PatentDe  


Dokumentenidentifikation DE10238061A1 11.03.2004
Titel Verfahren zur Bestimmung und Kompensation des durch Wellenlängenänderung verursachten Skalenfaktorfehlers in einem GPS-gestützten INS-System
Anmelder Litef GmbH, 79115 Freiburg, DE
Erfinder Krings, Manfred, 79232 March, DE
Vertreter Müller - Hoffmann & Partner Patentanwälte, 81667 München
DE-Anmeldedatum 20.08.2002
DE-Aktenzeichen 10238061
Offenlegungstag 11.03.2004
Veröffentlichungstag im Patentblatt 11.03.2004
IPC-Hauptklasse G01C 21/16
Zusammenfassung Bei einem GPS-gestützten, mit Kalman-Korrekturfilter (30) ausgerüsteten inertialen Kurs- und Lagereferenzsystem mit mehrachsigem faseroptischen Gyroskop ist erfindungsgemäß vorgesehen, zur Bestimmung und Kompensation des durch Wellenlängenänderung einer gemeinsamen Lichtquelle (1) verursachten Skalenfaktorfehlers nur den für die Messachse, z. B. die Vertikalachse (z), mit vergleichsweise hoher Bewegungsdynamik ermittelten Skalenfaktorfehler als Kalman-Filter-Korrekturwert für die Skalenfaktor-Fehlerkorrektur aller Messachsen (x, y, z) des FOGs heranzuziehen. Diese Skalenfaktor-Fehlerkorrektur wird vorteilhafterweise nur mit großer Zeitkonstante eingesetzt. Durch die Erfindung lässt sich eine zuverlässige Korrektur des Skalenfaktors für alle Messachsen des FOG-Systems gewährleisten, und zwar ohne zusätzlichen Hardware-Aufwand und lediglich durch Anpassung der Kalman-Filterkorrektur.

Beschreibung[de]

Die Erfindung betrifft ein Verfahren zur Bestimmung und Kompensation des durch Wellenlängenänderung bei mehrachsigen, aus einer gemeinsamen Lichtquelle gespeisten faseroptischen Gyroskops (FOG) verursachten Skalenfaktorfehlers in einem GPS-gestützten, mit Kalman-Korrekturfilter ausgerüsteten inertialen Kurs- und Lagereferenzsystem (INS-System).

Aus DE 196 51 543 C1 ist es für Kurs- und Lagereferenzsysteme mit über GPS-Empfänger gestütztem Inertialsystem bekannt, bei iterativer Korrekturbewertung einer Plattformrechnung mittels eines Kalman-Filters, die über den GPS-Empfänger bereitgestellten Kurs- und Lagewinkel von den entsprechenden durch einen Inertialsensor gelieferten Daten zu subtrahieren, um unabhängig von Beschleunigungssensoren eine genaue Kurs-/Lagereferenz mit vergleichsweise hoher Bandbreite zu erhalten. Korrekturmodelle für GPS/INS-Mechanisierungen von Kurs- und Lagereferenzsystemen mit Korrektur der INS-Werte über ein Kalman-Filter sind bei Berücksichtigung unterschiedlicher Störgrößen auch aus der Buchveröffentlichung Kayton/Fried, AVIONICS NAVIGATION SYSTEMS, A WILEY-INTERSCIENCE PUBLICATION, Second Edition 1997, S. 72 – 98 bekannt.

Allgemein ist es auch bekannt, dass die Fehler inertialer Sensoren, wie Nullpunktfehler, Skalenfaktor und Achsenausrichtfehler bei solchen INS/GPS-Systemen mit Hilfe externer Stützinformation unter Anwendung einer Kalman-Filtertechnik geschätzt und danach zur Korrektur der Sensordaten benutzt werden können. Satelliten-Navigationssysteme, wie das US-amerikanische GPS (Global Positioning System), sind dazu besonders geeignet, da sie driftfrei mit hoher Genauigkeit die Position und die Geschwindigkeit nahezu kontinuierlich bereitstellen. Aus der Differenz zwischen den Positions- bzw. Geschwindigkeitsdaten des GPS und des inertialen Systems ist man durch Kalman-Filter in der Lage, die Fehler der inertialen Sensoren zu schätzen, um eine entsprechende Korrektur vorzunehmen.

Die Bestimmung der Sensorfehler mit Hilfe externer Stützinformation und Kalman-Filtertechnik, wie erwähnt, setzt jedoch ein bestimmtes Maß an Bewegungsdynamik des Fahrzeugs, z. B. eines Flugzeugs, voraus. Die verschiedenen Fehlermechanismen der inertialen Sensoren lassen sich nur so anregen und können dann über den Kalman-Filter beobachtet werden. Im Allgemeinen aber bewegen sich diese Fahrzeuge in einer horizontalen Ebene, wobei die Nick- und Rollbewegungen nur für kurze Dauer gröbere Werte annehmen. Andererseits geht bei sehr großen Lagewinkeländerungen, z. B. bei Akrobatikflügen von Flugzeugen, der GPS-Empfang ganz verloren, da die GPS-Antenne die Satellitensignale nicht mehr empfangen kann. Der Skalenfaktor lässt sich jetzt nicht mehr zufriedenstellend schätzen bzw. bestimmen. Andererseits tritt eine Erhöhung des Skalenfaktorfehlers aufgrund einer Wellenlängenänderung der Lichtquelle erst nach längerem Einsatz der Systeme in Erscheinung. Bei Kurs-/ Lagereferenz-Systemen bleibt die Reduzierung der Systemgenauigkeit meistens unerkannt, da durch eine Lot- und Magnetsensorstützung der Fehler dieser Systeme weitgehend unterdrückt wird und sich damit als technisch relativ unbedenklich erweist. Bei zukünftigen Aufgaben im Bereich insbesondere einer unterstützten Trägheitsnavigation und bei hohen Anforderungen bezüglich der Lagewinkelgenauigkeit ist aber eine Verbesserung der Skalenfaktorgenauigkeit und deren Langzeitstabilität unbedingt erforderlich.

Der Erfindung liegt damit die Aufgabe zugrunde, ein Verfahren bereitzustellen, durch das sich die Skalenfaktorgenauigkeit insbesondere bei einem GPS-gestützten inertialen Kurs- und Lagereferenzsystem verbessern lässt, das mit einem mehrachsigen faseroptischen Gyroskop ausgerüstet ist, das aus einer gemeinsamen Lichtquelle gespeist wird.

Die Erfindung ist bei einem Verfahren zur Bestimmung der Kompensation des durch Wellenlängenänderung bei mehrachsigen, aus einer gemeinsamen Lichtquelle gespeisten faseroptischen Gyroskops (FOG) verursachten Skalenfehlers in einem GPS-gestützten, mit Kalman-Korrekturfilter ausgerüsteten inertialen Kurs- und Lagereferenzsystem erfindungsgemäß dadurch gekennzeichnet, dass der für eine Achse mit vergleichsweise hoher Bewegungsdynamik ermittelte Skalenfaktorfehler als Kalman-Filterkorrekturwert für die Skalenfaktor-Fehlerkorrektur aller Messachsen des FOGs mit niedrigerer Bewegungsdynamik verwendet wird.

Die Erfindung beruht auf der Beobachtung und Feststellung, dass der Skalenfaktor zwar für die vertikale Messachse eines dreiachsigen Inertialkurs- und Lagereferenzsystems bestimmt werden kann, sich jedoch für die horizontalen Messachsen nicht zufriedenstellend schätzen lässt. Dadurch ergibt sich zwar eine gute Genauigkeit bei Kursänderungen, jedoch treten erhebliche Lagefehler bei großen Lagewinkeländerungen auf. Diese Probleme lassen sich mit der Erfindung zuverlässig beseitigen.

In vorteilhafter Ausführungsform der Erfindung wird also bei einem dreiachsigen Kurs- und Lagereferenzsystem der für die Vertikalachse z ermittelte Skalenfaktorfehler zur Fehlerkompensation für die übrigen Messachsen x, y zur Skalenfaktor-Fehlerkorrektur angewendet.

Mit der Erfindung werden die technischen Möglichkeiten des Kalman-Filters mit einer modernen FOG-Technologie so verbunden, dass ein größeres Maß von Nutzen erreicht und der Skalenfaktorfehler für alle drei Messachsen insgesamt wesentlich besser kompensiert wird.

Die Erfindung und vorteilhafte Einzelheiten werden nachfolgend unter Bezug auf die Zeichnungen in beispielsweiser Ausführungsform näher erläutert. Es zeigen:

1 ein Funktions-Blockschaltbild eines durch GPS-Daten-gestützten (inertialen) Trägheitsnavigationssystems mit Kalman-Filter-Korrektur; und

2 das detailliertere Funktions-Blockschaltbild zur Erläuterung der Fehlerkorrektur insbesondere der Skalenfaktorkorrektur nach dem erfindungsgemäßen Verfahren.

Der Skalenfaktor eines faseroptischen Gyroskops oder Faserkreisels innerhalb eines inertialen Trägheitsnavigationssystems 10 wird durch zwei Faktoren maßgeblich bestimmt. Die im (nicht gezeigten FOG) durch eine äußere Drehrate erzeugte Sagnac-Phase wird durch die Wellenlänge (bzw. Frequenz) des Lichts in der Glasfaser und durch die geometrischen Abmessungen der Faserspule (umwickelte Fläche) bestimmt. Bei einem rückstellenden System wird des Weiteren die Skalierung der Rückstellung (Skalierung: Drehwinkelinkrement/Sagnac-Phase) in der Faserkreisel-Regelschleife für den Skalenfaktor bestimmend. Bei einer mehrachsigen, z. B. einer dreiachsigen FOG-Architektur 2 (s. 2), die von einer gemeinsamen Lichtquelle 1 gespeist wird, bestimmt und kontrolliert eine Hilfsregelschleife 3 in der FOG-Elektronik den elektrischen Skalenfaktor. Andererseits wird der durch die geometrischen/mechanischen Abmessungen der FOG-Sensorspulen beeinflusste Skalenfaktorfehler über die Systemkalibration (Kalibrationsdaten) erfasst und mittels einer FOG-Fehlerkorrektur 4 kompensiert. Bei dieser Systemkalibration wird auch die Wellenlänge der gemeinsamen Lichtquelle 1 indirekt berücksichtigt. Insbesondere werden also Fertigungsfehler korrigiert. Änderungen der Wellenlänge der gemeinsamen Lichtquelle 1 im Betrieb werden nicht mehr erfasst. Das Funktionsschaltbild der 1 verdeutlicht insoweit den Stand der Technik, bei dem ein durch ein GPS-Navigationssystem 20 unter Verwendung eines Kalman-Filters 30 gestütztes inertiales Navigationssystem 10 veranschaulicht ist, dessen ausgangsseitige korrigierte Navigationsdaten einem übergeordneten Rechnersystem zur Verfügung gestellt werden.

Das Problem der beispielsweise durch Alterungseffekte der Lichtquelle 1 sich verändernden Skalenfaktoren ist natürlich bekannt. Zur Lösung sind bisher zwei relativ aufwändige Verfahren angewendet worden. Beim ersten Verfahren setzt man eine Laser-Lichtquelle ein, bei der durch weitere optische Elemente das für den FOG-Betrieb benötigte Spektrum erzeugt wird. Teuer sind dabei vor allem die zusätzlichen optischen Komponenten, sowie die nahezu doppelte erforderliche Faserlänge aufgrund der größeren Wellenlänge dieser Lichtquellen. Eine andere vorgeschlagene Möglichkeit besteht in der direkten Messung der Wellenlänge und der damit ermöglichten rechnerischen Kompensation des zugehörigen Skalenfaktorfehlers. Der dazu benötigte interferometrische Messaufbau erfordert aber einige zusätzliche optische und elektrische Komponenten, die das Gesamtsystem erheblich verteuern. Eine markt- und konkurrenzfähige Lösung unter Anwendung dieser Möglichkeit existiert nicht.

Die Erfindung nutzt unter anderem die Erkenntnis aus, dass eine Wellenlängenänderung der für alle drei Messachsen einer sogenannten FOG-Triade gemeinsamen Lichtquelle 1 sich auf alle drei Messachsen gleichermaßen auswirkt. Darauf basiert die erfindungsgemäße Idee, nämlich den sehr gut bestimmbaren Skalenfaktorfehler der vertikalen Messachse z auch auf die beiden horizontalen Messachsen x, y des faseroptischen Systems anzuwenden.

Bei einer vorteilhaften Ausführungsform der Erfindung wird zusätzlich beachtet, dass die horizontalen Achsen x, y maßgeblich an der Bestimmung der sicherheitskritischen Lagewinkel beteiligt sind, so dass die Skalenfaktor-Fehlerkorrektur nur mit einer großen Zeitkonstante erfolgen sollte. Dabei ist von Bedeutung, dass die Änderung der Wellenlänge und damit die Erhöhung des Skalenfaktorfehlers durch Alterung der Lichtquelle über einen Zeitraum von einigen Monaten erfolgt. Der genaue Zusammenhang zwischen Einsatzdauer und Wellenlängenverschiebung wurde bisher zwar noch nicht untersucht oder statistisch erfasst. Neben dem Zeitfaktor hat auch die Umwelt (Temperatur, Vibration, usw.) einen bedeutenden Einfluss. Bei Reparaturen mussten schon Lichtquellen nach Betriebszeiten von 8 bis 12 Monaten ersetzt bzw. das System nachkalibiriert werden. Die Zeitkonstante der Korrektur des Kaiman-Filters sollte also in einem Bereich von 10 bis 20 Stunden liegen, wobei bei jedem neuen Flug auf dem zuletzt geschätzten Fehlerwert aufgesetzt wird. Die Berücksichtigung einer großen Zeitkonstante ist demnach unter dem Gesichtspunkt der Sicherheit unproblematisch, da nur mit vergleichsweise sehr langsamen Veränderungen der Lichtwellenlänge zu rechnen ist.

Wie die 2 erkennen lässt, werden zur Korrektur von Systemfehlern im Kaiman-Filter 30 außer bestimmten Nullpunktfehlertermen für alle drei Messachsen die Skalenfaktoren für diese Achsen x, y, z im Systemblock 31 korrigiert bzw. kompensiert, und zwar nur unter Berücksichtigung eines zuvor bestimmen Skalenfaktorfehlers für die vertikale Messachse z. Die korrigierten Daten werden dann zusammen mit Beschleunigungsdaten für alle drei Achsen x, y, z der Navigationsrechnung 6 zugeführt und das Ergebnis zusammen mit den GPS-Navigationsdaten auf den Kalman-Filter 30 rückgeführt.

Die Lösungen und Vorteile der Erfindung lassen sich wie folgt zusammenfassen:

  • 1. Bei einem GPS-gestützten inertialen Kurs- und Lagereferenzsystem mit mehreren aus einer gemeinsamen Lichtquelle gespeisten FOG-Sensoren wird mit Hilfe von aus einer relativ hohen Dynamik ausgesetzten Messachse gewonnener Systeminformation unter Anwendung von Kalman-Filtertechnik ein Skalenfaktorfehler bei allen Messachsen gleichermaßen kompensiert.
  • 2. Diese Fehlerkorrektur wird bevorzugt mit großer Zeitkonstante angewendet, um zu verhindern, dass kurzzeitige Störungen im Sützsensor, z. B. dem FOG-Sensor, einer Vertikalachse und die damit möglicherweise verbundenen fehlerhaften Schätzungen das Inertialsystem korrumpieren können. Um zu verhindern, dass eine Fehlschätzung des Kalman-Filters das System korrumpiert, ist es vorteilhaft ein Limit für die Korrektur einzuführen und bei Erreichen dieses Limits eine Warnung bzw. eine Wartungsanforderung auszugeben.
  • 3. Im Gegensatz zu anderen möglichen bekannten oder vorgeschlagenen Lösungen wird mit der Erfindung eine zuverlässige Reduzierung des Skalenfaktorfehlers des gesamten FOG-Systems erreicht, und zwar ohne zusätzlich Hardware-Kosten.


Anspruch[de]
  1. Verfahren zur Bestimmung und Kompensation des durch Wellenlängenänderung bei mehrachsigen, aus einer gemeinsamen Lichtquelle gespeisten faseroptischen Gyroskops (FOG) verursachten Skalenfaktorfehlers in einem GPS-gestützten, mit Kalman-Korrekturfilter ausgerüsteten inertialen Kurs- und Lagereferenzsystem, dadurch gekennzeichnet, dass der für eine Achse mit vergleichsweise hoher Bewegungsdynamik ermittelte Skalenfaktorfehler als Kalman-Filterkorrekturwert für die Skalenfaktor-Fehlerkorrektur aller Messachsen des FOGs mit niedrigerer Bewegungsdynamik mit verwendet wird.
  2. Verfahren nach Anspruch 1 bei einem drei-achsigen Kurs- und Lagereferenzsystem, dadurch gekennzeichnet, dass der für die Vertikalachse (z) ermittelte Skalenfaktorfehler zur Fehlerkompensation für die übrigen Messachsen (x, y) zur Skalenfaktor-Fehlerkorrektur angewendet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die mit Hilfe des für die Achse mit vergleichsweise hoher Bewegungsdynamik ermittelten Skalenfaktors zu bewirkende Fehlerkorrektur mit einer Zeitkonstante eingesetzt wird, die groß ist gegenüber zu erwartenden kurzzeitig wirkenden, nicht modulierbaren bzw. kompensierbaren Fehlerquellen.
Es folgen 2 Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com