PatentDe  


Dokumentenidentifikation DE10243758A1 01.04.2004
Titel Verfahren zur Herstellung einer vergrabenen Stoppzone in einem Halbleiterbauelement und Halbleiterbauelement mit einer vergrabenen Stoppzone
Anmelder EUPEC Europäische Gesellschaft für Leistungshalbleiter mbH, 59581 Warstein, DE;
Infineon Technologies AG, 81669 München, DE
Erfinder Schulze, Hans-Joachim, Dr., 85521 Ottobrunn, DE;
Barthelmess, Reiner, Dr., 59494 Soest, DE;
Mauder, Anton, Dr., 83059 Kolbermoor, DE;
Niedernostheide, Franz-Josef, Dr., 48157 Münster, DE
DE-Anmeldedatum 20.09.2002
DE-Aktenzeichen 10243758
Offenlegungstag 01.04.2004
Veröffentlichungstag im Patentblatt 01.04.2004
IPC-Hauptklasse H01L 21/328
IPC-Nebenklasse H01L 29/06   H01L 29/861   H01L 29/78   H01L 29/74   H01L 29/739   
Zusammenfassung Die Erfindung betrifft ein Verfahren zum Herstellen einer Stoppzone in einer dotierten Zone eines Halbleiterkörpers, der eine erste Seite und eine zweite Seite aufweist, wobei das Verfahren folgende Verfahrensschritte umfasst:
- Aufbringen einer Aussparungen aufweisenden Maske auf eine der Seiten des Halbleiterkörpers,
- Bestrahlen der die Maske aufweisende Seite mit einer Protonenstrahlung,
- Durchführen eines Temperverfahrens zur Erzeugung wasserstoffinduzierter Donatoren in dem Halbleiterkörper.
Die Erfindung betrifft weiterhin ein Halbleiterbauelement mit einer vergrabenen Stoppzone.

Beschreibung[de]

Die vorliegende Erfindung betrifft ein Halbleiterbauelement, insbesondere ein vertikales Leistungs-Halbleiterbauelement, mit einer dotierten ersten Halbleiterzone eines ersten Leitungstyps, einer sich an die erste Halbleiterzone anschließenden dotierten zweiten Halbleiterzone eines zweiten Leitungstyps, die schwächer als die erste Halbleiterzone dotiert ist, und einer sich an die zweite Halbleiterzone anschließenden dotierten dritten Halbleiterzone, die stärker als die zweite Halbleiterzone dotiert ist.

Eine derartige Halbleiterstruktur ist sowohl bei vertikalen Dioden und vertikalen Transistoren als auch bei Thyristoren vorhanden, wobei die zweite schwächer dotierte Halbleiterzone als Driftstrecke dient, die im Sperrfall des Bauelements den Großteil der zwischen der ersten und dritten Halbleiterzone anliegenden Spannung aufnimmt.

Bei Dioden ist die dritte Halbleiterzone vom gleichen Leitungstyp wie die zweite Halbleiterzone. Üblicherweise sind die zweite Halbleiterzone und die dritte Halbleiterzone n-dotiert, so dass die erste Halbleiterzone die Anode und die zweite Halbleiterzone die Kathode bildet.

Bei Leistungs-MOS-Transistoren ist im Allgemeinen im Bereich der ersten Halbleiterzone, die üblicherweise im Bereich der Vorderseite eines Halbleiterkörpers liegt, eine Feldeffektstruktur vorhanden, die eine in der ersten Halbleiterzone angeordnete Zone des zweiten, zu der Dotierung der ersten Halbleiterzone komplementären Leitungstyps und eine Steuerelektrode umfasst. Die erste Halbleiterzone bildet die sogenannte Body-Zone des Bauelements, die in der Body-Zone angeordnete komplementär dotierte Zone bildet die Source-Zone oder Emitter-Zone. Die Steuerelektrode bzw. Gate-Elektrode erstreckt sich isoliert gegenüber den Halbleiterzonen von der Source- bzw. Emitter-Zone bis zu der zweiten Halbleiterzone, der Driftzone. Die Source-Zone bzw. die Emitter-Zone und die erste Halbleiterzone sind üblicherweise kurzgeschlossen, so dass parallel zu dem Leistungstransistor eine Freilaufdiode (Body-Diode) geschaltet ist.

Ist der Leistungstransistor als MOSFET (Metal Oxide Field-Effect-Transistor) ausgebildet, so ist die dritte Halbleiterzone vom selben Leitungstyp wie die zweite Halbleiterzone bzw. die Driftzone und bildet die Drain-Zone des Bauelements.

Ist der Leistungstransistor als IGBT (Insulated Gate Bipolar Transistor) oder als Thyristor ausgebildet, so ist die dritte Halbleiterzone komplementär zu der zweiten Halbleiterzone dotiert und bildet die Kollektorzone des Halbleiterbauelements. Bei Thyristoren schließt sich an die erste Zone eine komplementär dotierte Zone an.

Derartige Dioden, MOSFET, IGBT und Thyristoren sind allgemein bekannt.

Die EP 0405 200 A1 beschreibt beispielsweise einen derartigen IGBT, in dessen Driftzone der Source-Zone eine stark dotierte Zone desselben Leitungstyps wie die Driftzone vorgelagert ist und die bewirken soll, dass Löcher, die von der p-dotierten Drain-Zone in die Driftzone injiziert werden, die Source-Zone nicht erreichen, sondern in dieser stark dotierten Zone, die bei einer Ausführungsform aus mehreren beabstandeten Abschnitten aufgebaut ist, rekombinieren.

Alle der genannten Bauelemente unterliegen dem Problem, dass beim Abschalten des Bauelements, also beim Übergang des Bauelements von einem stromleitenden in einen sperrenden Zustand ein Abreißen des Stromes auftreten kann. Dies bezeichnet einen Vorgang, bei dem der Strom des Bauelements extrem schnell auf sehr geringe Werte absinkt. Da durch die Beschaltung derartiger Bauelemente unvermeidlich parasitäre Induktivitäten vorhanden sind, insbesondere in den Zuleitungen, und die Spannung in diesen Induktivitäten bekanntlich proportional zu der Ableitung des Stromes ist, bewirkt eine schnelle Abnahme des Stromes auf sehr geringe Werte eine hohe induzierte Spannung, die zu einer Beschädigung des Bauelements führen kann. Darüber hinaus kann für bestimmte Anwendungen das Auftreten abrupter Stromänderungen unerwünscht sein, beispielsweise bei Verwendung einer Diode als Freilaufdiode in einem Halbleiterbauelement.

Ein sehr schnelles Absinken des Stromes bei Sperren des Bauelements resultiert daraus, dass die zweite Halbleiterzone zunächst noch von Ladungsträgern überflutet ist, die aufgrund einer sich ausgehend von dem pn-Übergang zwischen der ersten und zweiten Halbleiterzone ausbreitenden Raumladungszone aus der zweiten Halbleiterzone der Driftzone abtransportiert werden. Solange dieser Abtransport der "gespeicherten" Ladungsträger (Plasmaladung) anhält, fließt noch ein Strom durch die Anschlussleitungen bzw. zu angeschlossenen Verbrauchern, der langsam abnimmt. Sobald die Raumladungszone den gesamten Halbleiterkörper einnimmt und keine freien Ladungsträger mehr vorhanden sind, sinkt dieser Strom mit einem großen zeitlichen Gradienten auf sehr kleine werte ab.

Zur Umgehung dieses Problems ist es bekannt, die Abmessungen der zweiten Halbleiterzone in vertikaler Richtung des Halbleiterbauelements möglichst groß zu machen, so dass beim Abschalten möglichst lange Ladungsträger nachgeliefert werden, um ein "weiches" Abschalten, d. h. ein möglichst langsames Abklingen des Stromes, zu gewährleisten. Nachteilig ist hierbei, dass die Verluste zunehmen, da mit zunehmender Dicke der Driftzone auch der Durchlasswiderstand zunimmt.

In der noch nicht veröffentlichten DE 102 14 176.2 ist zur Erzielung eines weichen Abschaltverhaltens eine abschnittsweise ausgebildete Stoppzone vorgeschlagen, die in lateraler Richtung des Halbleiterkörpers beabstandet zueinander angeordnete stärker dotierte Zonen aufweist.

Ziel der vorliegenden Erfindung ist es, ein verbessertes Verfahren zur Herstellung eines solchen Halbleiterbauelements mit einer abschnittsweise ausgebildeten Stoppzone und ein mittels eines solchen Verfahrens hergestelltes Halbleiterbauelement zur Verfügung zu stellen.

Diese Ziele werden durch ein Verfahren gemäß der Merkmale des Anspruchs 1 und ein Halbleiterbauelement gemäß der Merkmale des Anspruchs 6 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.

Das erfindungsgemäße Verfahren zum Herstellen einer Stoppzone in einer dotierten Zone eines Halbleiterkörpers, der eine erste Seite und eine zweite Seite aufweist, umfasst das Aufbringen einer Aussparungen aufweisenden Maske auf eine der Seiten des Halbleiterkörpers, das Bestrahlen der die Maske aufweisenden Seite mit einer Protonenstrahlung und das Durchführen eines Temperverfahrens.

Durch das Verfahren mit der Protonenbestrahlung und der anschließenden Temperung entstehen in den bestrahlten Bereichen wasserstoffinduzierte Donatoren, die sich aus den bestrahlungsbedingten Defekten und den implantierten Wasserstoffatomen ergeben. Der Wasserstoff selbst ist nicht dotierend.

Die Position der einzelnen Abschnitte der Stoppzone in lateraler Richtung des Halbleiterkörpers in dem dotierten Halbleiterbereich ist bestimmt durch die Abmessungen der Maske bzw. der Aussparungen in der Maske, die den Bestrahlungsvorgang maskiert. Die Position dieser Stoppzonen in vertikaler Richtung des Halbleiterkörpers ist bestimmt durch die Eindringtiefe der Protonen in den Halbleiterkörper, die wiederum von der Bestrahlungsenergie abhängig ist. Mittels einer solchen Protonenstrahlung lassen sich dotierte Zonen in Tiefen bis zu einigen hundert &mgr;m ausgehend von der bestrahlten Seite des Halbleiterkörpers erzeugen.

Vorzugsweise sind die Temperatur und die Dauer des Temperverfahrens so gewählt, dass durch die Bestrahlung erzeugte Bestrahlungsschäden, die die Trägerlebensdauer reduzieren, zumindest teilweise ausgeheilt werden. Über die Bestrahlungsenergie lässt sich die vertikale Position der Bereiche, in die Protonen eingebracht werden, vergleichsweise exakt einstellen. Durch die Wahl des Temperverfahrens lassen sich gut abgegrenzte dotierte Zonen, die die Abschnitte der Stoppzone bilden, erzeugen.

Als Temperverfahren eignen sich sowohl ein RTA-Verfahren (RTA = Rapid Thermal Annealing) als auch kontinuierliche Ofenprozesse.

Die Temperatur während des Temperverfahrens liegt zwischen 250°C und 550°C, vorzugsweise zwischen 400°C und 500°C. Die Dauer beträgt zwischen 1 min und 250 min.

Die Maske für die partielle Protonenbestrahlung kann eine fest auf eine der Seiten des Halbleiterkörpers aufgebrachte Maske sein. Die Maske kann auch eine Metallblende sein, die vor der zu bestrahlenden Seite des Halbleiterkörpers oder des Wafers, der eine Vielzahl zusammenhängender Halbleiterbauelemente aufweist, positioniert wird.

Das erfindungsgemäße Halbleiterbauelement umfasst eine dotierte erste Halbleiterzone eines ersten Leitungstyps, eine sich an die erste Halbleiterzone anschließende dotierte zweite Halbleiterzone eines zweiten Leitungstyps, die schwächer als die erste Halbleiterzone dotiert ist, eine sich an die zweite Halbleiterzone anschließende dotierte dritte Halbleiterzone, die stärker als die zweite Halbleiterzone dotiert ist, und eine in der zweiten Halbleiterzone beabstandet zu der dritten Halbleiterzone angeordnete Stoppzone des zweiten Leitungstyps, wobei die Stoppzone stärker als die Stoppzone umgebende Bereiche der zweiten Halbleiterzone dotiert ist, und wobei der Abstand zwischen der Stoppzone und der dritten Halbleiterzone geringer als der Abstand zwischen der Stoppzone und der ersten Halbleiterzone ist. Die Stoppzone ist dabei derart abschnittsweise ausgebildet, dass sie eine Anzahl in lateraler Richtung des Halbleiterkörpers beabstandet zueinander angeordnete dotierte Zonen umfasst, wobei diese dotierten Zonen wasserstoffinduzierte Donatoren enthalten. Zwischen den lateral beabstandet zueinander angeordneten Zonen der Stoppzone sind schwächer dotierte Zonen der zweiten Halbleiterzone angeordnet. Diese schwächer dotierten Zonen der zweiten Halbleiterzone bilden "Durchlässe" für Ladungsträger in der zweiten Halbleiterzone.

Beim Sperren des erfindungsgemäßen Halbleiterbauelements werden, wenn die Raumladungszone die Stoppzone erreicht, aus der stärker dotierten Stoppzone und vor allem aus dem Bereich, der zwischen der Stoppzone und der dritten Zone liegt, Ladungsträger nachgeliefert, die so noch für eine längere Zeitdauer einen Stromfluss hervorrufen als dies ohne Stoppzone der Fall wäre und dadurch ein "weiches" Abschaltverhalten bewirken.

Die Stoppzone erhöht den Durchlasswiderstand nicht wesentlich und ist insbesondere bei solchen Bauelementen vorteilhaft, die zur Erreichung einer guten Höhenstrahlungsfestigkeit eine geringe Dotierung der zweiten Halbleiterzone bzw. der Driftzone besitzen.

Die Stoppzone ist in etwa dort in der zweiten Halbleiterzone angeordnet, wo im Bauelement ohne Stoppzone zum Ende der Ausräumphase freie Ladungsträger – die ausgehend von dem pn-Übergang zwischen der ersten und zweiten Halbleiterzone ausgeräumt werden – vorhanden sind. Dies hängt implizit mit der Position der Stoppzone zusammen. Die Stoppzone liegt näher an der dritten Halbleiterzone als an der ersten Halbleiterzone, das heißt, der Abstand zwischen der Stoppzone und der dritten Halbleiterzone ist geringer als der Abstand zwischen der Stoppzone und der ersten Halbleiterzone.

Vorzugsweise ist der Abstand zwischen der dritten Halbleiterzone und der ersten Halbleiterzone mehr als dreimal so groß wie der Abstand zwischen der Stoppzone und der dritten Halbleiterzone. Die Abmessungen der Stoppzone sind in einer Richtung von der ersten zu der dritten Halbleiterzone, also in vertikaler Richtung des Bauelements, wesentlich geringer als die Abmessungen der zweiten Halbleiterzone in dieser Richtung.

Das Halbleiterbauelement kann als Diode ausgebildet sein, wobei bei einer p-dotierten ersten Halbleiterzone diese erste Halbleiterzone die Anode bildet und die dritte Halbleiterzone, die dann n-dotiert ist, die Kathode bildet.

Das Halbleiterbauelement kann auch als MOS-Transistor ausgebildet sein, wobei dann wenigstens eine Feldeffektstruktur vorhanden ist, die eine in der ersten Halbleiterzone beabstandet zu der zweiten Halbleiterzone angeordnete Zone des zweiten Leitungstyps und eine isoliert gegenüber den Halbleiterzonen ausgebildete Steuerelektrode umfasst.

Die erste Halbleiterzone bildet dabei die Body-Zone, und die in der Body-Zone angeordnete Zone des zweiten Leitungstyps bildet die Source-Zone bzw. die Emitter-Zone. Der Dotierungstyp der dritten Halbleiterzone entspricht bei einem MOSFET dem Dotierungstyp der zweiten Halbleiterzone bzw. der Driftzone, wobei die dritte Halbleiterzone die Drainzone des MOS-FET bildet. Der Dotierungstyp der dritten Halbleiterzone ist bei einem IGBT komplementär zu dem Dotierungstyp der zweiten Halbleiterzone bzw. der Driftzone, wobei die dritte Halbleiterzone die Kollektorzone des IGBT bildet.

Des weiteren kann das Bauelement selbstverständlich auch als Thyristor ausgebildet sein.

Die vorliegende Erfindung wird nachfolgend in Ausführungsbeispielen anhand von Figuren näher erläutert. In den Figuren zeigt

1: ein als Diode ausgebildetes erfindungsgemäßes Halbleiterbauelement,

2: ein als MOSFET ausgebildetes erfindungsgemäßes Halbleiterbauelement,

3: ein als IGBT ausgebildetes erfindungsgemäßes Halbleiterbauelement,

4: beispielhaft einen Dotierungsverlauf in der Stoppzone entlang der in den 1 bis 3 eingezeichneten Schnittlinie A-A',

5: einen Teilabschnitt eines als Diode ausgebildeten erfindungsgemäßen Halbleiterbauelementes (5a) und den dreidimensionalen Dotierungsverlauf im Bereich der Stoppzone (5b),

6: einen Verfahrensschritt zur Herstellung einer vergrabenen Stoppzone in einem Halbleiterbauelement.

In den Figuren bezeichnen, sofern nicht anders angegeben, gleiche Bezugszeichen gleiche Teile und Bereiche mit gleicher Bedeutung.

1 zeigt den Ausschnitt eines Halbleiterkörper 10 eines als Diode ausgebildeten erfindungsgemäßen vertikalen Halbleiterbauelements. Das Bauelement weist eine p-dotierte erste Halbleiterzone 12 auf, die im Bereich der Vorderseite 101 des Halbleiterkörpers 10 angeordnet ist und an die sich in vertikaler Richtung eine schwach n-dotierte zweite Halbleiterzone 14 anschließt. An diese zweite Halbleiterzone 14 schließt sich in vertikaler Richtung eine stark n-dotierte dritte Halbleiterzone 18 an, die die Rückseite 102 des Halbleiterkörpers 10 bildet.

Erfindungsgemäß ist in der zweiten Halbleiterzone 14 beabstandet zu der dritten Halbleiterzone 18 eine stärker als der übrige Bereich der zweiten Halbleiterzone 14 dotierte Stoppzone 16 vorhanden, die vom selben Leitungstyp wie der übrige Bereich der zweiten Halbleiterzone 14 ist. Die Stoppzone 16 ist beabstandet zu der dritten Halbleiterzone 18 und beabstandet zu der ersten Halbleiterzone 12 angeordnet, wobei der Abstand zwischen der Stoppzone 16 und der dritten Halbleiterzone 18 geringer ist als der Abstand zwischen der Stoppzone 16 und der ersten Halbleiterzone 12 ist.

Die Stoppzone 16 umfasst mehrere Teilabschnitte, die in lateraler Richtung des Bauelements beabstandet zueinander angeordnet sind, so dass zwischen den einzelnen stark n-dotierten Teilzonen schwächer n-dotierte Zonen der zweiten Halbleiterzone 14 vorhanden sind, die Durchlässe für Ladungsträger bilden.

Außerdem ist die Stoppzone n-dotiert, wobei diese n-Dotierung wenigstens teilweise durch wasserstoffinduzierte Donatoren gebildet ist.

Bei dem als PIN-Diode ausgebildeten Bauelement gemäß 1 dient die erste Halbleiterzone 12 als Anodenzone, ein nur schematisch eingezeichneter Anschluss 22 bildet entsprechend den Anodenanschluss. Die zweite Halbleiterzone 14 dient als Driftstrecke oder Driftzone, die im Sperrfall einen wesentlichen Teil der anliegenden Sperrspannung aufnimmt, und die dritte Halbleiterzone 18, die bei der Diode vom selben Leitungstyp wie die Driftstrecke 14 aber komplementär zu der Dotierung der ersten Halbleiterzone 12 ist, dient als Kathodenzone, ein nur schematisch eingezeichneter Anschluss 24 dient entsprechend als Kathodenanschluss. Das elektrische Ersatzschaltbild des Bauelements ist gestrichelt in die Struktur in 1 eingezeichnet.

Die Funktionsweise des erfindungsgemäßen Bauelements und insbesondere die Funktionsweise der Stoppzone 16 wird nachfolgend kurz erläutert.

Bei Anlegen einer positiven Spannung zwischen dem Anodenanschluss 22 und dem Kathodenanschluss 24 wird das Bauelement in Flussrichtung betrieben, wobei Elektronen und Löcher in die Driftzone 14 injiziert werden und diese "überfluten". Das Bauelement sperrt bei einem Umpolen der Spannung, d. h. bei Anlegen einer positiven Spannung zwischen dem Kathodenanschluss 24 und dem Anodenanschluss 22. Ausgehend von der Anodenzone 12 und der Kathodenzone 18 breitet sich dabei eine Raumladungszone aus, die ein Abfließen der freien Ladungsträger aus der Driftzone 14 bewirkt. Diese in der Driftzone 14 noch vorhandenen freien Ladungsträger sorgen dafür, dass der an den Anschlussklemmen 22, 24 zu beobachtende Strom nicht abrupt mit dem Umpolen der Spannung abbricht, sondern noch für eine gewisse Zeitdauer aufrecht erhalten wird, bis die freien Ladungsträger aus der Driftzone 14 abgeflossen sind.

Die Stoppzone 16 ist so angeordnet, dass bei Ausbreiten der Raumladungszone bis zuletzt freie Ladungsträger vorhanden sind, insbesondere in der Zone 142 zwischen der Stoppzone 16 und dem Emitter 18. Bevor das Bauelement vollständig sperrt, d. h. der an den Anschlussklemmen 22, 24 zu beobachtende Strom auf sehr kleine Werte (Sperrstrom) absinkt, werden auch freie Ladungsträger aus der stärker dotierten Stoppzone 16 und der Zone 142 nachgeliefert. Da aus der vorgeschlagenen Struktur mit der Stoppzone 16 mehr Ladungsträger geliefert werden, als bei einem Bauelement, bei dem keine derartige vergrabene Stoppzone vorhanden ist, nimmt der Strom bei dem erfindungsgemäßen Halbleiterbauelement langsamer ab. Insbesondere der Stromabfall kurz bevor die Raumladungszone ihre maximale Ausdehnung erreicht hat, ist bei dem erfindungsgemäßen Halbleiterbauelement geringer als bei herkömmlichen derartigen Bauelementen. Induzierte Spannungen in parasitären Induktivitäten, beispielsweise den Zuleitungen, die proportional zur Ableitung des Stromes sind, sind bei dem erfindungsgemäßen Bauelement gegenüber herkömmlichen derartigen Bauelementen deshalb reduziert.

Die abschnittsweise Ausbildung der Stoppzone 16 mit dazwischen liegenden schwächer dotierten Bereichen sorgt dafür, dass durch die schwächer dotierten Bereiche "Durchlässe" für freie Ladungsträger vorhanden sind, um den Ladungsträgerstrom in der Driftzone 14 durch das Vorhandensein der Stoppzone nicht oder nur unwesentlich zu beeinflussen.

Wie bereits erläutert, ist die Stoppzone in einem Bereich der Driftzone angeordnet, der näher an der n-dotierten dritten Halbleiterzone 18 als an der p-dotierten ersten Halbleiterzone 12 liegt. Der Abstand zwischen der dritten Halbleiterzone 18 und der ersten Halbleiterzone 12 ist vorzugsweise mehr als dreimal so groß wie der Abstand zwischen der Stoppzone 16 und der dritten Halbleiterzone 18.

2 zeigt ein als MOSFET ausgebildetes erfindungsgemäßes Halbleiterbauelement, das sich von der Diode gemäß 1 dadurch unterscheidet, dass im Bereich der Vorderseite des Halbleiterbauelements eine Feldeffektstruktur vorhanden ist. Diese Feldeffektstruktur umfasst stark n-dotierte Source-Zonen 13 in der als Body-Zone dienenden ersten Halbleiterzone 12 sowie wenigstens eine gegenüber dem Halbleiterkörper 10 isolierte Gate-Elektrode 36 zur Ausbildung eines leitenden Kanals zwischen der Source-Zone 13 und der Driftzone 14 bei Anlegen eines geeigneten Ansteuerpotentials. Die Driftzone 14 erstreckt sich bei dem MOSFET abschnittsweise zwischen den stark p-dotierten Body-Zonen 12 bis an die Vorderseite 101 des Halbleiterkörper, oberhalb der die Gate-Elektrode 36 angeordnet ist.

Bei einer alternativen, nicht näher dargestellten Ausbildung des MOSFET als Trench-MOSFET ist die Gate-Elektrode in einem sich in vertikaler Richtung in den Halbleiterkörper hinein erstreckenden Graben angeordnet und erstreckt sich bis in die Driftzone, so dass die Driftzone bei diesem Ausführungsbeispiel nicht bis an die Vorderseite des Halbleiterkörpers 10 reicht.

Die Body-Zone 12 und die Source-Zone 13 sind durch eine Anschlusselektrode 22 kurzgeschlossen, die die Source-Elektrode des Bauelements bildet. Die stark n-dotierte Halbleiterzone 18 im Bereich der Rückseite 102 des Halbleiterbauelements dient als Drain-Anschluss. Die Gate-Elektrode 36 ist durch einen schematisch dargestellten Gate-Anschluss 26 kontaktiert.

Erfindungsgemäß ist auch bei diesem Halbleiterbauelement eine stärker als die zweite Halbleiterzone 14 dotierte Stoppzone 16 vorhanden, die ein "weiches Abschalten" der Body-Diode gewährleistet. Die Funktion dieser Body-Diode entspricht der Funktion der in 1 dargestellten Diode, wobei diese Diode in Flussrichtung gepolt ist, wenn zwischen dem Source-Anschluss und dem Drain-Anschluss des MOSFET eine positive Spannung anliegt. Diese Diode, deren Schaltsymbol gestrichelt eingezeichnet ist, dient als Freilaufdiode, die bei sperrendem MOSFET und Anliegen einer positiven Source-Drain-Spannung leitet. Die spezielle Anordnung der Stoppzone 16 sorgt dafür, dass bei einem Umpolen der Spannung, d. h. einem Anliegen einer positiven Drain-Source-Spannung der durch die Body-Diode fließende Freilaufstrom nicht abrupt abnimmt.

3 zeigt ein als IGBT ausgebildetes erfindungsgemäßes Halbleiterbauelement, das sich von dem in 2 dargestellten dadurch unterscheidet, dass die dritte Halbleiterzone 18 im Bereich der Rückseite des Halbleiterkörpers 10 p-dotiert ist, um bei leitend angesteuertem Bauelement in bekannter Weise Minoritätsladungsträger in die Driftzone 14 zu injizieren.

4 zeigt schematisch den Dotierungsverlauf, d. h. die Konzentration ND an Donatoren entlang der in den 1 bis 3 eingezeichneten Schnittlinie A-A' im Bereich der Stoppzone 16. Diese Dotierungskonzentration ist im Bereich der Abschnitte der stark dotierten Stoppzone 16 hoch und zwischen diesen Abschnitten entsprechend niedrig. Übliche Werte für die hohe Dotierung betragen etwa 1016cm–3. Übliche Werte für die niedrige Dotierung liegen im Bereich zwischen 1012cm–3 und 1014cm–3.

Die Breite der Abschnitte der Stoppzone 16 kann in etwa dem Abstand zwischen diesen Abschnitten entsprechen. Der Abstand zwischen diesen Stoppzonen kann jedoch auch wesentlich geringer als die lateralen Abmessungen der Stoppzonen sein, wie bei der erfindungsgemäßen Diode gemäß 5a dargestellt ist.

5b zeigt den dreidimensionalen Dotierungsverlauf im Bereich der Stoppzone 16 bei der Diode nach 5a, woraus hervorgeht, dass die Dotierung im Bereich der Stoppzone wesentlich höher ist als die Dotierung umliegender Bereiche. Zur Herstellung der Stoppzone ist vorgesehen, eine Aussparungen 61 aufweisende Maske 60 auf eine der Seiten des Halbleiterkörpers 10, aufzubringen und diese Seite des Halbleiterkörpers mit Protonen zu bestrahlen. 6 veranschaulicht diesen Verfahrensschritt, wobei in 6 die Aussparungen 61 aufweisende Maske 60 auf die Rückseite 102 des Halbleiterkörpers aufgebracht ist. Anstelle der Maske 60 kann auch eine Metallblende verwendet werden, die auf oder vor der Rückseite 102 des Halbleiterkörpers 10 positioniert wird. Der Bestrahlungsvorgang findet in einem Prozessstadium statt, bei dem eine Vielzahl von Halbleiterbauelementen noch gemeinsam in einem Wafer integriert sein können, wobei die Metallblende in geeigneter Weise vor dem Wafer positioniert wird.

Die Energie, mit der die Protonen in den Halbleiterkörper 10 eingestrahlt werden, ist so gewählt, dass die Protonen in vertikaler Richtung bis in die Bereiche vordringen, in denen die einzelnen Abschnitte der Stoppzone gebildet werden sollen. Diese Bereiche, bis in die die eingestrahlten Protonen vordringen sind in 6 mit dem Bezugszeichen 50 bezeichnet.

An die Protonenbestrahlung schließt sich ein Temperverfahren an, wobei die Temperatur und die Dauer dieses Temperverfahrens so gewählt ist, dass Bestrahlungsschäden in den durch die Protonen auf ihrem Weg bis in die Bereiche 50 durchstrahlten Bereich weitgehend ausgeheilt werden, dass jedoch keine wesentliche Diffusion der in die Bereiche 50 eingestrahlten Protonen erfolgt, um möglichst eng begrenzte dotierte Zonen zu erreichen, die die einzelnen Abschnitte der späteren Stoppzone 16 bilden. Die n-Dotierung dieser Stoppzonenabschnitte resultiert aus wasserstoffinduzierten Donatoren, die eingestrahlten Protonen bzw. Wasserstoffionen selbst wirken nicht dotierend.

Die Bestrahlungsenergie, mit der die Protonen in den Halbleiterkörper 10 eingebracht werden, ist so gewählt, dass die Zonen 50 mit den eingestrahlten Protonen in einem gewünschten Abstand von der stärker dotierten dritten Halbleiterzone 18 liegen.

Durch die Protonenbestrahlung entstehen Kristalldefekte in den durch die Protonen durchstrahlten Bereichen des Halbleiterkörpers. Diese Kristalldefekte führen zu einer Verringerung der Ladungsträgerlebensdauer, was wiederum zu einer Erhöhung der Durchlassspannung des Halbleiterbauelementes führt. Experimente haben gezeigt, dass bei Ausheiltemperaturen im Bereich von 500° C die vor der Bestrahlung vorhandene Ladungsträgerlebensdauer annäherungsweise wieder erreicht wird. Die während des Temperschrittes vorhandenen Temperaturen liegen vorzugsweise deshalb im Bereich zwischen 400°C und 500°C.


Anspruch[de]
  1. Verfahren zum Herstellen einer Stoppzone (16) in einer dotierten Zone (14) eines Halbleiterkörpers (10), der eine erste Seite (101) und eine zweite Seite (102) aufweist, wobei das Verfahren folgende Verfahrensschritte umfasst:

    – Aufbringen einer Aussparungen (61) aufweisenden Maske (60) auf eine (102) der Seiten des Halbleiterkörpers (10),

    – Bestrahlen der die Maske (60) aufweisende Seite (102) mit einer Protonenstrahlung,

    – Durchführen eines Temperverfahrens zur Erzeugung wasserstoffinduzierter Donatoren in dem Halbleiterkörper.
  2. Verfahren nach Anspruch 1, bei dem die Temperatur und die Dauer des Temperverfahrens so gewählt sind, dass durch die Bestrahlung erzeugte Bestrahlungsschäden weitgehend ausgeheilt werden, im Wesentlichen jedoch keine Diffusion der eingebrachten Protonen in dem Halbleiterkörper (10) erfolgt.
  3. Verfahren nach Anspruch 2, bei dem das Temperverfahren ein RTA-Verfahren ist.
  4. Verfahren nach Anspruch 2 oder 3, bei dem die Temperatur während des Temperverfahrens zwischen 250°C und 550°C, vorzugsweise zwischen 400°C und 500°C liegt.
  5. Verfahren nach einem der vorangehenden Ansprüche, bei der die Maske eine Metallblende ist.
  6. Halbleiterbauelement, das folgende Merkmale aufweist:

    – eine dotierte erste Halbleiterzone (12) eines ersten Leitungstyps (p),

    – eine sich an die erste Halbleiterzone (12) anschließende dotierte zweite Halbleiterzone (14) eines zweiten Leitungstyps (n), die schwächer als die erste Halbleiterzone (12) dotiert ist,

    – eine sich an die zweite Halbleiterzone (14) anschließende dotierte dritte Halbleiterzone (18), die stärker als die zweite Halbleiterzone (14) dotiert ist,

    – eine in der zweiten Halbleiterzone (14) beabstandet zu der dritten (18) Halbleiterzone angeordnete Stoppzone (16) des zweiten Leitungstyps (n), wobei die Stoppzone (16) stärker als die Stoppzone (16) umgebende Bereiche der zweiten Halbleiterzone (14) dotiert ist, der Abstand zwischen der Stoppzone (16) und der dritten Halbleiterzone (18) geringer als der Abstand zwischen der Stoppzone (16) und der ersten Halbleiterzone (12) ist, die Stoppzone (16) in der Weise abschnittsweise ausgebildet ist, dass sie mehrere lateral beabstandet zueinander angeordnete Zonen aufweist und die Dotierung der Stoppzone wenigstens teilweise durch wasserstoffinduzierte Donatoren gebildet ist.
  7. Halbleiterbauelement nach Anspruch 6, bei dem der Abstand zwischen der dritten Halbleiterzone (18) und der ersten Halbleiterzone (12) mehr als dreimal so groß wie der Abstand zwischen der Stoppzone (16) und der dritten Halbleiterzone (18) ist.
  8. Halbleiterbauelement nach einem der vorangehenden Ansprüche, das wenigstens eine Feldeffektstruktur aufweist, die eine in der ersten Halbleiterzone (12) beabstandet zu der zweiten Halbleiterzone (14) angeordnete Zone (13) des zweiten Leitungstyps (n) und eine isoliert gegenüber den Halbleiterzonen (12, 13) ausgebildete Steuerelektrode (36) umfasst.
  9. Halbleiterbauelement nach einem der vorangehenden Ansprüche, bei dem die dritte Halbleiterzone (18) vom zweiten Leitungstyp (p) ist .
  10. Halbleiterbauelement nach Anspruch 8, bei dem die dritte Halbleiterzone (18) vom ersten Leitungstyp ist.
  11. Halbleiterbauelement nach einem der vorangehenden Ansprüche, bei dem die Abmessungen der Stoppzone (16) in Richtung von der ersten zu der dritten Halbleiterzone (12, 18) wesentlich geringer als die Abmessungen der zweiten Halbleiterzone (14) in dieser Richtung sind.
Es folgen 5 Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com