PatentDe  


Dokumentenidentifikation EP0909015 06.05.2004
EP-Veröffentlichungsnummer 0000909015
Titel Verfahren zur Steuerung eines Servomotors
Anmelder Tamagawa Seiki K.K., Iida, Nagano, JP
Erfinder Takaji, Yasui, Iida-shi, Nagano-ken, JP
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69822750
Vertragsstaaten BE, CH, DE, ES, FR, GB, IT, LI, NL, SE
Sprache des Dokument EN
EP-Anmeldetag 24.09.1998
EP-Aktenzeichen 983077645
EP-Offenlegungsdatum 14.04.1999
EP date of grant 31.03.2004
Veröffentlichungstag im Patentblatt 06.05.2004
IPC-Hauptklasse H02P 5/00
IPC-Nebenklasse H02P 7/62   

Beschreibung[en]

The present invention relates to a method for driving a servo-motor, and more particularly to a new improvement for detecting power source voltage without using a current feedback loop, comprising a current sensor and an A/D converter, which is conventionally used for detecting motor current, and controlling current using this detected value, thereby improving control properties when motor temperature has increased and lowering cost.

Fig. 1 shows a conventional method of this type which has generally been used as a method for driving a servo-motor.

That is, a current command Icmd is input to a calculator 1. The output 1a of the calculator 1 is sent via a proportional and/or integral controller 2 and is input as a voltage command 2a to a power converter 3, comprising a known power element configuration. The power converter 3 supplies a three-phase drive current Iu, Iv, Iw to a servo-motor 4. Current sensors 5 detect two parts of the three-phase drive current Iu, Iv, Iw,

and the detected current value Ivcc is input to the calculator 1 via an A/D converter 7, thereby forming a current feedback control.

Since the conventional servo-motor driving method has the configuration described above, it has problems such as the following.

That is, two current sensors and an expensive A/D converter are required in order to form the current feedback system, constituting a considerable obstacle to lowering the cost of the control system.

United States Patent 4,764,711 describes a motor control technique which corrects for variations in motor resistance due to temperature fluctuations. An adaptive motor resistance circuit provides an input to a back emf sensor which subtract the motor resistance signal and the motor inductance signal from the applied motor voltage to compute the back emf voltage.

"Current Sensorless Field Oriented Control of Synchronous Reluctance Motor" by Matsuo et. al. from the conference record of the industry applications conference IAS annual meeting, Toronto October 3 - 6, 1993, vol. Part 1, Nr. Meeting 28, pages 672 - 678 describes a control strategy for a synchronous reluctance motor which eliminates the need for a current sensor. The control scheme includes a voltage reference calculator which generates the required voltage references from the torque command and the motor speed.

The present invention has been realized in order to solve the above problems and particularly aims to provide a method for driving a servo-motor wherein, by detecting power source voltage without using a conventional current feedback loop for motor current detection and controlling current using this detected value, control properties can be improved and cost lowered, and in addition, control performance can be improved when motor temperature has increased.

Accordingly a first aspect of the invention provides a method for driving a servo-motor based on a current command as set out in Claim 1. Preferred features of this aspect of the invention are set out in Claim 2.

The invention also provides apparatus for driving a servo-motor as set out in Claim 3. Preferred features of this aspect of the invention are set out in Claim 4.

The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:

  • Fig. 1 is a block diagram showing a conventional control method;
  • Fig. 2 is a block diagram showing a servo-motor driving method according to the present invention;
  • Fig. 3 is a control block diagram showing calculation contents of the current controller of Fig. 2;
  • Fig. 4 is a control block diagram showing the normal control state of Fig. 3; and
  • Fig. 5 is a block diagram for calculating a voltage command of the current controller of Fig. 2.

There will be detailed below the preferred embodiment of the servo-motor driving method of the present invention with reference to the accompanying drawings. Like and similar members to the conventional example are explained using like reference characters.

As shown in Fig. 2, current command Icmd, which comprises a current command value, is input to a current controller 2A and a voltage command Vcmd from the current controller 2A is applied to a known power converter 3. A drive power source 6, for driving power elements not shown in the diagram, is connected to the power converter 3. The power converter 3 supplies a three-phase drive current Iu, Iv, Iw to a servo-motor 4. Furthermore, a detected value Vcc of a power source voltage V of the drive power source 6 and a detected value Ivcc of a power source current I of the drive power source 6 are captured by the current controller 2A.

The control system shown in Fig. 2 differs from the conventional control system of Fig. 1 in respect of the fact that the current controller 2A applies a voltage command Vcmd, which is controlled using the detected value Vcc of the power source voltage V and the detected value Ivcc of the power source current I of the drive source 6, to the power converter 3. Then, the servo-motor 4 is drive-controlled by the three-phase drive current Iu, Iv, Iw obtained from the power converter 3.

Next, the calculation control of the current controller 2A will be explained more specifically. Fig. 3 shows the calculation contents of the servo-motor 4 and the current controller 2A as blocks. The current command Icmd is input to a first calculator 10A via a reverse calculation system (Ra), which is reverse with respect to the calculation system (1/Ra + Las) of the servo-motor 4, a current response loop 30 arid an electrical time-constant τes. The output 10Aa from the first calculator 10A is input to a second calculator 10. The output Vcmd of the second calculator 10 passes via a third calculator 11 and via the calculation system (1/Ra + Las), a torque constant kt and an inertia 1/Js, whereby a motor speed ω is obtained. Here, the abovementioned Ra represents motor resistance, La represents motor inductance and s represents a Laplace operator. Each induced voltage constant KE obtained from the motor speed ω is input to the calculators 10 and 11.

Furthermore, the current command Icmd is input to a subtractor 41 which subtracts a command power Wcmd, comprising the torque constant kt, a multiplier 40 and a constant k, from a power Wout supplied by the drive power source 6, which is the product of the power source voltage V and the power source current I. The motor resistance Ra is corrected by inputting thereto the estimated value Ral of the increase in motor resistance obtained from the subtractor 41. That is, this correction improves control performance at increased temperature by tuning changes in resistance when the temperature of the servo-motor 4 has increased.

Next, when calculation control with the configuration of Fig. 3 is functioning normally, it reaches the calculation control state shown in Fig. 4, where the response of the current response loop 30 of the servo-motor 4 is 1, and the current control system accurately follows the current target value. However, in the current control system shown in Fig. 4, in order to directly receive fluctuations in he power source voltage V, a detected value Vcc of the power source voltage V must be detected and the voltage command Vcmd must be corrected accordingly.

In order to perform the above correction, control is carried out by means of a numeric calculation using a calculation control system comprising the calculation control blocks shown in Fig. 5. Firstly, the current command Icmd is input to the second calculator 10 from the first calculator 10A via a first loop 30, wherein the response of the current response loop from the motor resistance R is 1, and a second loop 21 (τes, a product of the electrical time-constant τe and the Laplace operator s, where τe is equal to La [motor inductance] / Ra [motor resistance]) in the same way as already depicted in Fig. 3. A voltage calculator 21A controls the output 11a of the second calculator 11 by numeric calculation of Vcom/Vcc (where Vcom is a projected value of the power voltage V and Vcc is the detected value of the power voltage V). Then, the voltage command Vcmd, which has now been corrected in accordance with the fluctuations in the power source voltage V, is applied to the power converter 3. The program sequence for calculating the voltage command Vcmd in Fig. 5 is expressed by equation (1) in the following expression: [Exp. 1] Vcmd = {Ra (Ik - τe / T [Ik - Ik-1]) + kE • ωk } Vcom/Vcc

Ik - -
current command when sampling k
Ik-1 - -
current command when sampling (k-1)
ωk - -
motor speed when sampling k
T - -
sampling time
Ra - -
motor resistance
τe - -
electrical time-constant = La/Ra
La - -
motor inductance
kE - -
induced voltage constant
Vcom - -
projected value of power voltage
Vcc - -
detected value of power voltage
Vcmd - -
voltage command

Furthermore, during normal calculation control, equality is achieved wherein K•Icmd × kt × ω = Vcc × Ivcc (where k is a proportional constant, Icmd is a motor current command, kt is the torque constant, ω is the motor speed, Vcc is the detected value of power source voltage and Ivcc is the detected value of power source current). Therefore, a case where the above equality is not achieved is deemed to be a state of motor overcurrent, namely a control irregularity.

The servo-motor driving method of the present invention has the configuration described above and therefore obtains the following advantageous effects. Namely, since the entire system can be controlled with a numeric calculation open loop, there is no need for the current feedback system using a current sensor and an A/D converter which has conventionally been used. The consequent reduction of parts enables cost to be reduced. In addition, deterioration of control precision caused by current sensor noise can be prevented. Furthermore, since changes in resistance due to increased temperature of the servo-motor are corrected, servo-motor rotation properties which are not dependent on temperature can be obtained, improving control performance.

While there have been described what are at present considered to be preferred embodiments of the invention, it will be understood that various modifications may be made thereto, and it is intended that the appended claims cover all such modifications as fall within the scope of the invention.


Anspruch[de]
  1. Verfahren zum Ansteuern eines Servomotors (4) auf Grundlage eines Strombefehls (Icmd), umfassend die folgenden Schritte:
    • Erfassen einer Leistungsquellenspannung (V) einer Ansteuerleistungsquelle (6) zum Ansteuern des Servomotors (4);
    • Strom-Steuern eines Ansteuerstroms (Iu, Iv, Iw) des besagten Servomotors (4) unter Verwendung eines erfassten Werts (Vcc) der besagten Energiequellenspannung (V) und eines Motorwiderstandswerts (Ra); und
    • Korrigieren von Änderungen in dem Motorwiderstandswert (Ra) verursacht durch eine Erhöhung in der Temperatur des Servomotors (4), wobei dieser Widerstandswert (Ra) in einer numerischen Berechnung der Strom-Steuerung verwendet wird,
       dadurch gekennzeichnet, dass

       das Korrigieren ausgeführt wird unter Verwenden eines abgeschätzten Werts einer Erhöhung in dem Motorwiderstandswert (Ra) ermittelt unter Verwendung einer Befehlsleistung (Wcmd) und einer Leistung (Wout), die von der besagten Ansteuerleistungsquelle (6) zugeführt wird, wobei die besagte Befehlsleistung (Wcmd) auf das Produkt des besagten Strombefehls (Icmd) und der Motorgeschwindigkeit (ω) gestützt ist, und die Leistung (Wout), die von der Ansteuerleistungsquelle (6) zugeführt wird, das Produkt der besagten Leistungsquellenspannung (V) und eines Leistungsquellenstroms (I) der besagten Ansteuerleistungsquelle (6) ist.
  2. Verfahren nach Anspruch 1, wobei das Korrigieren von Änderungen in dem Motorwiderstandswert ferner ein Subtrahieren der Befehlsleistung (Wcmd), umfassend die Drehmomentkonstante (kt) und die Motorgeschwindigkeit (ω), von der Leistung (Wout), die von der Ansteuerleistungsquelle (6) zugeführt wird, einschließt.
  3. Vorrichtung zum Ansteuern eines Servomotors (4) im Ansprechen auf einen Strombefehl (Icmd), umfassend:
    • eine Einrichtung zum Erfassen einer Leistungsquellenspannung (V) einer Ansteuerleistungsquelle (6) zum Ansteuern des besagten Servomotors (4);
    • eine Einrichtung (2A) zum Strom-Steuern eines Ansteuerstroms (Iu, Iv, Iw) des besagten Servomotors (4) unter Verwendung eines erfassten Werts (Vcc) der besagten Energiequellenspannung (V) und eines Motorwiderstandswerts (Ra); und
    • eine Einrichtung zum Korrigieren von Änderungen in dem Motorwiderstandswert (Ra) verursacht durch eine Erhöhung in der Temperatur des besagten Servomotors (4), wobei dieser Widerstandswert (Ra) in einer numerischen Berechnung durch die Strom-Steuerungseinrichtung (2A) verwendet wird, dadurch gekennzeichnet, dass die Einrichtung zum Korrigieren von Änderungen in dem Motorwiderstandswert (Ra) das Korrigieren unter Verwenden eines abgeschätzten Werts einer Erhöhung in dem Motorwiderstand (Ra) ermittelt unter Verwendung einer Befehlsleistung (Wcmd) und einer Leistung, die von der Ansteuerleistungsquelle (6) zugeführt wird, ausführt, wobei die besagte Befehlsleistung (Wcmd) auf das Produkt des besagten Strombefehls (Icmd) und der Motorgeschwindigkeit (ω) gestützt ist und die Leistung, die von der Ansteuerleistungsquelle (6) zugeführt wird, das Produkt der besagten Leistungsquellenspannung (V) und eines Leistungsquellenstroms der besagten Ansteuerleistungsquelle (6) ist.
  4. Vorrichtung nach Anspruch 3, wobei die Einrichtung zum Korrigieren von Änderungen in dem Motorwiderstandswert (Ra) ferner eine Einrichtung zum Subtrahieren der Befehlsleistung (Wcmd), umfassend die Drehmomentkonstante (kt) und die Motorgeschwindigkeit (ω), von der Leistung, die von der Ansteuerleistungsquelle (6) zugeführt wird, einschließt.
Anspruch[en]
  1. A method for driving a servo-motor (4) based on a current command (Icmd), comprising the steps of:
    • detecting a power source voltage (V) of a drive power source (6) for driving the said servo-motor (4);
    • current-controlling a drive current (Iu, Iv, Iw) of the said servo-motor (4) using a detected value (Vcc) of the said power source voltage (V) and a motor resistance value (Ra); and
    • correcting changes in motor resistance value (Ra) caused by an increase in temperature of the said servo-motor (4), which resistance value (Ra) is used in a numeric calculation of said current-controlling; characterized in that
    • the correcting is performed using an estimated value of increase in motor resistance value (Ra) obtained using a command power (Wcmd) and a power (Wout) supplied by the said drive power source (6), wherein the said command power (Wcmd) is based on the product of the said current command (Icmd) and motor speed (ω), and the power (Wout) supplied by the drive power source (6) is the product of the said power source voltage (V) and a power source current (I) of the said drive power source (6).
  2. A method as claimed in claim 1, wherein the correcting of changes in motor resistance value further includes subtracting the command power (Wcmd), comprising the torque constant (kt) and the motor speed (ω), from the power (Wout) supplied by the drive power source (6).
  3. Apparatus for driving a servo-motor (4) in response to a current command (Icmd), comprising:
    • means for detecting a power source voltage (V) of a drive power source (6) for driving the said servo-motor (4);
    • means (2A) for current-controlling a drive current (Iu, Iv, Iw) of the said servo-motor (4) using a detected value (Vcc) of the said power source voltage (V) and a motor resistance value (Ra); and
    • means for correcting changes in motor resistance value (Ra) caused by an increase in temperature of the said servo-motor (4), which resistance value (Ra) is used in a numeric calculation by the said current-controlling means (2A); characterized in that the said means for correcting changes in motor resistance value (Ra) performs the correcting using an estimated value of increase in motor resistance (Ra) obtained using a command power (Wcmd) and a power supplied by the drive power source (6), wherein the said command power (Wcmd) is based on the product of the said current command (Icmd) and motor speed (ω) and the power supplied by the drive power source (6) is the product of said power source voltage (V) and a power source current of the said drive power source (6).
  4. Apparatus as claimed in claim 3, wherein the means for correcting changes in motor resistance value (Ra) further includes means for subtracting the command power (Wcmd), comprising the torque constant (kt) and the motor speed (ω), from the power supplied by the drive power source (6).
Anspruch[fr]
  1. Procédé pour piloter un moteur d'asservissement (4) sur la base d'une commande de courant (Icmd), comprenant les étapes de:
    • détection d'une tension de source de puissance (V) d'une source de puissance de pilotage (6) pour piloter ledit moteur d'asservissement (4);
    • commande en courant d'un courant de pilotage (Iu, Iv, Iw) dudit moteur d'asservissement (4) en utilisant une valeur détectée (Vcc) de ladite tension de source de puissance (V) et une valeur de résistance de moteur (Ra); et
    • correction de variations de la valeur de résistance de moteur (Ra) qui sont générées par une augmentation de la température dudit moteur d'asservissement (4), laquelle valeur de résistance (Ra) est utilisée au niveau d'un calcul numérique de ladite commande en courant,
       caractérisé en ce que:
    • la correction est réalisée en utilisant une valeur d'augmentation estimée de la valeur de résistance de moteur (Ra) qui est obtenue en utilisant une puissance de commande (Wcmd) et une puissance (Wout) appliquée par ladite source de puissance de pilotage (6), dans lequel ladite puissance de commande (Wcmd) est basée sur le produit de ladite commande de courant (Icmd) et d'une vitesse de moteur (ω), et la puissance (Wout) qui est appliquée par la source de puissance de pilotage (6) est le produit de ladite tension de source de puissance (V) et d'un courant de source de puissance (I) de ladite source de puissance de pilotage (6).
  2. Procédé selon la revendication 1, dans lequel la correction des variations de la valeur de résistance de moteur inclut en outre la soustraction de la puissance de commande (Wcmd), comprenant la constante de couple (kt) et la vitesse de moteur (ω), vis-à-vis de la puissance (Wout) qui est appliquée par la source de puissance de pilotage (6).
  3. Appareil pour piloter un moteur d'asservissement (4) en réponse à une commande de courant (Icmd), comprenant:
    • un moyen pour détecter une tension de source de puissance (V) d'une source de puissance de pilotage (6) pour piloter ledit moteur d'asservissement (4);
    • un moyen (2A) pour commander en courant un courant de pilotage (Iu, Iv, Iw) dudit moteur d'asservissement (4) en utilisant une valeur détectée (Vcc) de ladite tension de source de puissance (V) et une valeur de résistance de moteur (Ra); et
    • un moyen pour corriger des variations de la valeur de résistance de moteur (Ra) qui sont générées par une augmentation de la température dudit moteur d'asservissement (4), laquelle valeur de résistance (Ra) est utilisée au niveau d'un calcul numérique par ledit moyen de commande en courant (2A), caractérisé en ce que:
      • ledit moyen pour corriger des variations de la valeur de résistance de moteur (Ra) réalise la correction en utilisant une valeur d'augmentation estimée de la valeur de résistance de moteur (Ra) qui est obtenue en utilisant une puissance de commande (Wcmd) et une puissance appliquée par la source de puissance de pilotage (6), où ladite puissance de commande (Wcmd) est basée sur le produit de ladite commande de courant (Icmd) et d'une vitesse de moteur (ω), et la puissance qui est appliquée par la source de puissance de pilotage (6) est le produit de ladite tension de source de puissance (V) et d'un courant de source de puissance de ladite source de puissance de pilotage (6).
  4. Appareil selon la revendication 3, dans lequel le moyen pour corriger des variations de la valeur de résistance de moteur (Ra) inclut en outre un moyen pour soustraire la puissance de commande (Wcmd), comprenant la constante de couple (kt) et la vitesse de moteur (ω), vis-à-vis de la puissance qui est appliquée par la source de puissance de pilotage (6).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com