow most preferably remains constant around the metering gap, while the dimension perpendicular to glass flow varies as a function of angle around the gap. Most preferably, the dimension of the metering gap perpendicular to glass flow varies by forming the opposed gap surfaces an angulated planes, so that this dimension varies trigonometrically around the gap.

In an implementation of the present invention having a plurality of first and second orifices disposed in aligned pairs and each separated by an associated metering gap, with all of the orifice pairs being surrounded by the casing glass chamber, at least one of the metering gaps is dimensioned differently from the other metering gaps to equalize resistance to glass flow as between or among the metering gaps from the source of casing glass through the chamber. In the preferred implementation of this aspect of the invention, three orifice pairs are disposed in a line parallel to the side of the chamber coupled to the source of casing glass. The metering gap at the center of the orifice pairs is dimensioned an a side thereof remote from the casing glass feed to provide less resistance to glass flow than at the corresponding sides of the other two orifice pairs. In this way, there is improved uniformity of resistance to glass flow from the casing glass feed through and around the chamber to both the front and back sides of the various metering gaps.

Brief Description of the Drawings

The invention, together with additional objects, features and advantages thereof, will be best understood from the following description, the appended claims and the accompanying drawings in which:

  • FIG. 1 is a fragmentary elevational schematic diagram of a glass delivery system in accordance with a presently preferred embodiment of the invention;
  • FIG. 2 is a fragmentary sectional view on an enlarged scale of the orifice rings and metering gap in the system of FIG. 1, being taken substantially along the line 2-2 in FIG. 3; and
  • FIG. 3 is a schematic diagram that illustrates glass flow in a three-stream embodiment of the present invention.

Detailed Description of Preferred Embodiments

FIG. 1 illustrates a system 10 for delivering a stream of cased glass. A first forehearth 12 delivers core glass to a spout 14 that has an opening 16 at the lower end thereof. Spout 14 is surrounded by a protective case 18, preferably constructed of non-magnetic metal such as stainless steel. A tube 20 controls delivery of core glass from spout 14 through opening 16 to and through at least one first orifice 22 carried by an upper orifice ring 24 beneath spout 14. A lower orifice ring 26 carries at least one second orifice 28 positioned beneath orifice(s) 22 and axially aligned therewith. Orifice 28 is surrounded by an annular chamber 30 formed between orifice rings 22, 26. Chamber 30 communicates with orifice 28 by means of a lateral metering space or gap between orifices 22, 28. Annular chamber 30 is coupled by a delivery tube 32 to the opening 34 at the lower end of a casing glass spout 36. Spout 36 includes a delivery control tube 38, and is coupled to a casing glass forehearth 40. Delivery tube 32 is resistance-heated by control electronics 42 for maintaining flow of casing glass to chamber 30. To the extent thus far described, system 10 in FIG. 1 is essentially the same as disclosed in above-noted European applications. The former of such applications is directed in particular to construction of casing glass delivery tube 32, while the latter of such applications is directed in particular to construction of orifice rings 24, 26.

As shown in FIG. 2, the gap 42, which meters flow of casing glass from chamber 30 to orifice 28, has both a first dimension (horizontal in FIG. 2) parallel to the direction of glass flow through gap 42, and a second dimension (vertical in FIG. 2) perpendicular to the direction of glass flow from chamber 30 through gap 42. In accordance with the preferred embodiment of the present invention illustrated in FIG. 2, the second dimension of metering gap 42 perpendicular to glass flow is greater on the side of gap 42 remote from casing glass inlet 44 to chamber 30 than on the side of gap 42 adjacent to the casing glass inlet. Inasmuch as casing glass inlet 44 opens to one side of chamber 30, as opposed to opening entirely around chamber 30, casing glass must flow a greater distance from inlet 44 around chamber 30 to the back side of gap 42 than from inlet 44 directly across chamber 30 to the adjacent front side of metering gap 42. This greater distance of flow results not only in a pressure drop due to frictional resistance, but also heat loss and a temperature drop which increases viscosity. By dimensioning the gap non-uniformly as described immediately above, resistance to glass flow through the metering gap itself at least partially, and preferably substantially completely, compensates for the greater distance of glass travel so as to provide substantially uniform resistance to glass flow throughout the entire glass flow path from inlet 44 through chamber 30 to orifice 28. In the specific embodiment illustrated in FIG. 2, the upper surface of orifice ring 26 surrounding orifice 28 is formed on a horizontal plane, while the opposing lower surface of orifice ring 24 surrounding orifice 22 is formed on a plane angulated with respect to horizontal so that the cross-sectional dimension to glass flow varies trigonometrically from the side of gap 42 adjacent to inlet 44 to the side of gap 42 remote from inlet 44.

FIG. 3 schematically illustrates an embodiment of the present invention for providing three cased glass streams. Three pairs of aligned orifices 22a,28a, 22b,28b and 22c,28c are disposed in a line parallel to the side of chamber 30 into which casing glass inlet 44 opens. It will be appreciated in FIG. 3 that the path of glass travel from inlet 44 around chamber 30 to the back side of orifice pair 22b, 28b is substantially longer than the path of travel to the back sides of pairs 22a, 28a and 22c, 28c. Thus, in this embodiment of the invention, the metering gap of orifice pair 22b, 28b may be dimensioned differently from that of orifice pairs 22a, 28a and 22c, 28c, particularly at the back side of orifice pair 22b, 28b, so as to improve uniformity of resistance to glass flow to all points around all metering gaps, and thereby improve uniformity of deposition of casing glass around the circumferences of the core glass streams.


Anspruch[de]
  1. Vorrichtung (10) zur Bildung eines überfangenen Glasstroms mit einem inneren Kernglas, das von einem äußeren Überfangglas umgeben ist, wobei die Vorrichtung folgende Merkmale aufweist:
    • ein erstes Wandungsmittel (24), das eine erste Öffnung (22) umgibt; Mittel (14 bis 20) zur Abgabe von Kernglas aus einer ersten Quelle (12) durch die erste Öffnung (22); ein zweites Wandungsmittel (26), das eine zweite Öffnung (28) umgibt, die in vertikalem Abstand unterhalb und in Ausrichtung zu der ersten Öffnung (22) angeordnet ist;
    • wobei das erste und das zweite Wandungsmittel (24, 26) eine Kammer (30) bilden, die einen Auslass in Gestalt eines ringförmigen Spaltes (42) aufweist, der durch die Wandungsmittel (24, 26) der ersten und zweiten Öffnung gebildet ist und der eine erste Abmessung parallel zu dem lokalen Glasfluss und eine zweite Abmessung senkrecht zu dem lokalen Glasfluss aufweist; und
    • Mittel (32 bis 38) zur Abgabe von Überfangglas aus einer zweiten Quelle (40) an die Einlassseite (44) der Kammer (30) in solcher Weise, dass Glas durch die Schwerkraft aus der ersten (12) und der zweiten (40) Quelle durch die Öffnungen fließt, um den überfangenen Glasstrom zu bilden;
    dadurch gekennzeichnet, dass

       der ringförmige Spalt (42) eine uneinheitliche erste und/oder zweite Abmessung um seinen Umfang herum aufweist, um dem Glasfluss durch den ringförmigen Spalt (42) an derjenigen seiner Seiten, die an die Einlassseite (44) der Kammer (30) angrenzt, einen größeren Widerstand zu bieten, und um dem Glasfluss durch den ringförmigen Spalt auf derjenigen seiner Seiten, die von der Einlassseite (44) der Kammer (30) entfernt ist, einen geringeren Widerstand zu bieten.
  2. Vorrichtung (10) nach Anspruch 1,

    dadurch gekennzeichnet, dass der ringförmige Spalt (42) in solcher Weise bemessen ist, dass sich der Widerstand gegenüber dem Glasfluss in vorgegebener Funktion des Winkels um die Kammer (30) herum ändert.
  3. Vorrichtung (10) nach Anspruch 2,

    dadurch gekennzeichnet, dass die vorgegebene Funktion eine gleichförmige Funktion des Winkels ist.
  4. Vorrichtung (10) nach einem der vorhergehenden Ansprüche,

    dadurch gekennzeichnet, dass die erste oder die zweite Abmessung um den Spalt herum einheitlich ist, während sich die andere Abmessung, die zweite oder die erste, um den Spalt herum ändert.
  5. Vorrichtung (10) nach Anspruch 4,

    dadurch gekennzeichnet, dass die zweite Abmessung eine Breite ist, die durch den Abstand zwischen dem die erste und die zweite Öffnung bildenden ersten und zweiten Wandungsmittel (24, 26) bestimmt ist, wobei sich diese Breite um den Spalt (42) herum ändert.
  6. Vorrichtung (10) nach Anspruch 5,

    dadurch gekennzeichnet, dass der ringförmige Spalt (42) an der ersten und der zweiten Öffnung (22, 28) durch gegenüberliegende ebene Oberflächen des ersten und zweiten Wandungsmittels (24, 26) gebildet ist, wobei mindestens eine der Oberflächen in Bezug auf die Ausrichtung der Öffnungen (22, 28) im Winkel angeordnet ist.
  7. Vorrichtung (10) nach einem der vorhergehenden Ansprüche,

    dadurch gekennzeichnet, dass sie eine Mehrzahl von ersten und zweiten Öffnungen (22, 28) umfasst, die in ausgerichteten Paaren angeordnet sind, welche jeweils durch die die Öffnungen bildenden Wandungsmittel (24, 26) getrennt sind, wobei alle diese Öffnungspaare von der Kammer (30) umgeben sind und wobei mindestens einer der ringförmigen Spalten (42) anders als die anderen ringförmigen Spalten bemessen ist, um den Widerstand gegenüber dem Glasfluss wie zwischen den ringförmigen Spalten (42) von der zweiten Quelle durch die Kammer auszugleichen.
  8. Vorrichtung (10) nach Anspruch 7,

    dadurch gekennzeichnet, dass sie drei (22a, 28a; 22b, 28b; 22c, 28c) dieser Paare von Öffnungen (22, 28) umfasst, die in einer Linie parallel zu der Einlassseite (44) der Kammer (30) angeordnet sind, und dass der ringförmige Spalt (42) in der Mitte dieser Paare (22b, 28b) auf derjenigen seiner Seiten, die von der Einlassseite (44) der Kammer (30) entfernt ist, derart bemessen ist, dass er dem Glasfluss einen geringeren Widerstand bietet als an den Seiten der anderen zwei Öffnungspaare (22a, 28a; 22c, 28c), die von der Einlassseite (44) der Kammer (30) entfernt sind.
  9. Verwendung der Vorrichtung (10) entsprechend einem der Ansprüche 1 bis 8 zur Bildung eines überfangenen Glasstroms mit einem inneren Kernglas, das von einem äußeren Überfangglas umgeben ist.
Anspruch[en]
  1. Apparatus (10) for forming a cased glass stream having an inner core glass surrounded by an outer casing glass, said apparatus including

    first wall means (24) surrounding a first orifice (22), means (14 to 20) for delivering core glass from a first source (12) through said first orifice (22),

    second wall means (26) surrounding a second orifice (28) vertically spaced beneath and aligned with said first orifice (22),

    said first and second wall means (24, 26) forming a chamber (30) having an outlet in the shape of an annular gap (42) which is formed by said wall means (24, 26) of said first and second orifices and has a first dimension parallel to local glass flow and a second dimension perpendicular to local glass flow, and

    means (32 to 38) for delivering casing glass from a second source (40) to the inlet side (44) of said chamber (30) such that glass flows by gravity from said first (12) and second (40) sources through said orifices to form said cased glass stream,

    characterized in that

    said annular gap (42) has non-uniform first and/or second dimensions around the circumference thereof for providing greater resistance to glass flow through said annular gap (42) on the side thereof adjacent to said inlet side (44) of said chamber (30) and less resistance to glass flow through said annular gap on the side thereof remote from said inlet side (44) of said chamber (30).
  2. The apparatus (10) set forth in claim 1

    wherein said annular gap (42) is dimensioned such that said resistance to glass flow varies as a predetermined function of angle around said chamber (30).
  3. The apparatus (10) set forth in claim 2

    wherein said predetermined function is a uniform function of angle.
  4. The apparatus (10) set forth in any preceding claim

    wherein one of said first and second dimensions is uniform around said gap while the other of said first and second dimensions varies around said gap.
  5. The apparatus (10) set forth in claim 4

    wherein said second dimension is a width which is determined by the distance between said first and second wall means (24, 26) forming said first' and second orifices, said width varying around said gap (42).
  6. The apparatus (10) set forth in claim 5

    wherein said annular gap (42) is formed by opposed planar surfaces of said first and second wall means (24, 26) at said first and second orifices (22, 28), at least one of said surfaces being angled with respect to alignment of said orifices (22, 28).
  7. The apparatus (10) set forth in any preceding claim comprising a plurality of said first and second orifices (22, 28) disposed in aligned pairs each separated by said wall means (24, 26) forming said orifices,

    with all of said orifice pairs being surrounded by said chamber (30), and wherein at least one of said annular gaps (42) is dimensioned differently than other of said annular gaps to equalize resistance to glass flow as among said annular gaps (42) from said second source through said chamber.
  8. The apparatus (10) set forth in claim 7

    comprising three (22a, 28a; 22b, 28b; 22c, 28c) of said orifice pairs (22, 28) disposed in a line parallel to said inlet side (44) of said chamber (30), and

    wherein the annular gap (42) at the center of said pairs (22b, 28b) is dimensioned on the side thereof remote from said inlet side (44) of said chamber (30) to provide less resistance to glass flow than at sides of the other two orifice pairs (22a, 28a; 22c, 28c) remote from said inlet side (44) of said chamber (30).
  9. Use of the apparatus (10) according to one of the claims 1 through 8 for forming a cased glass stream having an inner core glass surrounded by an outer casing glass.
Anspruch[fr]
  1. Dispositif (10) pour former un courant de verre doublé comportant un verre de corps intérieur entouré d'un verre d'enveloppe extérieur, ledit dispositif comprenant

       un premier moyen formant paroi (24) entourant un premier orifice (22),

       un moyen (14 à 20) pour délivrer du verre de corps provenant d'une première source (12) par ledit premier orifice (22),

       un deuxième moyen formant paroi (26) entourant un deuxième orifice (28) verticalement espacé sous et aligné avec ledit premier orifice (22),

       lesdits premier et deuxième moyens formant paroi (24, 26) définissant une chambre (30) ayant un orifice de sortie sous forme d'espace annulaire (42) qui est formé par lesdits moyens formant paroi (24, 26) desdits premier et deuxième orifice et a une première dimension parallèle au flux de verre local, et

       un moyen (32 à 38) pour délivrer du verre d'enveloppe provenant d'une deuxième source (40) au côté orifice d'entrée (44) de ladite chambre (30) de telle manière que le verre s'écoule par gravité depuis lesdites première (12) et deuxième (40) sources par lesdits orifices afin de former ledit courant de verre doublé,

       caractérisé en ce que

       ledit espace annulaire (42) a des première et/ou deuxième dimensions non uniformes autour de sa circonférence pour apporter une plus grande résistance au flux de verre passant par ledit espace annulaire (42) de son côté adjacent audit côté orifice d'entrée (44) de ladite chambre (30) et moins de résistance au flux de verre passant par ledit espace annulaire de son côté éloigné dudit côté orifice d'entrée (44) de ladite chambre (30).
  2. Dispositif (10) selon la revendication 1 dans lequel ledit espace annulaire (42) est dimensionné de telle manière que ladite résistance au flux de verre varie de façon déterminée en fonction de l'angle autour de ladite chambre (30).
  3. Dispositif (10) selon la revendication 2 dans lequel ladite fonction déterminée est une fonction d'angle uniforme.
  4. Dispositif (10) selon l'une quelconque des revendications précédentes dans lequel l'une desdites première et deuxième dimensions est uniforme autour dudit espace tandis que l'autre desdites première et deuxième dimensions varie autour dudit espace.
  5. Dispositif (10) selon la revendication 4 dans lequel ladite deuxième dimension est une largeur qui est déterminée par la distance entre lesdits premier et deuxième moyens formant paroi (24, 26) définissant lesdits premier et deuxième orifices, ladite largeur variant autour dudit espace (42).
  6. Dispositif (10) selon la revendication 5 dans lequel ledit espace annulaire (42) est formé par des surfaces planes opposées desdits premier et deuxième moyens formant paroi (24, 26) au niveau desdits premier et deuxième orifices (22, 28), au moins l'une desdites surfaces étant inclinée par rapport à l'alignement desdits orifices (22, 28).
  7. Dispositif (10) selon l'une quelconque des revendications précédentes comprenant une pluralité desdits premier et deuxième orifices (22, 28) disposés par paires alignées séparées chacune par lesdits moyens formant paroi (24, 26) définissant lesdits orifices, toutes lesdites paires d'orifices étant entourées par ladite chambre (30), et dans lequel au moins l'un desdits espaces annulaires (42) est dimensionné différemment des autres desdits espaces annulaires pour égaliser la résistance au flux de verre parmi lesdits espaces annulaires (42) en provenance de ladite deuxième source à travers ladite chambre.
  8. Dispositif (10) selon la revendication 7 comprenant trois (22a, 28a ; 22b, 28b ; 22c, 28c) desdites paires d'orifices (22, 28) disposées en droite parallèle audit côté orifice d'entrée (44) de ladite chambre (30), et dans lequel l'espace annulaire (42) au centre desdites paires (22b, 28b) est dimensionné de son côté éloigné dudit côté orifice d'entrée (44) de ladite chambre (30) pour apporter moins de résistance au flux de verre qu'au niveau des côtés des deux autres paires d'orifices (22a, 28a ; 22c, 28c) éloignés dudit. côté orifice d'entrée (44) de ladite chambre (30).
  9. Utilisation du dispositif (10) selon l'une quelconque des revendications 1 à 8 pour former un courant de verre doublé comportant un verre de corps intérieur entouré d'un verre d'enveloppe extérieur.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com