PatentDe  


Dokumentenidentifikation EP0873776 07.08.2003
EP-Veröffentlichungsnummer 0873776
Titel Druckwechseladsorptionsverfahren
Anmelder The Boc Group, Inc., Murray Hill, N.J., US
Erfinder Doong, Shain-Jer, Millington, New Jersey 07946, US
Vertreter Fleuchaus & Gallo, 86152 Augsburg
DE-Aktenzeichen 69815928
Vertragsstaaten BE, DE, FR, GB, IT, NL, SE
Sprache des Dokument EN
EP-Anmeldetag 21.04.1998
EP-Aktenzeichen 983030719
EP-Offenlegungsdatum 28.10.1998
EP date of grant 02.07.2003
Veröffentlichungstag im Patentblatt 07.08.2003
IPC-Hauptklasse B01D 53/053
IPC-Nebenklasse B01D 53/047   

Beschreibung[en]

This invention relates to a process and apparatus for the separation of the components of a gas mixture, and more particularly to the separation of gas components by a novel pressure swing adsorption process. The invention is especially well adapted to the separation of the components of air at pressures near atmospheric pressure.

Pressure swing adsorption (PSA) processes are becoming increasingly more popular for the separation of gas mixtures containing two or more components at least one component of which is more strongly adsorbed by a selected adsorbent at elevated pressures than is at least one other component. The most basic processes comprise a cycle carried out in closed elongate vessels which contain a selected adsorbent and which have a feed gas inlet and a nonadsorbed product gas outlet. The cycle includes an adsorption step, during which a gas mixture is passed through one or more of the closed vessels in a cocurrent direction (from the feed gas inlet end towards the nonadsorbed product gas outlet end) at an elevated pressure, thereby causing the more strongly adsorbed component to be selectively adsorbed and the less strongly adsorbed to be discharged from the adsorption vessel as nonadsorbed product gas; and an adsorbent regeneration step, during which process gas in the adsorption vessel is countercurrently (in the direction opposite to the cocurrent direction) removed therefrom, thereby reducing the pressure in the adsorption vessel and causing the more strongly adsorbed component to be desorbed from the adsorbent. The desorbed gas is discharged through the inlet end of the vessel and discarded as a waste gas or collected as a second product gas.

Over the years since the discovery of the basic adsorption cycle, various steps have been added to the cycle to improve the yield or purity of the gas product(s) of the process. Thus, to conserve energy and improve yield, bed equalization steps have been added to cycles in which two or more adsorption vessels are operated in parallel and out of phase, such that one or more vessels is in the adsorption mode while one or more other vessels are in the bed regeneration mode. Bed equalization comprises transferring gas from a vessel of the system which has just completed its adsorption step and contains gas at an elevated pressure to another vessel of the system which has just completed its bed regeneration step and is at a low pressure. A product backfill step has likewise been added to enhance the purity of the nonadsorbed product gas. During the product backfill step nonadsorbed product gas is passed countercurrently through the adsorption vessel, which causes strongly adsorbed gas to be forced toward the feed gas inlet end of the vessel. This minimizes or eliminates adulteration of the nonadsorbed product gas during the early stages of the following adsorption step of the cycle.

US-A-5,122,164, discloses a two bed PSA process having a cycle which features a purge step, in addition to a bed equalization step with optional bed evacuation and a product backfill step.

US-A-5,536,299, discloses a PSA process for gas separation in which the steps of cycle overlap the succeeding steps of the cycle. It is asserted that the disclosed cycle results in increased capacity and reduced power consumption.

US-A-5,565,018, shows the production of oxygen from air using segregated external gas storage tanks.

The above processes include steps in which the feed gas compressor and the vacuum pump are not operated; accordingly these equipment units must be shut down or idled when they are not in use.

Efforts are continuously being made to improve the efficiency of PSA cycles by increasing the yield or enhancing the purity of the desired product or by reducing energy consumption during the process. Thus, US-A-5,370,728, discloses a single adsorption vessel system which uses a single gas compressor to both charge feed gas into the adsorption vessel and to evacuate the vessel during bed regeneration.

It would be highly desirable to have a plural bed process which operates more cost effectively and more efficiently. The invention disclosed herein accomplishes these objectives.

The present invention derives energy savings benefit from the use of a temporary storage tank to receive partially purified gas cocurrently discharged from the adsorption vessels of the system at pressures intermediate the nonadsorbed gas product pressure and the final evacuation pressure, and makes use of the gas contained in the temporary storage tank as a purge gas and as a partial repressurization gas for the adsorption vessels. In the case of an adsorption system comprising pairs of adsorption vessels, capital cost economy and additional energy economy are realized by the use of a single gas compressor/pump to both pressurize and evacuate the adsorption vessels of the system in a cycle which permits the compressor/pump to be in continuous service during the adsorption cycle.

The invention provides a process according to claim 1.

Prefered features of the process according to the invention are set out in claims 2 to 10.

The process and system according to the invention will now be described by way of example with reference to the accompanying drawings, in which:

  • Figure 1 is a schematic representation of an adsorption system that can be used in one embodiment of the invention;
  • Figures 2A - 2J are schematic representations of the steps of a preferred adsorption cycle carried out in the adsorption system of Figure. 1 using a single compressor/pump to charge feed gas into the adsorption vessels and to withdraw sorbed gas from these vessels; and
  • Figure 3A - 3J are schematic representations of the steps of a preferred adsorption cycle carried out in the adsorption system of Figure. 1 using a single compressor/pump to withdraw nonadsorbed product gas from the adsorption vessels and to withdraw sorbed gas from these vessels.
  • Figures 4A - 4J are schematic representations of the steps of a preferred adsorption cycle carried out in the adsorption system of Figure 1 using a single compressor/pump to charge feed gas into the adsorption vessels and to withdraw sorbed gas from these vessels and using a pair of tanks to hold intermediate storage gas;

The same reference numerals and letters are used to represent the same or similar parts in the various drawings. Auxiliary equipment, including compressors, heat exchangers and valves, not necessary for an understanding of the invention, have been omitted from the drawings to simplify discussion of the invention.

Referring to Figure 1, there is illustrated therein an adsorption system comprising a pair of adsorption vessels, A and B, arranged in parallel, gas storage container C and gas compressor/pump P, and piping with valves for transporting the various gas streams through the system. Vessels A and B may be the same size or vessel B may be smaller or larger than vessel A. Both of vessels A and B are packed with an adsorbent which selectively adsorbs one or more gas components of the feed gas to the system more readily than it adsorbs one or more other components of the feed gas. Vessels A and B may be packed with the same adsorbent or they may be packed with different adsorbents.

Gas storage tank C is a conventional gas storage vessel; it may be packed with an adsorbent, if desired.

Pump P may be any gas compressor, blower or, pump, that is capable of pumping gas into vessels and removing gas from the vessels at the various pressures encountered in the process. Gas pump A preferably operates efficiently at both superatmospheric and subatmospheric pressures since, in preferred embodiments of the invention, it will be used to introduce feed gas into the system at atmospheric or above-atmospheric pressures as well as evacuate vessels A and B during adsorbent regeneration.

In the system of Figure 1, gas feed line 2, fitted with valve 4, connects a source of feed gas to the inlet end of pump P. Waste gas discharge line 6, provided with valve 8, connects the outlet end of pump P to a waste gas discharge point. Upstream of valve 8, line 10, provided with valve 12, connects line 6 to adsorption vessel inlet manifold 14. Manifold 14 is connected to adsorption vessel inlet lines 16 and 18 via valves 20 and 22. Lines 24 and 26, provided with valves 28 and 30, respectively, join the nonadsorbed gas outlets of vessels A and B to nonadsorbed product gas discharge line 32. Cross-connection line 34 joins lines 24 and 26 via valves 36 and 38, respectively. Intermediate storage tank supply line 40, provided with valve 42 connects tank C to line 34 at a point between valves 36 and 38. Lines 16 and 18 connect the inlet ends of vessels A and B to evacuation manifold 44 via valves 46 and 48, respectively. Manifold 44 is connected to feed line 2 via evacuation line 50, fitted with valve 52. Pump bypass waste gas line 54, provided with valve 56, connects manifold 44 to waste gas discharge line 6 downstream of valve 8. Pump bypass feed gas line 58 connects line 2 to line 10 via valve 60 and to line 54, upstream of valve 56, via valve 62.

The process of the invention will be described as it applies to the separation of air to produce an oxygen-enriched nonadsorbed gas product in the system illustrated in Figure 1 according to the cycle illustrated in Figures 2A - 2J. The steps illustrated in Figures 2B, 2F and 2I are optional, but they will be included in the described cycle since they are included in the most efficient aspect of the process of the invention. In this embodiment, vessels A and B are packed with a nitrogen-selective adsorbent, such as type A or type X zeolite. The vessels may contain a first bed of desiccant, such as activated alumina or silica gel to remove moisture from the air. Carbon dioxide may also be removed from the air by the desiccant, if it is activated alumina; otherwise, it will generally be adsorbed in the initial portion of the main adsorbent, since it is more strongly adsorbed by the above adsorbents than is nitrogen. Pump P is in service during each step of the cycle. The pressures and step durations stated below are merely exemplary for operation of the described adsorption system to separate air into oxygen-enriched and oxygen-depleted components by the disclosed process. It should be understood, however, that these values are not to be construed as limitative.

During step 1 (Figure 2A), valves 4,12, 20, 38 and 42 are initially open and all other valves are closed. Ambient air at atmospheric pressure is drawn into the system through line 2 by pump P and charged into vessel A, thereby causing the pressure to increase in vessel A. When vessel A is pressurized to the desired adsorption pressure, generally in the range of about 1 to about 1.6 bara, valve 28 is opened and oxygen-enriched gas product passes out of the system through lines 24 and 32. The oxygen product gas is generally stored in a storage vessel, from which product is drawn as needed. During this step, vessel B, which has just completed an oxygen-enriched gas production step, undergoes its first depressurization step, reducing the pressure in vessel B to about 1 to about 2 bara. Also, during this step void space gas is cocurrently discharged from vessel B to intermediate storage vessel C. The duration of this step is generally in the range of about 3 to about 10 seconds.

At the completion of step 1, optional step 2 (Figure 2B) is started, during which valves 38 and 42 are closed and valves 48 and 56 are opened. In this step the cocurrent production of oxygen-enriched gas is continued in vessel A at the desired adsorption pressure while vessel B undergoes its second depressurization step, during which gas contained in vessel B is countercurrently vented to the atmosphere through lines 18, 54 and 6, thereby further reducing the pressure in vessel B to about 1 to about 1.8 bara. This atmospheric vent step permits pump P to continue to be used to force feed air into vessel A. The duration of this step is generally in the range of 0 to about 10 seconds.

When the step 2 is completed, step 3 (Figure 2C) is initiated, during which valves 8, 36, 42, 48 and 52 are open and all other valves are closed. Vessel A now undergoes its first depressurization step with the cocurrent discharge of void space gas from this vessel to tank C through lines 24, 34 and 40, reducing the pressure in vessel A to about 1 to about 2 bara. Meanwhile, vessel B undergoes its third depressurization to a pressure in the range of about 1.2 to about 0.2 bara, by countercurrent evacuation of gas through lines 18, 50, 2 and 6, using pump P. The duration of this step is generally in the range of about 3 to about 15 seconds.

The next step of the process is step 4 (Figure 2D). For this step, valves 8, 36, 38, 48 and 52 are open and all other valves are closed. Vessel A now undergoes it second depressurization to a pressure of about 0.8 to about 1.8 bara, and vessel B undergoes purge-evacuation by flowing gas cocurrently out of vessel A and countercurrently into and through vessel B, while gas continues to be withdrawn countercurrently from vessel B and discharged to the environment until the pressure in vessel B is reduced to about 0.2 to about 1.0 bara. This step completes the regeneration of adsorbent contained in vessel B. The duration of this step is generally in the range of about 4 to about 15 seconds.

The next step of the process is step 5 (illustrated in Fig 2E). During this step vessel A undergoes its first countercurrent evacuation of the cycle, to a pressure of about 0.2 bara to about 1.2 bara, using pump P, and vessel B undergoes its first partial pressurization step by flowing gas from storage vessel C countercurrently into vessel B until the pressure in vessel B is in the range of about 0.3 to about 1.0 bara. Only valves 8, 42, 38, 46 and 52 are opened during this step. Gas is evacuated from vessel A through lines 16, 50 and 2 by means of pump P, and is discharged to the environment through line 6. The duration of this step is generally in the range of about 3 to about 15 seconds.

The next step of the process, step 6 (Figure 2F), is optional. During this step, when employed, valves 8, 30, 46 and 52 are open and all other valves are closed. Vessel A continues to be countercurrently evacuated by pump P through lines 16, 50, 2 and 6, to a pressure of about 0.2 to about 1.0 bara, while vessel B undergoes its second partial pressurization to a pressure of about 0.4 to about 1.0 bara, by the countercurrent flow of oxygen-enriched product gas through lines 32 and 26 and into vessel B. The duration of this step is generally in the range of 0 to about 15 seconds.

During the next step of the process, step 7 (Figure 2G), only valves 8, 22, 36, 42, 46, 52 and 60 are open. Vessel A is purged by the flow of gas from tank C and countercurrently into vessel A accompanied by the countercurrent evacuation of gas from vessel by pump P through lines 16, 50, 2 and 6 to a final pressure of about 0.2 to about 1.0 bara, while vessel B receives its third partial pressurization of the process by the introduction of ambient air at atmospheric pressure cocurrently into this vessel through lines 2, 58, the tail end of line 10, and lines 14 and 18. The duration of this step is generally in the range of about 4 to about 15 seconds.

The eighth step of the cycle is shown in Figure 2H. During this step vessel A receives its first partial repressurization of the cycle, while vessel B undergoes its final repressurization and initiation of production of oxygen-enriched gas product. Generally, for this step, only valves 4, 12, 22, 36 and 42 are initially open, and vessel A is pressurized to a pressure of about 0.3 to about 1.0 bara by the countercurrent flow of gas from storage vessel C through lines 40, 34 and 24, while the pressure in vessel B is raised to the desired adsorption pressure (1 to about 1.6 bara) by cocurrently pumping ambient air thereinto through lines 2, 10, 14 and 18 by means of pump P. When the pressure in vessel B reaches the desired adsorption pressure, valve 30 is opened and oxygen-enriched product gas flows to product storage through line 32. Vessel A continues to receive gas from tank C. The step generally lasts for a period in the range of about 3 to about 15 seconds.

Step 9, illustrated in Figure 21, is the third optional step of the process. During this step, vessel A is further pressurized by flowing oxygen-enriched gas thereinto, while vessel B is in production service. Valves 4, 12, 22, 28 and 30 are the only valves open during this step. Oxygen-enriched product gas flows countercurrently into vessel A through line 24 until the pressure in vessel A reaches about 0.4 to about 1.0 bara, while feed air continues to be charged cocurrently into vessel B at the desired adsorption pressure using pump P. The duration of this step is generally in the range of 0 to about 10 seconds.

The tenth and last step of the cycle is the step illustrated in Figure 2J. During this step, vessel A is further pressurized with ambient air while vessel B continues to be used to produce oxygen-enriched product gas at the desired adsorption pressure. For this step, valves 4, 12, 22, 30, 46 and 62 are open and all other valves are closed. Feed air at ambient pressure flows cocurrently into vessel A through lines 2, 58, 44 and 16, while feed air is charged currently into vessel B at the desired adsorption pressure (about 1.0 to about 2 bara) through lines 2, 6, 10, 14 and 18 and oxygen-enriched gas is discharged cocurrently from vessel B and sent to product storage through lines 26 and 32. The duration of this step is generally in the range of about 4 to about 10 seconds.

The above process has a number of unusual features. First, the process is not symmetrical, i.e. the set of steps conducted in vessel A is not identical to the set of steps carried out in vessel B. Partly because of this, nonadsorbed product gas is not continuously produced. In the process illustrated in Figures 2A - 2J, nonadsorbed product gas is produced only in the steps 1, 2, 8, 9 and 10. Secondly, the steps of the process are tailored to provide a highly energy efficient cycle. Thus, in steps 7 and 10 ambient air is introduced into the adsorption vessels without using pump P, and in step 2, vessel B is vented without the aid of pump P. This permits pump P to be used for other operations during these steps. A third feature of importance is the continuous use of pump P during the process. Because pump P is used in each step of the process it is never idled. This provides a considerable energy savings. In this respect it is noteworthy that pump P is used to pump feed gas into the adsorption vessels during steps 1, 2, 8, 9 and 10, and it is used to evacuate the adsorption vessels during the steps 3, 4, 5, 6 and 7.

The process carried out in steps 1 to 10 of the Figure 3 series of steps is identical to that carried out in steps 1 to 10 of Figure 2, except that in the Figure 3 system, pump P is used to withdraw oxygen-enriched gas from adsorber A during steps 1 and 2 and from adsorber B during steps 8, 9 and 10, while in steps 1, 2, 8, 9 and 10 of the Figure 2 series of steps, pump P is used to charge fresh feed into the respective adsorbers. The result is the same except that a lower pressure will be maintained in vessel A during steps 1 and 2 and in vessel B during steps 8, 9 and 10 than will be experienced in these adsorbers during the corresponding steps of the Figure 2 series of steps.

Figure 4 illustrates a system similar to the system of Figure 2, except that two intermediate storage tanks are used in place of the single tank used in the Figure 2 system. The system of Figure 4 is particularly useful when the adsorption system is comprised of two adsorbers, such as the system illustrated in Figure 1, and when it is desired to introduce the gas into the storage tank in such a manner that little or no mixing occurs. This occurs, for example, when the gas is introduced into the storage tank under plug flow conditions, such as when the storage tank is baffled with walled partitions that are parallel to the direction of flow of the gas into and out of the storage tank. The advantage of plug flow operation during transfer of gas to and from the storage tank is that the gas that is first removed from the nonadsorbed outlet end of the adsorption vessels will be most pure in the nonadsorbed gas, and this gas will be returned to the adsorption vessels last. Accordingly, the gas most pure in nonadsorbed gas will always be closest to the nonadsorbed gas outlet end of the adsorption vessels; thus the nonadsorbed product gas removed from the adsorption vessels during the production step will always be of the highest purity with respect to the nonadsorbed gas component.

In the embodiment shown in Figure 4, tank C is used for the flow of gas to and from vessel A and tank D is used for the flow of gas to and from vessel B. It is not necessary, however, that the gas being returned to the adsorption vessels be returned to the vessel from which it was taken. For example, gas stored in tank C from vessel A in step 3 (Figure 4C) can be returned to vessel B in the step 5 (Figure 4E), and the gas stored in vessel D in step 1 (Figure 4A) can be returned to vessel A in steps 7 and 8 (Figures 4G and 4H).

It will be appreciated that it is within the scope of the present invention to utilize conventional equipment to monitor and automatically regulate the flow of gases within the system so that it can be fully automated to run continuously in an efficient manner.

The invention is further illustrated by the following example in which, unless otherwise indicated, parts, percentages and ratios are on a volume basis.

EXAMPLE 1

This example illustrates use of the process of the invention to separate air into an oxygen-enriched gas product and an oxygen-depleted gas product using the sequence of steps shown in Figure 2. The example was carried out using two identical cylindrical adsorption vessels 0.076 m (3 inches) in diameter and 0.84 m (33 inches) long. The adsorption vessels were packed with type X zeolite which had a silicon-to-aluminum atomic ratio of about 1 and which was exchanged with lithium and rare earth ions (described in detail in US-A-5,464,467). The system was operated to produce an oxygen-enriched gas product containing 90% by volume oxygen. The step durations, in seconds, and the step end pressures, in bar, absolute (bara), are stated in the Table. Steps 1 to 10 correspond to the steps illustrated Figures 2A to 2J, respectively. Step Duration, sec End Pressure Bed A, bara End Pressure Bed B, bara 1 6 1.30 1.22 2 4 1.54 1.05 3 10 1.23 0.58 4 9 1.00 0.55 5 7 0.61 0.72 6 3 0.56 0.84 7 9 0.57 1.00 8 3 0.75 1.17 9 3 0.81 1.38 10 6 1.00 1.57

The specific product obtained in the above experiment was 43 Nm3/Hr/m3 (normal cubic meters of nonadsorbed product gas per hour per cubic meter of adsorbent). The yield (defined as the total number of moles of oxygen contained in the nonadsorbed product gas divided by the total number of moles of oxygen contained in the feed gas) was 58%. The calculated power consumption was 0.334 Kwh/Nm3O2 (kilowatt hours per normal cubic meter of oxygen-enriched gas produced).

EXAMPLE 2

The procedure of Example 1 was repeated using the conventional 10-step cycle illustrated in Figure 4 of US-A-5,122,164 with a 60 sec. cycle and a pressure swing between 1.5 bara and 0.49 bara. The specific product was 43 Nm3Hr/m3, the yield was 58% and the calculated power consumption was 0.376 Kwh/Nm3O2.

A comparison of Examples 1 and 2 shows that the cycle illustrated in Figure 2 provides substantially the same yield at a considerable savings in power consumption relative to the yield and power consumption obtained using the ten-step cycle described in US-A-5,122,164.

Although the invention has been described with particular reference to specific equipment arrangements and to specific experiments, these features are merely exemplary of the invention and variations are contemplated. For example, the order of certain of the steps can be reversed. Thus, the steps illustrated in Figures 2F, 3F and 4F can precede the steps illustrated in Figures 2E, 3E and 4E, respectively or they can follow the steps shown in Figures 2J, 3J and 4J, respectively, and the steps illustrated in Figures 21, 3I and 4I can precede the steps illustrated in Figures 2H, 3H and 4H, respectively or they can follow the steps shown in Figures 2J, 3J and 4J, respectively. Furthermore, the activity taking place in one or both adsorbers during one step may overlap with the activity taking place in one or both adsorbers during the following step. For example, the partial pressurization of vessel A with gas stored in tank C, shown in Figures 2H, 3H and 4H, may partially coincide with the vessel A product backfill step shown in Figures 21, 31 and 41, respectively.


Anspruch[de]
  1. Verfahren zum Erzeugen von an einer ersten Komponente angereichertem Gas aus einem Speisegas, das eine erste Komponente und eine zweite Komponente enthält, in einem System, das mindestens einen Gasbehälter und ein oder mehrere Paare erster und zweiter Adsorptionszonen umfasst, wobei jede Adsorptionszone ein Adsorptionsmittel enthält, das wahlweise die zweite Komponente adsorbiert, wobei das Verfahren bezüglich des oder jedes Paar erster und zweiter Adsorptionszonen das wiederholte Durchführen der folgenden Schritte der Reihe nach umfasst:
    • (i) Erzeugen eines an der ersten Komponente angereicherten Produktgases durch Einleiten von Speisegas in Gleichstrom in die erste Adsorptionszone und Abführen von an der ersten Komponente angereichertem Gas hieraus im Gleichstrom, während die zweite Adsorptionszone durch Überführen von Gas hieraus im Gleichstrom in den Gasbehälter oder mindestens einen der Gasbehälter teilweise druckentlastet wird,
    • (ii) teilweise Druckentlastung der ersten Adsorptionszone durch Überrühren von Gas hieraus im Gleichstrom in den genannten Gasbehälter, während an der zweiten Komponente angereichertes Gas aus der zweiten Adsorptionszone im Gegenstrom abgeführt wird,
    • (iii) Spülen der zweiten Adsorptionszone durch Überführen von Gas im Gleichstrom aus der ersten Adsorptionszone und im Gegenstrom in die zweite Adsorptionszone, während an der zweiten Komponente angereichertes Gas aus der zweiten Adsorptionszone im Gegenstrom abgeführt wird,
    • (iv) Abführen von an der zweiten Komponente angereichertem Gas im Gegenstrom aus der ersten Adsorptionszone, während die zweite Adsorptionszone durch Überführen von Gas im Gegenstrom aus dem Gasbehälter in diese teilweise druckbeaufschlagt wird,
    • (v) Spülen der ersten Adsorptionszone durch Überführen von Gas im Gegenstrom in diese aus dem Gasbehälter und Abführen von Gas im Gegenstrom aus der ersten Adsorptionszone, während die zweite Adsorptionszone durch Einleiten von Speisegas in diese im Gleichstrom weiter druckbeaufschlagt wird,
    • (vi) teilweises Druckbeaufschlagen der ersten Adsorptionszone durch Überführen von Gas in diese im Gegenstrom aus dem Gasbehälter, während an der ersten Komponente angereichertes Produktgas durch Einleiten von Speisegas im Gleichstrom in die zweite Adsorptionszone und Abführen von an der ersten Komponente angereichertem Gas hieraus im Gleichstrom erzeugt wird, und
    • (vii) weiteres Druckbeaufschlagen der ersten Adsorptionszone durch Einleiten von Speisegas in diese im Gleichstrom, während weiter an der ersten Komponente angereichertes Produktgas durch Einleiten von Speisegas in die zweite Adsorptionszone im Gleichstrom und Abführen von an der ersten Komponente angereichertem Gas hieraus im Gleichstrom erzeugt wird,
    wobei sämtliche Schritte des Prozesses unter Verwendung einer einzigen Gaspumpe durchgeführt werden.
  2. Verfahren nach Anspruch 1, wobei das Speisegas in die zweite Adsorptionszone im Schritt (v) und in die erste Adsorptionszone im Schritt (vii) unter einem ersten vorgegebenen Druck eingeleitet wird und das Speisegas in die erste Adsorptionszone im Schritt (i) und in die zweite Adsorptionszone in den Schritten (vi) und (vii) unter einem Druck eingeleitet wird, der vom ersten vorgegebenen Druck auf einen zweiten vorgegebenen Druck zunimmt.
  3. Verfahren nach Anspruch 2, wobei der erste vorgegebene Druck im Bereich von 0,6 bis 2 bara liegt und der zweite vorgegebene Druck im Bereich von 1 bis 5 bara liegt.
  4. Verfahren nach Anspruch 3, wobei der erste vorgegebene Druck im Bereich von 0,8 bis 1,2 bara liegt und der zweite vorgegebene Druck im Bereich von 1 bis 2 bara liegt.
  5. Verfahren nach Anspruch 3 oder 4, wobei der Druck in der zweiten Adsorptionszone während mindestens eines Teils der Schritte (ii) und (iii) und in der ersten Adsorptionszone während mindestens eines Teils der Schritte (iv) und (v) im Bereich von 0,1 bis 1 bara liegt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei:
    • die genannte Gaspumpe zum Einleiten von Speisegas in die erste Adsorptionszone während des Schritts (i) und in die zweite Adsorptionszone während der Schritte (vi) und (vii) benutzt und zum Abführen des an der zweiten Komponente angereicherten Gases aus der zweiten Adsorptionszone während der Schritte (ii) und (iii) und aus der ersten Adsorptionszone während der Schritte (iv) und (v) benutzt wird, und
    • die genannte Gaspumpe zum Abführen von an der ersten Komponente angereichertem Gas aus der ersten Adsorptionszone während des Schritts (i) und aus der zweiten Adsorptionszone während der Schritte (vi) und (vii) benutzt und zum Abführen von an der zweiten Komponente angereichertem Gas aus der zweiten Adsorptionszone während der Schritte (ii) und (iii) und aus der ersten Adsorptionszone während der Schritte (iv) und (v) benutzt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei

    das System ein paar von Adsorptionszonen aufweist, und

    das im Gleichstrom aus der zweiten Adsorptionszone während des Schritts (i) überführte Gas in einen ersten Gasbehälter geladen wird, das im Gleichstrom aus der ersten Adsorptionszone während des Schritts (ii) überführte Gas in einen zweiten Gasbehälter geladen wird, das im Gegenstrom zur zweiten Adsorptionszone während des Schritts (iv) überführte Gas aus einem der ersten und zweiten Gasbehälter abgezogen wird, und das im Gegenstrom zur ersten Adsorptionszone während der Schritte (v) und (vi) überführte Gas aus dem anderen der ersten und zweiten Gasbehälter abgezogen wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, das weiter zwischen den Schritten (i) und (ii) den zusätzlichen Schritt des Erzeugens von an der ersten Komponente angereichertem Produktgas durch Einleiten von Speisegas im Gleichstrom in die erste Adsorptionszone und Abführen von an der ersten Komponente angereichertem Gas hieraus im Gleichstrom umfasst, während an der zweiten Komponente angereichertes Gas aus der zweiten Adsorptionszone im Gegenstrom abgeführt wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche, das zusätzlich zwischen den Schritten (iv) und (v) den zusätzlichen Schritt des Abführens von an der zweiten Komponente angereichertem Gas aus der ersten Adsorptionszone im Gegenstrom umfasst, während die zweite Adsorptionszone durch Überführen von an der ersten Komponente angereichertem Produktgas im Gegenstrom in diese teilweise druckbeaufschlagt wird, und zwischen den Schritten (vi) und (vii) den zusätzlichen Schritt des teilweisen Druckbeaufschlagens der genannten einen der ersten und zweiten Adsorptionszonen im Schritt (vi) durch Überführen von an der ersten Komponente angereichertem Produktgas im Gegenstrom in diese umfasst, während an der ersten Komponente angereichertes Produktgas durch Einleiten von Speisegas in Gleichstrom in die zweite Adsorptionszone und Abführen von an der ersten Komponente angereichertem Gas hieraus im Gleichstrom erzeugt wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Speisegas Luft ist und die zweite Komponente Stickstoff ist.
Anspruch[en]
  1. A process for producing first component-enriched gas from a feed gas containing a first component and a second component in a system comprising at least one gas reservoir and one or more pairs of first and second adsorption zones, each adsorbent zone containing an adsorbent which selectively adsorbs the second component, the processing comprising, with respect to the or each pair of first and second adsorption zones, repeatedly performing, in sequence, the steps of:
    • (i) producing first component-enriched product gas by cocurrently introducing feed gas into said first adsorption zone and cocurrently removing first component-enriched gas therefrom, while partially depressurizing said second adsorption zone by cocurrently transferring gas therefrom and into storage in the gas reservoir or at least one of the gas reservoirs;
    • (ii) partially depressurizing said first adsorption zone by cocurrently transferring gas therefrom and into said gas reservoir storage, while countercurrently removing second component-enriched gas from said second adsorption zone;
    • (iii) purging said second adsorption zone by transferring gas cocurrently out of said first adsorption zone and countercurrently into said second adsorption zone while countercurrently removing second component-enriched gas from said second adsorption zone;
    • (iv) countercurrently removing second component-enriched gas from said first adsorption zone, while partially pressurizing said second adsorption zone by countercurrently transferring gas thereinto from said gas reservoir storage;
    • (v) purging said first adsorption zone by countercurrently transferring gas thereinto from said gas reservoir storage and countercurrently removing gas from said first adsorption zone; while further pressurizing said second adsorption zone by cocurrently introducing feed gas thereinto;
    • (vi) partially pressurizing said first adsorption zone by countercurrently transferring gas thereinto from said gas reservoir storage, while producing first component-enriched product gas by cocurrently introducing feed gas into said second adsorption zone and cocurrently removing first component-enriched gas therefrom; and
    • (vii) further pressurizing said first adsorption zone by cocurrently introducing feed gas thereinto, while continuing to produce first component-enriched product gas by cocurrently introducing feed gas into said second adsorption zone and cocurrently removing first component-enriched gas therefrom,
    wherein all the steps of the process are carried out using a single gas pump.
  2. A process according to claim 1, wherein the feed gas is introduced into said second adsorption zone in step (v) and into said first adsorption zone in step (vii) at a first predetermined pressure and the feed gas is introduced into said first adsorption zone in step (i) and into said second adsorption zone in steps (vi) and (vii) at a pressure which increases from said first predetermined pressure to a second predetermined pressure.
  3. A process according to claim 2, wherein said first predetermined pressure is in the range of 0.6 to 2 bara and said second predetermined pressure is in the range of 1 to 5 bara.
  4. A process according to claim 3, wherein said first predetermined pressure is in the range of 0.8 to 1.2 bara and said second predetermined pressure is in the range of 1 to 2 bara.
  5. A process according to claim 3 or claim 4, wherein the pressure in said second adsorption zone during at least part of steps (ii) and (iii) and in said first adsorption zone during at least part of steps (iv) and (v) is in the range of 0.1 to 1 bara.
  6. A process according to any one of the preceding claims, wherein:
    • said gas pumping means is used to introduce feed gas into said first adsorption zone during step (i) and into said second adsorption zone during steps (vi) and (vii) and is used to remove second component-enriched gas from said second adsorption zone during steps (ii) and (iii) and from said first adsorption zone during steps (iv) and (v); and
    • said gas pumping means is used to remove first component-enriched gas from said first adsorption zone during step (i) and from said second adsorption zone during steps (vi) and (vii) and is used to remove second component-enriched gas from said second adsorption zone during steps (ii) and (iii) and from said first adsorption zone during steps (iv) and (v).
  7. A process according to any one of the precding claims, wherein:
    • said system has one pair of adsorption zones; and
    • the gas transferred cocurrently out of said second adsorption zone during step (i) is charged into a first gas reservoir; the gas transferred cocurrently out of said first adsorption zone during step (ii) is charged into a second gas reservoir; the gas countercurrently transferred to said second adsorption zone during step (iv) is removed from one of said first and second gas reservoirs; and the gas countercurrently transferred to said first adsorption zone during steps (v) and (vi) is removed from the other of said first and second gas reservoirs.
  8. A process according to any one of the preceding claims, further comprising, between steps (i) and (ii) the additional step of producing first component-enriched product gas by cocurrently introducing feed gas into said first adsorption zone and cocurrently removing first component-enriched gas therefrom, while countercurrently removing second component-enriched gas from said second adsorption zones.
  9. A process according to any one of the preceding claims, additionally comprising, between steps (iv) and (v), the additional step of countercurrently removing second component-enriched gas from said first adsorption zone, while partially pressurizing said second adsorption zones by countercurrently transferring first component-enriched product gas thereinto, and between steps (vi) and (vii), the additional step of partially pressurizing said one of said first and second adsorption zones of step (vi) by countercurrently transferring first component-enriched product gas thereinto, while producing first component-enriched product gas by cocurrently introducing feed gas into said second adsorption zone and cocurrently removing first component-enriched gas therefrom.
  10. A process according to any one of the preceding claims, wherein the feed gas is air, and said second component is nitrogen.
Anspruch[fr]
  1. Procédé de production d'un gaz enrichi en un premier composant à partir d'un gaz de charge contenant un premier composant et un second composant dans un système comprenant au moins un réservoir de gaz et une ou plusieurs paires de premières et secondes zones d'adsorption, chaque zone adsorbante contenant un adsorbant qui adsorbe sélectivement le second composant, le procédé comprenant, en ce qui concerne la ou chaque paire de première et seconde zones d'adsorption, la réalisation répétée, en séquence, des étapes consistant à :
    • (i) produire un premier gaz de production enrichi en premier composant par introduction à co-courant de gaz de charge dans ladite première zone d'adsorption et par retrait à co-courant de celle-ci du gaz enrichi en premier composant, tout en abaissant partiellement la pression de ladite seconde zone d'adsorption en transférant à co-courant du gaz de celle-ci et en l'envoyant au stockage dans le réservoir de gaz ou au moins l'un des réservoirs de gaz ;
    • (ii) abaisser partiellement la pression dans ladite première zone d'adsorption en transférant à co-courant du gaz de celle-ci et en l'envoyant au stockage dans ledit réservoir de gaz, tout en retirant à contre-courant le gaz enrichi en second composant de ladite seconde zone d'adsorption ;
    • (iii) purger ladite seconde zone d'adsorption en transférant à co-courant du gaz hors de ladite première zone d'adsorption et en l'envoyant à contre-courant dans ladite seconde zone d'adsorption tout en retirant à contre-courant du gaz enrichi en second composant de ladite seconde zone d'adsorption ;
    • (iv) retirer à contre-courant le gaz enrichi en second composant de ladite première zone d'adsorption, tout en mettant partiellement sous pression ladite seconde zone d'adsorption en y transférant à contre-courant du gaz venant dudit réservoir de stockage du gaz ;
    • (v) purger ladite première zone d'adsorption en y transférant à contre-courant du gaz venant dudit réservoir de stockage du gaz et en retirant à contre-courant du gaz de ladite première zone d'adsorption, tout en mettant davantage sous pression ladite seconde zone d'adsorption en y introduisant à co-courant du gaz de charge ;
    • (vi) mettre partiellement sous pression ladite première zone d'adsorption en y transférant à contre-courant du gaz venant dudit réservoir de stockage du gaz, tout en produisant du gaz de production enrichi en premier composant par introduction à co-courant de gaz de charge dans ladite seconde zone d'adsorption et en retirant à co-courant de celle-ci du gaz enrichi en premier composant ; et
    • (vii) mettre davantage sous pression ladite première zone d'adsorption en y introduisant à co-courant du gaz de charge, tout en continuant à produire du gaz de production enrichi en premier composant par introduction à co-courant du gaz de charge dans ladite seconde zone d'adsorption et en retirant à co-courant de celle-ci du gaz enrichi en premier composant,
       dans lequel toutes les étapes du procédé sont réalisées en utilisant une unique pompe à gaz,
  2. Procédé selon la Revendication 1, dans lequel le gaz de charge est introduit dans ladite seconde zone d'adsorption à l'étape (v) et dans ladite première zone d'adsorption à l'étape (vii) à une première pression prédéterminée, et le gaz de charge est introduit dans ladite première zone d'adsorption à l'étape (i) et dans ladite seconde zone d'adsorption aux étapes (vi) et (vii) à une pression qui augmente de ladite première pression prédéterminée à une seconde pression prédéterminée.
  3. Procédé selon la Revendication 2, dans lequel ladite première pression prédéterminée est comprise dans une plage de 0,6 à 2 bara et ladite seconde pression prédéterminée est comprise dans une plage de 1 à 5 bara.
  4. Procédé selon la Revendication 3, dans lequel ladite première pression prédéterminée est comprise dans une plage de 0,8 à 1,2 bara et ladite seconde pression prédéterminée est comprise dans une plage de 1 à 2 bara.
  5. Procédé selon la Revendication 3 ou la Revendication 4, dans lequel la pression dans ladite seconde zone d'adsorption pendant au moins une partie des étapes (ii) et (iii) et dans ladite première zone d'adsorption pendant au moins une partie des étapes (iv) et (v) est comprise dans une plage de 0,1 à 1 bara.
  6. Procédé selon l'une quelconque des Revendications précédentes, dans lequel

       ledit moyen de pompage du gaz est utilisé pour introduire le gaz de charge dans ladite première zone d'adsorption pendant l'étape (i) et dans ladite seconde zone d'adsorption pendant les étapes (vi) et (vii), et est utilisé pour retirer le gaz enrichi en second composant de ladite seconde zone d'adsorption pendant les étapes (ii) et (iii) et de ladite première zone d'adsorption pendant les étapes (iv) et (v) ; et

       ledit moyen de pompage du gaz est utilisé pour retirer le gaz enrichi en premier composant de ladite première zone d'adsorption pendant l'étape (i) et de ladite seconde zone d'adsorption pendant les étapes (vi) et (vii) et est utilisé pour retirer le gaz enrichi en second composant de ladite seconde zone d'adsorption pendant les étapes (ii) et (iii) et de ladite première zone d'adsorption pendant les étapes (iv) et (v).
  7. Procédé selon l'une quelconque des Revendications précédentes, dans lequel :
    • ledit système possède une paire de zones d'adsorption ; et
    • le gaz transféré à co-courant hors de ladite seconde zone d'adsorption pendant l'étape (i) est chargé dans un premier réservoir de gaz ; le gaz transféré à co-courant hors de ladite première zone d'adsorption pendant l'étape (ii) est chargé dans un second réservoir de gaz ; le gaz transféré à contre-courant vers ladite seconde zone d'adsorption pendant l'étape (iv) est retiré de l'un desdits premier et second réservoirs de gaz ; et le gaz transféré à contre-courant de ladite première zone d'adsorption pendant les étapes (v) et (vi) est retiré de l'autre desdits premier et second réservoirs de gaz.
  8. Procédé selon l'une quelconque des Revendications précédentes, comprenant de plus, entre les étapes (i) et (ii), l'étape additionnelle de production de gaz de production enrichi en premier composant par introduction à co-courant de gaz de charge dans ladite première zone d'adsorption et retrait à co-courant de celle-ci de gaz enrichi en premier composant, tout en retirant à contre-courant du gaz enrichi en second composant desdites secondes zones d'adsorption.
  9. Procédé selon l'une quelconque des Revendications précédentes, comprenant additionnellement, entre les étapes (iv) et (v), l'étape supplémentaire de retrait à contre-courant de gaz enrichi en second composant de ladite première zone d'adsorption, tout en mettant partiellement sous pression lesdites secondes zones d'adsorption par transfert à contre-courant dans celles-ci du gaz de production enrichi en premier composant, et entre les étapes (vi) et (vii), l'étape supplémentaire de mise partiellement sous pression de ladite une desdites première et seconde zones d'adsorption de l'étape (vi) par transfert à contre-courant du gaz de production enrichi en premier composant, tout en produisant du gaz de production enrichi en premier composant par introduction à co-courant de gaz de charge dans ladite seconde zone d'adsorption et retrait à co-courant de gaz enrichi en premier composant de celle-ci.
  10. Procédé selon l'une quelconque des Revendications précédentes, dans lequel le gaz de charge est l'air, et ledit second composant est l'azote.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com