PatentDe  


Dokumentenidentifikation EP1200838 17.06.2004
EP-Veröffentlichungsnummer 0001200838
Titel KLINISCHE KONTROLLMATERIALIEN ZU KNOCHEN-RESORPTIONS-MARKERN
Anmelder Bio-Rad Laboratories, Inc., Hercules, Calif., US
Erfinder DUFFY, H., Thomas, Santa Ana, US;
ONISHI, Hanh, Irvine, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60010715
Vertragsstaaten DE, FR, GB
Sprache des Dokument EN
EP-Anmeldetag 14.07.2000
EP-Aktenzeichen 009486978
WO-Anmeldetag 14.07.2000
PCT-Aktenzeichen PCT/US00/19337
WO-Veröffentlichungsnummer 0001006263
WO-Veröffentlichungsdatum 25.01.2001
EP-Offenlegungsdatum 02.05.2002
EP date of grant 12.05.2004
Veröffentlichungstag im Patentblatt 17.06.2004
IPC-Hauptklasse G01N 33/96
IPC-Nebenklasse G01N 33/68   

Beschreibung[en]

Osteoporosis, or bone loss, is a condition that accompanies aging as well as a variety of diseases of diverse etiology. These diseases include metabolic bone diseases, hypogonadism, hyperadrenocorticism, scurvy, heritable disorders of connective tissue such as osteogenesis imperfecta, homocystinuria, and Ehlers-Danlos syndrome, and other conditions such as rheumatoid arthritis and idiopathic osteoporosis. Age-related osteoporosis is particularly prevalent among post-menopausal women.

If detected early, osteoporosis can be treated by nutritional supplements, hormone replacement therapy, and certain prescription drugs. Unfortunately, osteoporosis is not readily identifiable by physical examination, and often remains undetected until a bone fracture occurs causing the individual to suffer pain, and possible deformity and disability. As one gets older, the ability to respond to these treatments diminishes, and the complications become more serious. Thus, early detection is an important means of lessening or preventing the consequences of osteoporosis, and improving the quality of life for those who are susceptible to this condition.

Osteoporosis is detectable by a variety of methods. These include x-ray absorptiometry by single-energy, dual-energy and peripheral means, radiographic absorptiometry, quantitative computed tomography, quantitative ultrasound, bone densitometry, and the chemical analysis of urine samples. The most convenient and cost-effective method is the chemical analysis of a urine sample to detect the levels of certain biochemical markers of bone turnover. The higher the rate of resorption relative to the rate of formation of bone tissue, the greater the rate of bone loss. The level of resorption in particular is readily determined on a quantitative basis by the analysis of urine for breakdown products of bone mineral and matrix. These breakdown products, or markers, are the collagen crosslinks pyridinoline and deoxypyridinoline, and the type I collagen breakdown products N-telopeptide and C-telopeptide.

Assays of urine for these markers is done by high-performance liquid chromatography (HPLC) and by immunoassays. These immunoassays can be performed on automated equipment for enhanced efficiency and to permit the analysis of large numbers of samples. As with any clinical analysis, quality control requires that precision and accuracy be maintained in the performance of the test and the analysis of the test results. For this reason, the use of control materials, which contain known amounts of the markers, is an important component of the laboratory protocol. Unfortunately, the isolation and purification of the markers from urine, either normal urine or urine having an elevated level of the markers, is a tedious and cumbersome process, and for this reason the controls for these markers are very expensive, and at times prohibitively so. A further disadvantage of controls prepared in this manner is that they are primarily buffer solutions in which the markers are dissolved, and buffer solutions differ substantially from the patient's urine sample. This affects the analytical procedures and detracts from the ability to make direct comparisons between the controls and the test samples.

SUMMARY OF THE INVENTION

It has now been discovered that liquid controls for determinations of the four biochemical markers of osteoporosis in urine can be made by using urine-based materials that have been purified primarily by lyophilization and reconstitution, without the use of chromatographic means to extract the markers and separate them from other species present in urine. The urine-based materials may be derived either from normal urine or from urine with elevated levels of the markers. Lyophilization and reconstitution, together with the removal of extraneous substances that precipitate and do not redissolve, produce a clarified quantity of urine and, surprisingly, do so without loss or destruction of the markers present in the urine. The amount of each marker present in the starting urine is thus retained through the processing. Reconstitution with water produces a control solution whose matrix is clear yet highly similar to the patient's sample urine. The marker concentration can be controlled by the proportion of water used for reconstitution, and two or more aliquots can be combined to achieve any particular combination of the markers at target concentrations. The invention thus provides controls that are sufficiently clear to be suitable for use, that are sufficiently stable to be clinically useful, and that contain the markers in precisely known concentrations, and yet are inexpensive and easy to prepare while offering the added advantage of a matrix that is highly similar to those of the test samples. These qualities enable the control materials of this invention to facilitate reliable and accurate quantitation of samples of urine.

These and other features, objects, and advantages of the invention will be more readily understandable from the description that follows.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

This invention is directed to control materials for bone resorption marker determinations in urine samples and methods for their preparation of such control materials. The invention extends to control materials that contain only one of the four markers ― pyridinoline, deoxypyridinoline, N-telopeptide, and C-telopeptide ― and it also extends to control materials that contain two or more of these markers in combination, including control materials that contain all four. The choice of marker(s) for a particular control material will be governed by the marker whose presence is to be determined and quantified. The choice of marker(s) will vary with the preference or intentions of the manufacturer of the assay with which the control material(s) are to be used, the assay protocol itself, and the preference of the individual user. The materials of this invention may be used as controls, as well as calibrators and standards that contain the designated markers in known concentrations.

The terms "N-telopeptide" and "C-telopeptide" are used herein in the manner in which they are used by biochemists, to refer to sequences of about 12 to 25 amino acids that occur at the N- and C-terminals of the tropocollagen molecule. The terms "N-telopeptide" and "C-telopeptide" each refer to a class of species and each generally includes a mixture of species, including crosslinked species, within the class rather than a single species. Nevertheless, the presence and significance of N-telopeptide and C-telopeptide in urine for diagnoses of osteoporosis, as well as the meanings of the terms, are well recognized in the medical community. In this specification, C-telopeptide is represented by the abbreviation "CTX" and N-telopeptide by the abbreviation "NTX." Due to its heterogeneity, NTX is expressed in terms of "bone collagen equivalents" ("BCE"), a term that is likewise recognized among practitioners who diagnose and treat osteoporosis. To compensate for the variations in urine concentrations that normally occur in a donor over the span of a typical day, the measured levels of CTX and NTX are normalized with respect to creatinine. Creatinine is selected for this purpose since it is expelled into the urine at a substantially constant rate. Its concentration in urine is thus a direct indication of the normal variations in urine concentrations occurring over the course of a day, and is therefore an appropriate normalizing factor. The CTX and NTX levels are thus expressed as µg/L per mM creatinine and nM BCE per mM creatinine, respectively.

The terms "peptide-free pyridinoline" and "peptide-free deoxypyridinoline" refer to proteolytically decomposed species, while "pyridinoline" and "deoxypyridinoline" each refer to a mixture of species which may retain attached protein. HPLC assays tend to read total pyridinoline and total deoxypyridinoline while immunoassays tend to read total pyridinoline and total deoxypyridinoline up to a certain maximum fragment length, typically 1,000 kilodaltons or less. While assay procedures are known that distinguish between pyridinoline and deoxypyridinoline, certain assay procedures do not distinguish between them, providing instead a value for the combined concentrations or amounts of these two markers. This invention likewise extends to control materials for assays where these two markers are identified collectively or individually. In this specification, pyridinoline will be represented by the abbreviation "PYD," deoxypyridinoline by the abbreviation "DPD," and combinations of the two by the abbreviation "PYD/DPD."

The initial stage in the preparation of the control materials of this invention is the selection of urine specimens as sources for the materials. The specimens are selected on the basis of their amounts of the markers to be included in the control materials ultimately formed. Thus, for a PYD control material, the starting urine specimen will be one that contains high amounts of PYD, and likewise for the other three markers. Two or more such specimens may be required to obtain the needed total amount of the marker, or to limit the specimen volume if such a limitation is required by the processing equipment (such as the vacuum dryer used for lyophilization). Similarly, when preparing a single control material for two or more markers, the starting urine specimens will be either one specimen containing all of the designated markers in high amounts or two or more specimens that collectively contain all of the designated markers in high amounts.

The amount of marker present in the starting urine specimen is not critical to the invention and may vary widely. For convenience and efficiency, specimens with relatively high concentrations of the markers are preferred. Thus, for a DPD control material, the starting specimen is preferably one that contains DPD at a concentration of at least about 20 nM. Similarly, for a PYD/DPD control material, the starting specimen is preferably one that contains PYD and DPD in a combined concentration of at least about 100 nM. Likewise, for an NTX control material, the starting specimen is preferably one that contains NTX at a concentration of at least about 50 nM BCE per mM creatinine. Finally, for a CTX control material, the starting specimen is preferably one that contains CTX at a concentration of at least about 200 µg/L per mM creatinine.

The urine that is used as the starting specimen to serve as the source for the markers is human urine, either from male donors or female donors, including pregnant female donors and donors with elevated levels of bone resorptive markers. In preferred methods of practicing the invention, the specimen or pooled specimens are first filtered to remove solid matter and to improve clarity by reducing turbidity. Turbidity may be further reduced by adjusting the pH to a value of between about 4.0 and about 5.0, ) preferably about 4.5, then freezing and thawing the urine. This is preferably followed by filtration, using a filter of at least about 0.8 micron retention. The term "0.8 micron retention" is used in this context to indicate that particles of 0.8 micron and greater will be retained by the filter. The term "at least" is used to indicate that filters of smaller size openings may be used as well. The pH is then preferably raised to a basic level such as one within the range of about 7.8 to about 8.5, preferably about 8.0, and then optionally frozen once again for storage. These various pH adjustments, freeze-thaw cycles, and filtrations serve to stabilize the specimens for until they are ready for use and to precipitate out some of the proteins and clarify the specimens, thereby facilitating the analyses that will follow for determination of the levels of DPD, PYD, CTX, and NTX present in the specimens.

Analyses are then conducted by conventional means, prominent among which are immunometric techniques. Immunometric analysis kits are commercially available for each of the four markers addressed in this invention. A DPD kit for example is available from Bayer Corporation, Walpole, Massachusetts, USA; a PYD/DPD kit is available from Metra Biosystems, Mountain View, California, USA; an NTX kit is available from Ostex, Seattle, Washington, USA, and a CTX kit is available from DSL, Webster, Texas, USA.

Once the specimens are analyzed, specimens with relatively high amounts of the markers are selected for the lyophilization to follow. The selection criteria are not critical to this invention, but in general the higher the amounts of one or more of the markers in the specimens, the more useful they will be as sources for the control materials ultimately made. A typical set of selection criteria, offered here as an example, is DPD greater than 20 nM, PYD/DPD greater than 100 nM, NTX greater than 50 nM BCE per mM creatinine, and CTX greater than 200 µg/L per mM creatinine. These amounts may either be in individual specimens or two or more may be present together in a common specimen.

Once the specimens are selected, and optionally pooled to achieve volumes large enough for efficient processing, the specimens are lyophilized. Conventional lyophilization procedures and equipment may be used. In general, the procedure involves lowering the temperature of a specimen to a level below the eutectic point of the specimen, then lowering the pressure sufficiently to remove water from the specimen by sublimation. Some of the suppliers for lyophilization equipment are FTS Systems, Life Science Division, Stone Ridge, New York, USA; Formatech, Inc., Lowell, Massachusetts, USA; and Hull Corporation, Hatboro, Pennsylvania, USA.

Once lyophilized, the materials are reconstituted by the addition of distilled or otherwise purified water, at proportions calculated to achieve desired concentrations for use as the control materials. The final concentrations are not critical, and may vary according to the wishes of the manufacturer, supplier, distributor or user. As mentioned above, a single control may contain one, two three or all four of the markers at specified concentrations. In many cases, it will be useful to prepare a series of control materials at different concentrations of the markers, spanning or bracketing the range of concentrations that might be expected in the samples or that might be indicative of the presence of a disease state that is associated with a high level of bone resorption. For example, a series of control materials may include one control material in which the concentration of the marker(s) is approximately equal to that of a patient not suffering from osteoporosis, a second control material containing the marker(s) at a concentration substantially higher than (e.g., approximately twice) that of the first control material, and a third control material containing the marker(s) at a concentration substantially higher than those of both the first and second control materials (e.g., approximately three times that of the first control material). Other combinations and concentrations will be readily apparent to those skilled in the art.

Once the materials are reconstituted in the desired combinations and concentrations, it is often desirable to lyophilize the materials once again, optionally after filtering them once again, to supply to the distributor or user in lyophilized form. The final lyophilized materials will then be supplied with instructions for reconstituting them. The filtration prior to the final lyophilization may be at the same retention size or at a finer retention size for further purification. The following examples are offered solely for purposes of illustration.

EXAMPLE 1 - Human Urine Collection

Raw human urine specimens are pooled to achieve volumes of approximately 50 liters per pool, and filtered through pads of at least 0.8 micron retention. The pH of each pool is adjusted to 4.5 ± 0.1 with concentrated HCl. The pools are frozen, thawed, and then filtered through pads of at least 0.8 micron retention. The pH of each pool is adjusted to 8.0 ± 0.1 using 6N NaOH. The pools are then stored frozen at -20°C.

EXAMPLE 2 - Assay of Human Urine Pools

The frozen urine pools from Example 1 are thawed and assayed for the presence of DPD, PYD/DPD, CTX, and NTX by immunometric techniques performed with kits available from commercial suppliers. Pools with the following criteria are selected for lyophilization: DPD greater than 20 nM, PYD/DPD greater than 100 nM, NTX greater than 50 nM BCE per mM creatinine, CTX greater than 200 µg/L per mM creatinine, or any combination thereof.

EXAMPLE 3 - Lyophilization

The selected pools are placed in lyophilization pans, each pan having a fill volume of 1.5 L. Lyophilization is then conducted in an industrial vacuum dryer, Hull Corporation Model 651VC36F40). The procedure consists of lowering the shelf temperature to -29°C or below prior to loading the pans, then loading the pans and cooling the contents to the lowered shelf temperature, then imposing a vacuum by lowering the pressure to below 10 mmHg. This is followed by raising the shelf temperature to -7°C and maintaining it at this level until all of the pools reach -18°C. The shelf temperature is then increased to +5°C and maintained at this level until all pools reach -1°C. The shelf temperature is then raised to +16°C, where it is maintained until all pools reach +10°C. The temperature is then increased to +27°C where it is maintained until all pools reach +21 °C. The temperature is then increased to +43°C where it is maintained until all pools reach +38°C. The pools are held at this temperature for twelve hours. The dryers are then vented to raise the pressure to atmospheric pressure, and the lyophilized material is removed from the pans.

EXAMPLE 4 - Reconstitution

Lyophilized materials from Example 3 are reconstituted by dissolving them in distilled water to achieve a total volume that is one-tenth the original volume and hence a concentration that is ten times that of the original pools. The reconstituted materials are pooled and filtered through a 0.45-micron filter cartridge, and assayed for DPD, PYD/DPD, NTX, and CTX as in Example 2. The materials are then diluted to the desired target concentrations with distilled water, filtered through a 0.45-micron filter, placed in vials at 5.2 mL per vial, and lyophilized again. Prior to use, the user reconstitutes the lyophilized material to achieve a clear solution at the desired concentrations.

EXAMPLE 5 - Marker Assays

Urine specimens were pooled, treated, lyophilized and reconstituted as described in Examples 1 through 4, and the total amounts of each of the four markers were determined both in the original specimens and in the materials after lyophilization and reconstitution. The quantities of the four markers both before (the original specimens) and after are listed below. The values in the "After" column are normalized back to the dilution of the original specimens to provide a direct comparison. Concentrations of Markers Before and After Processing Marker Before

(original specimens)
After lyophilization and

reconstitution
DPD (nM) 24.8 28.2 PYD/DPD (nM) 585 597 NTX (nM BCE/

mM creatinine)
192 263
CTX (µg/L/

mM creatinine)
198.5 198.1

The foregoing is offered primarily for purposes of illustration. Further modifications and variations of the procedures and materials that are still within the scope of the invention will be readily apparent to those skilled in the art.


Anspruch[de]
  1. Kontrollmaterial für die Erfassung eines Knochen-Resorptions-Markers, der aus der Gruppe bestehend aus Deoxypyridinolin, Pyridinolin, C-Telopeptid und N-Telopeptid in menschlichem Urin ausgewählt ist, wobei das Kontrollmaterial, das durch ein Verfahren aufbereitet werden kann, folgendes umfaßt:
    • a) das Auswählen eines Aliquots von menschlichem Urin, das eine erfaßbare Menge des Knochen-Resorptions-Markers enthält; und
    • b) das Gefriertrocknen des ausgewählten Aliquots und das Wiederherstellen des auf diese Weise gefriergetrockneten Aliquots durch Auflösen in Wasser, um eine klare Lösung auszubilden, die im wesentlichen die gleiche Menge des Knochen-Resorptions-Markers enthält wie das Aliquot von menschlichem Urin.
  2. Kontrollmaterial nach Anspruch 1, in dem Schritt (a) das Auswählen von einem oder mehreren Aliquots umfaßt, die zusammen zwei oder mehr der Knochen-Resorptions-Marker enthalten, wobei das Verfahren des weiteren das Vereinigen der Aliquots vor Schritt (b) umfaßt, und Schritt (b) das Gefriertrocknen und das Wiederherstellen der Aliquots umfaßt, um das Kontrollmaterial als eine einzige wäßrige Lösung auszubilden.
  3. Kontrollmaterial nach Anspruch 1, in dem Schritt (a) das Auswählen von einem oder mehreren Aliquots umfaßt, die zusammen alle vier der Knochen-Resorptions-Marker enthalten, wobei das Verfahren des weiteren das Vereinigen der Aliquots vor Schritt (b) umfaßt, und Schritt (b) das Gefriertrocknen und das Wiederherstellen der Aliquots umfaßt, um das Kontrollmaterial als eine einzige wäßrige Lösung zu auszubilden.
  4. Kontrollmaterial nach Anspruch 1, in dem das Aliquot von menschlichem Urin von Schritt (a) Deoxypyridinolin in einer Konzentration von mehr als 20 nmol, Pyridinolin und Deoxypyridinolin in einer kombinierten Konzentration von mehr als 100 nmol, N-Telopeptid in einer Konzentration von mehr als 50 nmol von Knochen-Collagen-Äquivalenten pro nmol Creatinin, und C-Telopeptid in einer Konzentration von mehr als 200 µg/l pro nmol Creatinin enthält.
  5. Eine Vielzahl von Kontrollmaterialien nach Anspruch 1, wobei die Konzentration des Knochen-Resorptions-Markers in einem ersten Kontrollmaterial aus der Vielzahl von Kontrollmaterialien in etwa gleich derjenigen eines Patienten ist, der nicht unter Osteoporose leidet, die Konzentration des Knochen-Resorptions-Markers in einem zweiten Kontrollmaterial aus der Vielzahl von Kontrollmaterialien wesentlich höher ist als diejenige des ersten Kontrollmaterials, und die Konzentration des Knochen-Resorptions-Markers in einem dritten Kontrollmaterial aus der Vielzahl von Kontrollmaterialien wesentlich höher ist als diejenige aller beider des ersten und zweiten Kontrollmaterials.
  6. Verfahren für die Aufbereitung eines Kontrollmaterials für die Erfassung eines Knochen-Resorptions-Markers, der aus der Gruppe bestehend aus Deoxypyridinolin, Pyridinolin, C-Telopeptid und N-Telopeptid in menschlichem Urin ausgewählt ist, wobei das Verfahren umfaßt:
    • a) das Auswählen eines Aliquots von gesamtem menschlichem Urin, das eine erfaßbare Menge des Knochen-Resorptions-Markers enthält; und
    • b) das Gefriertrocknen des ausgewählten Aliquots und das Wiederherstellen des auf diese Weise gefriergetrockneten Aliquots durch Auflösen in Wasser, um eine klare Lösung auszubilden, die im wesentlichen die gleiche Menge des Knochen-Resorptions-Markers enthält wie das Aliquot von gesamtem menschlichem Urin.
  7. Verfahren nach Anspruch 6, des weiteren umfassend das Abklären des Aliquots vor Schritt (b).
  8. Verfahren nach Anspruch 6, des weiteren umfassend das Regulieren des pH-Werts des Aliquots auf einen Wert in dem Bereich zwischen etwa 7,8 bis etwa 8,5 vor Schritt (b).
  9. Verfahren nach Anspruch 6, des weiteren umfassend das Regulieren des pH-Werts des Aliquots auf einen sauren pH-Wert in dem Bereich zwischen etwa 4,0 bis etwa 5,0, das Einfrieren des Aliquots mit dem sauren pH-Wert, das Auftauen des auf diese Weise eingefrorenen Aliquots, das Filtern durch Zwischenlagen mit einer Rückhaltung von wenigstens 0,8 Mikrometer, und das erneute Regulieren des pH-Werts des Aliquots auf einen basischen Wert in dem Bereich von etwa 7,8 bis etwa 8,5, und zwar alles vor Schritt (b).
  10. Verfahren nach Anspruch 6, in dem Schritt (a) das Auswählen von einem oder mehr Aliquots umfaßt, die zusammen alle vier der Knochen-Resorptions-Marker enthalten, einschließlich Deoxypyridinolin in einer Konzentration von mehr als 20 nmol, Pyridinolin und Deoxypyridinolin in einer kombinierten Konzentration von mehr als 100 nmol, N-Telopeptid in einer Konzentration von mehr als 50 nmol von Knochen-Collagen-Äquivalenten pro nmol Creatinin, und C-Telopeptid in einer Konzentration von mehr als 200 µg/l pro nmol Creatinin, wobei das Verfahren des weiteren das Vereinigen der Aliquots vor Schritt (b) umfaßt, und Schritt (b) das Gefriertrocknen und das Wiederherstellen der Aliquots umfaßt, um das Kontrollmaterial als eine einzige wäßrige Lösung auszubilden.
Anspruch[en]
  1. A control material for the detection of a bone resorption marker selected from the group consisting of deoxypyridinoline, pyridinoline, C-telopeptide and N-telopeptide in human urine, said control material which can be prepared by a process comprising:
    • (a) selecting an aliquot of human urine that contains a detectable amount of said bone resorption marker; and
    • (b) lyophilizing said selected aliquot and reconstituting said aliquot thus lyophilized by dissolving in water to form a clear solution containing substantially the same amount of said bone resorption marker as said aliquot of human urine.
  2. A control material in accordance with claim 1 in which step (a) comprises selecting one or more said aliquots that collectively contain two or more of said bone resorption markers, said process further comprises pooling said aliquots prior to step (b), and step (b) comprises lyophilizing and reconstituting said aliquots to form said control material as a single aqueous solution.
  3. A control material in accordance with claim 1 in which said step
    • (a) comprises selecting one or more said aliquots that collectively contain all four of said bone resorption markers, said process further comprises pooling said aliquots prior to step (b), and step (b) comprises lyophilizing and reconstituting said aliquots to form said control material as a single aqueous solution.
  4. A control material in accordance with claim 1 in which said aliquot of human urine of step (a) contains deoxypyridinoline at a concentration of greater than 20 nM, pyridinoline and deoxypyridinoline at a combined concentration of greater than 100 nM, N-telopeptide at a concentration of greater than 50 nM of bone collagen equivalents per mM of creatinine, and C-telopeptide at a concentration of greater than 200 µg/L per mM of creatinine.
  5. A plurality of control materials in accordance with claim 1, the concentration of said bone resorption marker in a first control material of said plurality of control materials being approximately equal that of a patient not suffering from osteoporosis, the concentration of said bone resorption marker in a second control material of said plurality of control materials being substantially higher than that of said first control material, and the concentration of said bone resorption marker in a third control material of said plurality of control materials being substantially higher than that of both said first and second control materials.
  6. A process for the preparation of a control material for the detection of a bone resorption marker selected from the group consisting of deoxypyridinoline, pyridinoline, C-telopeptide and N-telopeptide in human urine, said process comprising:
    • (a) selecting an aliquot of whole human urine that contains a detectable amount of said bone resorption marker; and
    • (b) lyophilizing said selected aliquot and reconstituting said aliquot thus lyophilized by dissolving in water to form a clear solution containing substantially the same amount of said bone resorption marker as said aliquot of whole human urine.
  7. A process in accordance with claim 6 further comprising clarifying said aliquot prior to step (b).
  8. A process in accordance with claim 6 further comprising adjusting the pH of said aliquot to a value within the range of about 7.8 to about 8.5 prior to step (b).
  9. A process in accordance with claim 6 further comprising adjusting the pH of said aliquot to an acidic pH value within the range of about 4.0 to about 5.0, freezing said aliquot at said acidic pH value, thawing said aliquot thus frozen, filtering through pads of at least about 0.8 micron retention, and readjusting the pH of said aliquot to a basic value within the range of about 7.8 to about 8.5, all prior to step (b).
  10. A process in accordance with claim 6 in which step (a) comprises selecting one or more said aliquots that collectively contain all four of said bone resorption markers, including deoxypyridinoline at a concentration of greater than 20 nM, pyridinoline and deoxypyridinoline at a combined concentration of greater than 100 nM, N-telopeptide at a concentration of greater than 50 nM of bone collagen equivalents per mM creatinine, and C-telopeptide at a concentration of greater than 200 µg/L per mM creatinine, and said process further comprises pooling said aliquots prior to step (b), and step (b) comprises lyophilizing and reconstituting said aliquots to form said control material as a single aqueous solution.
Anspruch[fr]
  1. Matériau de test pour la détection d'un marqueur de résorption osseuse choisi dans le groupe se composant de la désoxypyridinoline, de la pyridinoline, du C-télopeptide et du N-télopeptide dans l'urine humaine, ledit matériau de test pouvant être préparé par un procédé comprenant :
    • (a) la sélection d'une partie aliquote d'urine humaine qui contient une quantité détectable dudit marqueur de résorption osseuse ; et
    • (b) la lyophilisation de ladite partie aliquote sélectionnée et la reconstitution de ladite partie aliquote ainsi lyophilisée par dissolution dans de l'eau pour former une solution limpide contenant substantiellement la même quantité dudit marqueur de résorption osseuse que ladite partie aliquote d'urine humaine.
  2. Matériau de test selon la revendication 1, dans lequel l'étape (a) comprend la sélection d'une ou plusieurs desdites parties aliquotes qui contiennent collectivement deux ou plus desdits marqueurs de résorption osseuse, ledit procédé comprend de plus la réunion desdites parties aliquotes avant l'étape (b), et l'étape (b) comprend la lyophilisation et la reconstitution desdites parties aliquotes pour former ledit matériau de test sous forme d'une solution aqueuse unique.
  3. Matériau de test selon la revendication 1, dans lequel ladite étape (a) comprend la sélection d'une ou plusieurs desdites parties aliquotes qui contiennent collectivement tous les quatre desdits marqueurs de résorption osseuse, ledit procédé comprend de plus la réunion desdites parties aliquotes avant l'étape (b), et l'étape (b) comprend la lyophilisation et la reconstitution desdites parties aliquotes pour former ledit matériau de test sous forme d'une solution aqueuse unique.
  4. Matériau de test selon la revendication 1, dans lequel ladite partie aliquote d'urine humaine de l'étape (a) contient la désoxypyridinoline selon une concentration supérieure à 20 nM, la pyridinoline et la désoxypyridinoline selon une concentration combinée supérieure à 100 nM, le N-télopeptide selon une concentration supérieure à 50 nM d'équivalents de collagène osseux par mM de créatinine, et le C-télopeptide selon une concentration supérieure à 200 µg/L par mM de créatinine.
  5. Pluralité de matériaux de test selon la revendication 1, la concentration dudit marqueur de résorption osseuse dans un premier matériau de test de ladite pluralité de matériaux de test étant approximativement égale à celle d'un patient ne souffrant pas d'ostéoporose, la concentration dudit marqueur de résorption osseuse dans un deuxième matériau de test de ladite pluralité de matériaux de test étant substantiellement supérieure à celle dudit premier matériau de test, et la concentration dudit marqueur de résorption osseuse dans un troisième matériau de test de ladite pluralité de matériaux de test étant substantiellement supérieure à celle à la fois desdits premier et deuxième matériaux de test.
  6. Procédé pour la préparation d'un matériau de test pour la détection d'un marqueur de résorption osseuse choisi dans le groupe se composant de la désoxypyridinoline, de la pyridinoline, du C-télopeptide et du N-télopeptide dans l'urine humaine, ledit procédé comprenant :
    • (a) la sélection d'une partie aliquote d'urine humaine complète qui contient une quantité détectable dudit marqueur de résorption osseuse ; et
    • (b) la lyophilisation de ladite partie aliquote sélectionnée et la reconstitution de ladite partie aliquote ainsi lyophilisée par dissolution dans de l'eau pour former une solution limpide contenant substantiellement la même quantité dudit marqueur de résorption osseuse que ladite partie aliquote d'urine humaine complète.
  7. Procédé selon la revendication 6, comprenant de plus la clarification de ladite partie aliquote avant l'étape (b).
  8. Procédé selon la revendication 6, comprenant de plus l'ajustement du pH de ladite partie aliquote à une valeur comprise dans la fourchette d'environ 7,8 à environ 8,5 avant l'étape (b).
  9. Procédé selon la revendication 6, comprenant de plus l'ajustement du pH de ladite partie aliquote à une valeur de pH acide comprise dans la fourchette d'environ 4,0 à environ 5,0, la congélation de ladite partie aliquote à ladite valeur de pH acide, la décongélation de ladite partie aliquote ainsi congelée, la filtration à travers des tampons d'au moins 0,8 microns environ, et le réajustement du pH de ladite partie aliquote à une valeur basique comprise dans la fourchette d'environ 7,8 à environ 8,5, le tout avant l'étape (b).
  10. Procédé selon la revendication 6, dans lequel l'étape (a) comprend la sélection d'une ou plusieurs desdites parties aliquotes qui contiennent collectivement tous les quatre desdits marqueurs de résorption osseuse, englobant la désoxypyridinoline selon une concentration supérieure à 20 nM, la pyridinoline et la désoxypyridinoline selon une concentration combinée supérieure à 100 nM, le N-télopeptide selon une concentration supérieure à 50 nM d'équivalents de collagène osseux par mM de créatinine, et le C-télopeptide selon une concentration supérieure à 200 µg/L par mM de créatinine, et ledit procédé comprend de plus la réunion desdites parties aliquotes avant l'étape (b), et l'étape (b) comprend la lyophilisation et la reconstitution desdites parties aliquotes pour former ledit matériau de test sous forme d'une solution aqueuse unique.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com