PatentDe  


Dokumentenidentifikation EP0836209 09.09.2004
EP-Veröffentlichungsnummer 0000836209
Titel Leistungsschalter
Anmelder ABB Schweiz AG, Baden, CH
Erfinder Zehnder, Dr., Lukas, 5404 Baden-Dättwil, CH;
Kaltenegger, Dr., Kurt, 5426 Lengnau, CH;
Löpfe, Benedikt, 8048 Zürich, CH;
Müller, Dr., Lorenz, 5412 Gebenstorf, CH;
Seidel, Manfred, 5442 Fislisbach, CH
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 59711825
Vertragsstaaten CH, DE, FR, IT, LI
Sprache des Dokument DE
EP-Anmeldetag 15.09.1997
EP-Aktenzeichen 978106615
EP-Offenlegungsdatum 15.04.1998
EP date of grant 04.08.2004
Veröffentlichungstag im Patentblatt 09.09.2004
IPC-Hauptklasse H01H 33/90

Beschreibung[de]
TECHNISCHES GEBIET

Die Erfindung geht aus von einem Leistungsschalter gemäss dem Oberbegriff des Anspruchs 1.

STAND DER TECHNIK

Aus der Patentschrift EP 0 313 813 B1 ist ein Leistungsschalter bekannt, dessen Löschkammer Abbrandkontakte aufweist, welche beide in entgegengesetzter Richtung bewegt werden, und zwar durch einen nicht dargestellten Antrieb in Verbindung mit zwei einander diametral gegenüberstehend angeordneten Zahnstangen in Verbindung mit entsprechenden Zahnrädern.

Aus der Offenlegungsschrift DE 42 11 158 A1 ist ein Leistungsschalter bekannt, der eine Löschkammer aufweist mit zwei Abbrandkontakten, von denen einer beweglich ausgebildet ist. Die Löschkammer ist mit einem Isoliergas, vorzugsweise SF6-Gas unter Druck, gefüllt. Um die Abbrandkontakte herum ist eine Nennstrombahn konzentrisch angeordnet, welche im eingeschalteten Zustand der Löschkammer den Strom führt. Im Innern des beweglichen Abbrandkontakts ist ein Heizvolumen vorgesehen, welches von der Lichtbogenzone der Löschkammer her mit Heissgas unter erhöhtem Druck beaufschlagt wird. Das Heizvolumen ist mittels eines engen Heizkanals mit der Lichtbogenzone verbunden. Dieser Heizkanal ist vergleichsweise lang ausgebildet, zudem weist er eine rechtwinklige Abknickung auf. Diese Abknickung behindert die Strömung des durch den Lichtbogen erzeugten Heissgases in das Heizvolumen, da sie Druckwellen reflektiert. Diese Druckwellen blockieren zeitweise die Strömung in Richtung Heizvolumen. Wenn die Beblasung des Lichtbogens einsetzt, so behindert diese Abknickung auch die Strömung in die Lichtbogenzone, die Kühlwirkung der Beblasung wird demnach etwas reduziert. Das Heizvolumen wird beim Ausschalten von einem Kompressionsvolumen her auf bekannte Weise zusätzlich mit Kaltgas gespeist.

Aus der Patentschrift EP 0 163 943 B1 ist ein konzentrisch aufgebauter Leistungsschalter bekannt, der eine Leistungsstrombahn aufweist, die von einem axial erstreckten Heizvolumen konzentrisch umgeben ist. Die Leistungsstrombahn weist einen beweglichen und einen feststehenden Abbrandkontakt auf. Zwischen den Abbrandkontakten und dem Heizvolumen liegt ein Zwischenvolumen. Nach der Kontakttrennung wird durch den dann entstehenden Lichtbogen zuerst das Isoliergas im Zwischenvolumen aufgeheizt. Dieses Zwischenvolumen vergrössert die Lichtbogenzone dieses Leistungsschalters. Die Lichtbogenzone dieses Leistungsschalters ist mittels eines sich radial nach aussen erstreckenden Ringspalts mit dem symmetrisch zum Ringspalt angeordneten Heizvolumen verbunden, in welches das in der Lichtbogenzone erzeugte Heissgas strömt. In diesem Heizvolumen wird das Heissgas kurzzeitig gespeichert. Das Heizvolumen ist starr mit dem feststehenden Abbrandkontakt verbunden. Bei dieser Ausführungsform des Leistungsschalters wird die Vermischung des im Heizvolumen befindlichen kalten Isoliergases mit dem beim Ausschalten einströmenden Heissgas nicht besonders effektiv sein. Zudem erfolgt der Druckanstieg im Heizvolumen zeitlich etwas verzögert, da für das Aufheizen des Isoliergases im Zwischenvolumen vorab Zeit aufgewendet werden muss.

Aus der Offenlegungsschrift DE 42 00 896 A1 ist ein Leistungsschalter bekannt, der eine Löschkammer aufweist mit einer aussenliegenden Nennstrombahn und zwei feststehenden, voneinander beabstandeten Abbrandkontakten. Die Löschkammer ist mit einem Isoliergas, vorzugsweise SF6-Gas unter Druck, gefüllt. Im eingeschalteten Zustand der Löschkammer werden die beiden Abbrandkontakte mittels eines beweglichen Überbrückungskontakts elektrisch leitend miteinander verbunden. Der Überbrückungskontakt umgibt die zylindrisch ausgebildeten Abbrandkontakte konzentrisch. Der Überbrückungskontakt und die beiden Abbrandkontakte bilden eine Leistungsstrombahn, welche lediglich beim Ausschalten strombeaufschlagt ist. Bei einer Ausschaltung gleitet der Überbrückungskontakt von einem ersten der Abbrandkontakte herunter und zieht einen Lichtbogen, der zunächst zwischen dem ersten Abbrandkontakt und dem ihm zugewandten Ende des Überbrückungskontakts brennt. Sobald dieses Ende den zweiten Abbrandkontakt erreicht, kommutiert der Lichtbogenfusspunkt von dem Ende des Überbrückungskontakts auf den zweiten Abbrandkontakt, der Lichtbogen brennt nun zwischen den beiden Abbrandkontakten. Das in der Lichtbogenzone aufgeheizte Gas strömt durch einen langen Heizkanal in ein im Innern des Überbrückungskontakts angeordnetes Heizvolumen, wo es vorübergehend gespeichert wird. Das Heizvolumen wird beim Ausschalten von einem Kompressionsvolumen her auf bekannte Weise zusätzlich mit Kaltgas gespeist. Das für die Beblasung des Lichtbogens nötige druckbeaufschlagte Isoliergas wird dann durch den Heizkanal in die Lichtbogenzone eingebracht. Der vergleichsweise lang ausgebildete Heizkanal verursacht erhebliche Strömungswiderstände, und die durch Strömungsverluste verlorene Energie fehlt dann bei der Beblasung des Lichtbogens.

DARSTELLUNG DER ERFINDUNG

Die Erfindung, wie sie in den unabhängigen Ansprüchen gekennzeichnet ist, löst die Aufgabe, einen Leistungsschalter zu schaffen, bei welchem die Strömungsverhältnisse im Bereich zwischen Lichtbogenzone und Heizvolumen wesentlich verbessert sind.

Da bei dem erfindungsgemässen Leistungsschalter das Heizvolumen unmittelbar benachbart der Lichtbogenzone und symmetrisch zu dieser angeordnet ist, treten sowohl beim Abströmen der Heissgase in das Heizvolumen als auch bei der Beblasung des Lichtbogens aus dem Heizvolumen heraus keine Strömungsverluste auf, sodass einerseits ein schneller Druckaufbau im Heizvolumen und andererseits eine besonders wirkungsvolle Kühlung des Lichtbogens gewährleistet ist. Das Heizvolumen kann wegen dieser speziellen Anordnung auch besser mit druckbeaufschlagtem Heissgas gefüllt werden bzw. eine grössere Menge Heissgas speichern, wodurch eine intensivere Beblasung des Lichtbogens möglich wird.

Der als Überbrückungskontakt dienende Schaltstift ist im Innern der Abbrandkontaktanordnungen, entlang der zentralen Achse erstreckt, angeordnet und kann mit einem vorteilhaft kleinen Durchmesser und damit mit einer besonders kleinen Masse ausgeführt werden. Dieser massearme Überbrückungskontakt kann mit einem vergleichsweise kleinen und vorteilhaft billigen Antrieb wirkungsvoll beschleunigt und am Ende der Ausschaltbewegung wieder zuverlässig abgebremst werden.

Die Abbrandkontaktanordnungen sind im Innern des Gegenkontakts angeordnet. Die aussenliegende Nennstrombahn, insbesondere deren Kontaktfinger und die Kontaktflächen auf denen sie gleiten, sind dadurch sehr gut gegen die direkten Auswirkungen des Lichtbogens geschützt, wodurch deren Standfestigkeit und damit ihre Lebensdauer vorteilhaft gesteigert wird. Die Wartungsintervalle für die Nennstromkontakte des Leistungsschalters werden dadurch vorteilhaft vergrössert, sodass die Verfügbarkeit des Leistungsschalters wesentlich gesteigert wird.

Wenn dem für die Beblasung des Lichtbogens gespeicherten Heissgas frisches, von einer Kolben-Zylinder-Anordnung komprimiertes Isoliergas beigemischt wird, so erhöht sich die Wirkung der Beblasung vorteilhaft.

Mit der Hilfe des im Heizvolumen angeordneten Leitblechs wird eine günstige Wirbelbildung und infolgedessen eine besonders innige Vermischung des Heissgases mit dem komprimierten Isoliergas erreicht, wodurch eine weitere Steigerung der Ausschaltleistung des Leistungsschalters erreicht wird. Die bezogen auf die Geometrie der Abbrandkontaktanordnungen symmetrische Anordnung des Heizvolumens hat zur Folge, dass das gesamte Heizvolumen gleichmässig gefüllt und durchmischt wird, sodass das gesamte Volumen für das Speichern des für die Beblasung des Lichtbogens bereitzustellenden Gasgemisches genutzt werden kann.

Das gezielte teilweise Verschliessen des Ringspalts zwischen den Abbrandkontaktanordnungen mittels Durchbrüche aufweisenden Ringen aus Isoliermaterial bringt den Vorteil mit sich, dass einerseits störende, vom Lichtbogen herrührende Einflüsse vom Heizvolumen ferngehalten werden, und dass andererseits das durchströmende Heissgas wirkungsvoll verwirbelt wird, sodass im Heizvolumen eine besonders intensive Durchmischung des Heissgases mit dem komprimierten Isoliergas erfolgen kann.

Die weiteren Ausgestaltungen der Erfindung sind Gegenstände der abhängigen Ansprüche.

Die Erfindung, ihre Weiterbildung und die damit erzielbaren Vorteile werden nachstehend anhand der Zeichnung, welche lediglich einen möglichen Ausführungsweg darstellt, näher erläutert.

KURZE BESCHREIBUNG DER ZEICHNUNG

Es zeigen:

  • Fig.1 einen stark vereinfachten Schnitt durch die Kontaktzone einer ersten Ausführungsform der Löschkammer eines erfindungsgemässen Leistungsschalters im eingeschalteten Zustand,
  • Fig.2 einen stark vereinfachten Schnitt durch die Kontaktzone einer zweiten Ausführungsform der Löschkammer eines erfindungsgemässen Leistungsschalters während des Ausschaltens,
  • Fig.3 einen stark vereinfachten Schnitt durch die Kontaktzone einer dritten Ausführungsform der Löschkammer eines erfindungsgemässen Leistungsschalters im ausgeschalteten Zustand,
  • Fig.4 einen stark vereinfachten Schnitt durch die Kontaktzone einer vierten Ausführungsform der Löschkammer eines erfindungsgemässen Leistungsschalters, wobei in der oberen Hälfte der eingeschaltete Zustand und in der unteren Hälfte der ausgeschaltete Zustand dargestellt ist,
  • Fig.5a bis 5d mehrere Beispiele, wie die Verbindung zwischen einem Heizvolumen und der Lichtbogenzone eines erfindungsgemässen Leistungsschalters konstruktiv gestaltet werden kann,
  • Fig.6a bis 6c weitere Beispiele für die konstruktive Gestaltung der Verbindung zwischen dem Heizvolumen und der Lichtbogenzone, und
  • Fig.7 eine weitere Gestaltungsmöglichkeit für die Verbindung zwischen dem Heizvolumen und der Lichtbogenzone.

Bei allen Figuren sind gleich wirkende Elemente mit gleichen Bezugszeichen versehen. Der besseren Verständlichkeit halber sind in den Figuren zum Teil die Sichtkanten weggelassen. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind nicht dargestellt.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNG

Die Fig.1 zeigt einen stark vereinfachten Schnitt durch die Kontaktzone 1 einer ersten Ausführungsform der Löschkammer eines erfindungsgemässen Leistungsschalters im eingeschalteten Zustand. Diese Löschkammer ist zentrisch symmetrisch um eine zentrale Achse 2 angeordnet. Das diese Kontaktzone 1 einschliessende Gehäuse ist nicht dargestellt. Dieses Gehäuse ist mit einem isolierenden Medium, beispielsweise SF6-Gas unter Druck, gefüllt. Entlang dieser zentralen Achse 2 erstreckt sich ein zentral angeordneter, zylindrisch ausgebildeter, metallischer Schaltstift 3, der mittels eines nicht dargestellten Antriebs entlang der zentralen Achse 2 beweglich ist. Der Schaltstift 3 weist eine dielektrisch günstig geformte Spitze 4 auf, die bei Bedarf mit einem elektrisch leitenden, abbrandbeständigen Material versehen werden kann. Im eingeschalteten Zustand überbrückt der Schaltstift 3 elektrisch leitend einen ringspaltartig ausgebildeten Abstand a ab, der zwischen zwei zylindrisch ausgebildeten, einander gegenüber stehenden Abbrandkontaktanordnungen 5 und 6 vorgesehen ist. In der Regel ist der Schaltstift 3 elektrisch leitend und gleitend mit einem auf der linken Seite angeordneten ersten, nicht dargestellten Stromanschluss der Löschkammer verbunden.

Diese Abbrandkontaktanordnungen 5 und 6 sind mechanisch starr miteinander verbunden und sind gemeinsam entlang der zentralen Achse 2 beweglich. Während des Ausschaltvorgangs ist zwischen den Abbrandkontaktanordnungen 5 und 6 und zum Teil in deren innerer Bohrung die Lichtbogenzone des Leistungsschalters vorgesehen. Die Abbrandkontaktanordnung 5 weist eine Kappe 7 aus einem temperaturbeständigen Isoliermaterial auf, welche einen federnden, auf der Oberfläche des Schaltstifts 3 aufliegenden, elektrisch leitenden Kontaktkorb 8 umgibt. Die Abbrandkontaktanordnung 6 kann ähnlich ausgebildet sein wie die Abbrandkontaktanordnung 5 mit einem federnd ausgebildeten, elektrisch leitenden Kontaktkorb 10 im Innern, welcher auf der Oberfläche des Schaltstifts 3 aufliegt. Die Abbrandkontaktanordnung 6 ist ebenfalls mit einer Kappe 9 aus einem temperaturbeständigen Isoliermaterial versehen, welche den Kontaktkorb 10 umgibt. Es sind auch andere Ausführungen von Abbrandkontaktanordungen vorstellbar, wie beispielsweise über die Kontaktkörbe 8 und 10 hinaus vorgezogene spezielle Abbrandkontakte, welche ein Abbrennen der Kontaktkörbe 8 und 10 verhindern. Besonders bei hohen Abschaltströmen werden derartige Abbrandkontakte eingesetzt, um die Standfestigkeit der Kontaktkörbe 8 und 10 zu verbessern. Prinzipiell ist es auch möglich, eine der Kappen 7 oder 9 elektrisch leitend auszuführen, und die betreffende Kappe als Abbrandkontakt zu nutzen.

Die Abbrandkontaktanordnung 6 weist ein aus einem Metall gefertigtes Halteteil 11 auf, welches elektrisch leitend mit dem Kontaktkorb 10 verbunden ist. Das Halteteil 11 trägt zudem die Kappe 9 und ein zylindrisch ausgebildetes Isolierrohr 12, welches zentrisch zur zentralen Achse 2 angeordnet ist und welches die beiden Abbrandkontaktanordnungen 5 und 6 mechanisch starr verbindet und ein diese ringförmig umfassendes Heizvolumen 13 auf der der zentralen Achse 2 abgewandten Seite begrenzt. Das Halteteil 11 weist einen Bund 14 auf, der in einem feststehenden metallischen Kontaktzylinder 15 gleitet. Die dem Kontaktzylinder 15 zugewandte Aussenseite des Bunds 14 ist mit nicht dargestellten Kontaktelementen, beispielsweise mit Spiralkontakten und den zugehörigen Führungsringen aus Kunststoff, versehen, welche den Stromübergang vom Bund 14 des Halteteils 11 auf den Kontaktzylinder 15 sicherstellen.

Der feststehende Kontaktzylinder 15 ist auf der linken Seite mit dem ersten, nicht dargestellten Stromanschluss der Löschkammer starr verbunden. Der Kontaktzylinder 15 ist in dem radial ausserhalb des Isolierrohrs 12 gelegenen Bereich mit federnden Kontaktfingern 16 versehen, deren eine Seite starr mit dem Kontaktzylinder 15 verbunden ist, beispielsweise mittels einer Lötung oder mittels Verstemmens oder Verpressens. Diese Kontaktfinger 16 sind ein Teil der Nennstrombahn. Die federnden Enden der Kontaktfinger 16 liegen bei eingeschalteter Löschkammer auf der Aussenseite eines zylindrisch ausgebildeten, entlang der zentralen Achse 2 beweglichen, elektrisch leitend ausgeführten Nennstromkontaktrohrs 17 auf, wodurch der einwandfreie Stromübergang zwischen dem Nennstromkontaktrohr 17 und dem Kontaktzylinder 15 sichergestellt wird. Das Nennstromkontaktrohr 17 ist mittels nicht dargestellter Gleitkontakte mit einem ebenfalls nicht dargestellten zweiten Stromanschluss der Löschkammer auf der rechten Seite starr verbunden.

Das Nennstromkontaktrohr 17 ist auf der dem Kontaktzylinder 15 zugewandten Seite dielektrisch günstig ausgebildet. In das Nennstromkontaktrohr 17 ist auf dieser Seite ein elektrisch leitender Zylinderboden 18 eingelassen. An diesen Zylinderboden 18 ist der Kontaktkorb 8 elektrisch leitend angeformt, der sich in der Richtung auf die Abbrandkontaktanordnung 6 zu erstreckt. Die Kappe 7 ist in dem Zylinderboden 18 befestigt, das Isolierrohr 12 wird auf dieser Seite des Heizvolumens 13 ebenfalls durch den Zylinderboden 18 gehalten. Das Heizvolumen 13 ist in der Regel symmetrisch zu dem ringspaltförmigen Abstand a angeordnet. In den Zylinderboden 18 sind Durchbrüche 19 eingearbeitet, die mittels eines schematisch dargestellten Rückschlagventils 20 so verschliessbar sind, dass das während des Ausschaltvorgangs der Löschkammer im Heizvolumen 13 gespeicherte druckbeaufschlagte Heissgas nicht durch diese Durchbrüche 19 entweichen kann.

In das Nennstromkontaktrohr 17 ist ein ringförmig ausgebildetes Kompressionsvolumen 21 eingelassen. Das Kompressionsvolumen 21 wird einerseits durch den Zylinderboden 18 und andererseits durch einen feststehenden Kompressionskolben 22 begrenzt. Der Kompressionskolben 22 führt das Nennstromkontaktrohr 17, welches auf ihm gleitet, und diese zylindrisch ausgebildete Gleitfläche begrenzt zugleich das Kompressionsvolumen 21 in radialer Richtung nach aussen. An den Zylinderboden 18 ist ein sich auf den Kompressionskolben 22 zu erstreckendes Rohr 23 druckdicht angeformt, welches das Kompressionsvolumen 21 radial nach innen begrenzt.

Das Rohr 23 gleitet im Innern des den Kompressionskolben 22 tragenden Kolbenschaftes 24. Eine in den Kolbenschaft 24 eingelegte Gleitdichtung 25 dichtet das Kompressionsvolumen 21 an dieser Stelle ab. Eine in die äussere Zylinderfläche des Kompressionskolbens 22 eingelegte Gleitdichtung 26 dichtet das Kompressionsvolumen 21 an dieser Stelle ab. Die Gleitdichtungen 25 und 26 sind so ausgelegt, dass der Gegenkontakt 17 den Kompressionskolben 22 bzw. den Kolbenschaft 24 nicht metallisch berührt, sodass über den Kompressionskolben 22 keine Streuströme fliessen können. In den Kompressionskolben 22 sind Durchbrüche 27 eingearbeitet, die mittels eines schematisch dargestellten Rückschlagventils 28 so verschliessbar sind, dass das während des Ausschaltvorgangs der Löschkammer im Kompressionsvolumen 21 erzeugte druckbeaufschlagte Gas nicht durch diese Durchbrüche 27 entweichen kann. Ist das Rückschlagventil 28 offen, so ist das Kompressionsvolumen 21 mit dem Löschkammervolumen 29, welches die dargestellte Kontaktzone 1 umgibt und welches selbst von dem nicht dargestellten Löschkammergehäuse umschlossen ist, verbunden. Das innere Volumen 30 des Rohrs 23 ist ebenso wie ein von dem Halteteil 11 umschlossenes Volumen 31 mit dem Löschkammervolumen 29 verbunden.

Die Fig.2 zeigt eine gegenüber der Fig.1 etwas modifizierte Ausführungsform der Kontaktzone 1, und zwar ist im Bereich des Rückschlagventils 20 im Innern des Heizvolumens 13 ein ringförmig ausgebildetes Leitblech 32 angebracht, welches die Abbrandkontaktanordnung 5 konzentrisch umgibt und welches für eine Verwirbelung des gegebenenfalls durch das Rückschlagventil 20 einströmenden Kaltgases mit dem im Heizvolumen 13 gespeicherten Heissgas sorgt. Dieses Leitblech 32 kann mit entsprechenden Leitschaufeln versehen sein oder sonstige, die Gasströmung beeinflussende Bauelemente aufweisen. Die weiteren zur Kontaktzone 1 gehörenden Komponenten sind gleich ausgebildet, wie die in Fig.1 dargestellten Komponenten.

Die in Fig.2 dargestellte Position zeigt die Löschkammer während des Ausschaltens. Zuerst wurde die aussenliegende Nennstrombahn unterbrochen und der Ausschaltstrom kommutierte danach auf die innenliegende Leistungsstrombahn. Beim Ausschalten bewegt sich der zur Leistungsstrombahn gehörende Schaltstift 3 nach links, wie ein Pfeil 33 andeutet, und gleichzeitig das der Nennstrombahn zugeordnete Nennstromkontaktrohr 17 nach rechts, wie ein Pfeil 34 andeutet. In der gezeigten Position der Kontaktzone 1 überbrückt der Schaltstift 3 die Abbrandkontaktanordnungen 5 und 6, bzw. die Kontaktkörbe 8 und 10, bereits nicht mehr, d.h. die Leistungsstrombahn ist bereits unterbrochen und ein durch den Schaltstift 3 eingeleiteter Lichtbogen 35 brennt zwischen den Kontaktkörben 8 und 10. Die durch den Lichtbogen 35 erzeugten heissen Gase strömen zum Teil durch den Ringspalt 36 zwischen den beiden isolierenden Kappen 7 und 9 in das Heizvolumen 13 ein.

Die Fig.3 zeigt die Löschkammer in Ausschaltstellung bei bereits erloschenem Lichtbogen. Diese Löschkammer weist gegenüber der in Fig.2 gezeigten eine etwas modifizierte Ausführungsform der Kontaktzone 1 auf, im Bereich des Rückschlagventils 20 ist im Innern des Heizvolumens 13 ein kegelstumpfförmig ausgebildetes Leitblech 32 angebracht, welches die Abbrandkontaktanordnung 5 konzentrisch umgibt, und welches für eine Verwirbelung des durch das Rückschlagventil 20 einströmenden Kaltgases mit dem im Heizvolumen 13 gespeicherten Gas sorgt. Das Rückschlagventil 20 ist hier im offenen Zustand dargestellt. Dieses Leitblech 32 kann mit entsprechenden Leitschaufeln versehen sein oder sonstige, die Gasströmung beeinflussende Bauelemente aufweisen. Die weiteren zur Kontaktzone 1 gehörenden Komponenten sind gleich ausgebildet, wie die in Fig.1 dargestellten Komponenten.

Die Fig. 1 bis 3 zeigen einen Leistungsschalter, bei welchem sowohl das Nennstromkontaktrohr 17 als auch der Schaltstift 3 beweglich ausgebildet ist. In der Regel werden das Nennstromkontaktrohr 17 und der Schaltstift 3 mit der gleichen Geschwindigkeit in einander entgegengesetzte Richtungen bewegt. Die Patentschrift EP 0 313 813 B1 gibt beispielsweise einen Leistungsschalter mit einem Antrieb an, mit dem dieser beschriebene Bewegungsverlauf erreicht wird. Es ist jedoch auch möglich, mit vergleichsweise geringem Aufwand einen Leistungsschalter zu schaffen, bei dem das Nennstromkontaktrohr 17 und der Schaltstift 3 mit unterschiedlichen gegenläufigen, den jeweiligen Betriebsanforderungen angepassten Geschwindigkeiten arbeiten.

Ferner ist es auch möglich, den Leistungsschalter mit nur einem bewegten Kontakt auszustatten, wenn beispielsweise nur eine vergleichsweise kleine Ausschaltleistung verlangt wird, genügt diese etwas preiswertere Leistungsschalterausführung vollauf. In der Fig.4 ist ein derart vereinfachter und besonders preiswerter Leistungsschalter dargestellt. Der prinzipielle Aufbau gleicht dem in Fig.1 gezeigten Leistungsschalter, lediglich der Schaltstift 3 ist kürzer ausgebildet, seine Spitze 4 ragt nicht mehr über die Vorderkante 37 des Kontaktzylinders 15 hinaus. Der Schaltstift 3 ist hier elektrisch leitend und starr mit dem Kontaktzylinder 15 verbunden. In der oberen Hälfte der Fig.4 ist die Kontaktzone 1 im eingeschalteten Zustand dargestellt. In der unteren Hälfte der Fig.4 ist die Kontaktzone 1 im ausgeschalteten Zustand dargestellt. Das Nennstromkontaktrohr 17 ist nach rechts in seine Ausschaltstellung gefahren. Zusätzlich ist in der in der unteren Hälfte der Fig.4 gezeigten Leistungsschalterausführung ein Leitblech 32 als Modifikation in das Heizvolumen 13 eingebaut. Die übrigen Bauelemente sind gleich ausgebildet wie die in Fig.1 gezeigten Bauelemente, sodass sich hier eine weitere Beschreibung der Kontaktzone 1 erübrigt. Durch diese grosse Anzahl Gleichteile für zwei unterschiedliche Leistungsschaltervarianten lässt sich die Eratzteilbewirtschaftung besonders kostengünstig gestalten.

Die Fig.5a zeigt ein erstes konstruktives Detail der Verbindung zwischen dem Heizvolumen 13 und der Lichtbogenzone eines erfindungsgemässen Leistungsschalters. Der axiale Abstand a zwischen den Kappen 7 und 9 ist mittels eines an diesen Kappen 7 und 9 befestigten durchbrochenen Rings 38 aus einem temperaturbeständigen Isoliermaterial aufgefüllt. Der Ring 38 kann aber auch an eine der Kappen 7 oder 9 direkt angeformt sein. Der Ring 38, der im rechten Teil der Fig.5a geschnitten dargestellt ist, weist einen inneren Kranz von Stegen 39 auf, zwischen denen radial ausgerichtete Durchbrüche 40 angeordnet sind. Ein äusserer, von dem inneren Kranz beabstandeter, Kranz von Stegen 41 zwischen denen radial ausgerichtete Durchbrüche 42 angeordnet sind, umschliesst, in der Regel koaxial, den inneren Kranz so, dass die Stege 41 die Durchbrüche 40 abdecken. Diese Anordnung der Stege 39 und 41 bringt den Vorteil mit sich, dass die von der Lichtbogenzone ausgehende Wärmestrahlung, und auch die durch den Lichtbogen verursachten Druckwellen, nicht direkt in das Heizvolumen 13 einwirken und dort eventuell zu hohe Druckanstiege verursachen können.

Die Fig.5b zeigt einen Ring 38, welcher mit zwei Reihen von über den Umfang verteilten und gegeneinander versetzten Bohrungen 43 und 44 versehen ist. Diese Bohrungen 43,44 weisen jeweils eine Achse 45,46 auf, wobei die Achsen 45 den Bohrungen 43 und die Achsen 46 den Bohrungen 44 zugeordnet sind. Die Achsen 45 und 46 schneiden sich in einem Schnittpunkt 47, welcher auf der zentralen Achse 2 liegt. Jede der Achsen 45 und 46 weist einen Schnittwinkel α mit der zentralen Achse 2 auf. Der Schnittwinkel α weist vorzugsweise Werte im Bereich von 45° bis 75° auf, es sind jedoch auch andere Werte vorstellbar, insbesondere müssen die Achsen 45 und 46 nicht den gleichen Schnittwinkel aufweisen. Der Schnittwinkel α von 65° hat sich bei der vorliegenden Ausführung des Leistungsschalters als besonders günstig erwiesen. Die Bohrungen 43 und 44 sind bei dieser Ausführung zylindrisch ausgebildet, es ist jedoch auch möglich, diese Bohrungen 43 und 44 konisch auszubilden, wie dies in der Fig.5c dargestellt ist. Die Bohrungen 43 und 44 erweitern sich bei dieser Ausführung in Richtung auf das Heizvolumen 13 zu, im übrigen sind sie gleich angeordnet wie die entsprechenden Bohrungen in der Fig.5b.

Die Fig.5d zeigt einen Ring 38, welcher mit zwei Reihen von über den Umfang verteilten Bohrungen 43 und 44 versehen ist. Diese Bohrungen 43,44 weisen jeweils eine Achse 45,46 auf, wobei die Achsen 45 den Bohrungen 43 und die Achsen 46 den Bohrungen 44 zugeordnet sind. Die Achsen 45 und 46 schneiden sich in einem Schnittpunkt 47, welcher auf der zentralen Achse 2 liegt. Die Achse 45 weist jeweils einen Schnittwinkel α mit der zentralen Achse 2 auf. Die Achse 46 weist jeweils einen Schnittwinkel β mit der zentralen Achse 2 auf. Der Schnittwinkel β ist hier etwas kleiner als der Schnittwinkel α ausgeführt. Diese Ausführungsform ist dann zweckmässig, wenn das Heizvolumen 13 nicht symmetrisch zum Ringspalt 36 angeordnet ist. In dem hier dargestellten Beispiel ist der Teil des Heizvolumens 13, der links vom Ringspalt 36, bzw. links des Rings 38 liegt etwas grösser ausgefallen als der rechte Teil. Die grössere Neigung der Bohrungen 44 erleichtert das Einströmen des Heissgases, sodass die an sich ungünstigen Auswirkungen der erwähnten Unsymmetrie des Heizvolumens 13 zumindest etwas kompensiert werden, was eine verbesserte Füllung und damit eine vorteilhaft grössere Speicherkapazität des Heizvolumens 13 zur Folge hat.

Die Figuren 6a bis 6c zeigen weitere konstruktive Gestaltungsmöglichkeiten für die direkte Verbindung zwischen dem Heizvolumen 13 und der Lichtbogenzone, und zwar zeigen sie Abwicklungen des Rings 38 mit weiteren prinzipiell möglichen Querschnittsvarianten der radialen Durchbrüche 42.

Diese Durchbrüche 42 führen radial von der zentralen Achse 2 weg, sie weisen vergleichsweise kleine Querschnitte auf. In der Regel werden die Achsen der Durchbrüche 42 senkrecht zur zentralen Achse 2 angeordnet, es ist jedoch möglich, diese Achsen unter einem von einem rechten Winkel abweichenden Winkel die zentrale Achse 2 schneiden zu lassen. Dabei können verschiedene Durchbrüche 42 eines Rings 38 verschiedene Schnittwinkel aufweisen. Für die strömungstechnisch günstige Ausgestaltung der Durchbrüche 42 stehen die Hilfsmittel der Strömungsphysik zur Verfügung.

Wenn im Ringspalt 36 kein Ring 38 vorgesehen ist, hat es sich als strömungstechnisch besonders vorteilhaft erwiesen, den Ringspalt 36 so auszubilden, dass er sich in radialer Richtung erweitert. Wenn ein besonders hoher Heissgasdruck erzeugt werden soll, wird der Ringspalt 36 so ausgebildet, dass er sich in radialer Richtung verjüngt. Es sind eine Vielzahl von Ausbildungen des Ringspalts 36 vorstellbar, sodass für jede der möglichen Betriebsanforderungen eine optimale Formgebung des Ringspalts 36 erreicht werden kann.

Die Fig.7 zeigt ein Beispiel für die Formgebung der Kappen 7 und 9, deren einander zugewandte Stirnseiten hier so abgeschrägt sind, dass sich der Ringspalt 36 in Richtung Heizvolumen 13 verbreitert. Der als Zylinderfläche ausgebildete Querschnitt Q3 an der engsten Stelle des Ringspalts 36 wird, abgestimmt auf die jeweiligen betrieblichen Anforderungen, die an den Leistungsschalter gestellt werden, in der Regel die folgende Bedingung erfüllen: Q3 / (Q1 + Q2) = 0,8 1,6

Dabei ist als Querschnitt Q1 die Fläche der inneren Öffnung der Kappe 9 an ihrer engsten Stelle einzusetzen, wobei hier eventuell, je nach Bauart des Kontaktkorbs 10, diese engste Stelle auch im Bereich des Kontaktkorbs 10 liegen kann. Als Querschnitt Q2 ist die Fläche der inneren Öffnung der Kappe 7 an ihrer engsten Stelle einzusetzen, wobei hier eventuell, je nach Bauart des Kontaktkorbs 8, diese engste Stelle auch im Bereich des Kontaktkorbs 8 liegen kann. Diese voranstehend formulierte Bedingung wird vorteilhaft auch bei der Dimensionierung der Durchbrüche 40 und 42 und der Bohrungen 43 und 44 der übrigen Ausführungsvarianten berücksichtigt. In der Fig.7 sind die Querschnitte Q1 und Q2 unterschiedlich gross dargestellt, wie dies bei Leistungsschaltern durchaus möglich ist, auch in diesem Fall gilt die oben angegebene Beziehung.

Bei den hier beschriebenen Leistungsschaltervarianten ist eine aussenliegende Nennstrombahn, die im Bereich der Kontaktzone 1 vom Kontaktzylinder 15 über die Kontaktfinger 16 und das Nennstromkontaktrohr 17 führt, vorgesehen. Für Leistungsschalter, die für vergleichsweise kleine Nennströme oder nur für kurzzeitige Strombelastungen ausgelegt sind, kann diese Nennstrombahn entfallen, wodurch diese Leistungsschaltervariante sehr verbilligt wird. In diesem Fall würde die Leistungsstrombahn, die bei dieser Ausführung der Kontaktzone 1 beispielsweise vom Halteteil 11 über den Kontaktkorb 10, den Schaltstift 3, den Kontaktkorb 8 und das Rohr 23 führen würde, zugleich die Führung des Nennstroms übernehmen.

Es ist auch vorstellbar, dass beispielsweise zum Kontaktkorb 8 eine Blasspule in Reihe geschaltet wird. Die durch die Blasspule erzwungene Rotation des Lichtbogens 35 verursacht einen höheren Druck des Heissgases in der Lichtbogenzone. Dies ist besonders dann von Vorteil, wenn der Leistungsschalter für besonders stromschwache Abschaltungen ausgelegt ist, weil durch die Rotation die thermische Wirkung des Lichtbogens 35 verstärkt wird.

Wenn der erfindungsgemässe Leistungsschalter für eine vergleichsweise kleine Ausschaltleistung ausgelegt wird, so kann unter Umständen auf das mit dem Heizvolumen 13 zusammenwirkende Kompressionsvolumen 21 verzichtet werden, sodass eine weitere Billigvariante des Leistungsschalters entsteht.

Zur Erläuterung der Wirkungsweise werden nun die Figuren etwas näher betrachtet. Beim Ausschalten wird stets zuerst die Nennstrombahn unterbrochen, worauf der Abschaltstrom auf die Leistungsstrombahn kommutiert. Der Schaltstift 3 zieht danach im Verlauf seiner Ausschaltbewegung zwischen den Kontaktkörben 8 und 10 der Abbrandkontaktanordnungen 5 und 6 einen Lichtbogen 35. Die Länge des Lichtbogens 35 wird demnach im wesentlichen durch den Abstand zwischen den beiden Kontaktkörben 8 und 10 bestimmt, grössere Schwankungen der Lichtbogenlänge und damit verbundene Schwankungen der Heizleistung des Lichtbogens 35 können bei diesem Leistungsschalter deshalb nicht vorkommen, sodass bei der Dimensionierung des Heizvolumens 13 von einer, lediglich von der momentanen Stromstärke abhängigen und deshalb einfach zu berücksichtigenden, Heizleistung des Lichtbogens 35 ausgegangen werden kann. Das Ausschaltvermögen dieses Leistungsschalters lässt sich infolgedessen vergleichsweise einfach vorausberechnen, sodass der Umfang der nötigen Entwicklungsversuche und damit auch die hierfür nötigen Kosten vorteilhaft reduziert werden können.

Die Ausschaltgeschwindigkeit ist so gewählt, dass der Lichtbogen 35 nur kurzzeitig auf der Spitze 4 des Schaltstifts 3 brennt. Die Spitze 4 weist deshalb kaum Abbrandspuren auf. Die Kontaktkörbe 8 und 10 sind aus besonders abbrandfestem Material gefertigt, sie weisen deshalb eine vergleichsweise hohe Lebensdauer auf. Der Leistungsschalter muss deshalb nur vergleichsweise selten revidiert werden, wodurch er eine vergleichsweise grosse Verfügbarkeit aufweist.

Der Lichtbogen 35 wird wegen der Ausschaltbewegung des Schaltstifts 3 vergleichsweise schnell seine volle Länge, die im wesentlichen durch den Abstand zwischen den beiden Kontaktkörben 8 und 10 bestimmt wird, erreichen, sodass bereits kurz nach der Kontakttrennung die volle Lichtbogenenergie zur Verfügung steht für die Druckbeaufschlagung des Isoliergases in der im Bereich zwischen den Abbrandkontaktanordnungen 5 und 6 angeordneten Lichtbogenzone. Der Lichtbogen 35 beaufschlagt das ihn umgebende Isoliergas thermisch und erhöht dadurch kurzzeitig den Druck in der Lichtbogenzone der Löschkammer. Das druckbeaufschlagte Isoliergas strömt durch den Ringspalt 36 in das Heizvolumen 13 und wird dort kurzzeitig gespeichert. Ein Teil des druckbeaufschlagten Isoliergases strömt jedoch einerseits durch das Volumen 30 in das Löschkammervolumen 29 und andererseits durch das Volumen 31 in das Löschkammervolumen 29 ab. In das Nennstromkontaktrohr 17 ist die Kolben-Zylinder-Anordnung eingebaut, in deren Kompressionsvolumen 21 bei dem Ausschaltvorgang Isoliergas komprimiert wird. Dieses komprimierte frische Isoliergas wird zusätzlich zu dem thermisch erzeugten druckbeaufschlagten Isoliergas durch die Durchbrüche 19 in das Heizvolumen 13 eingeleitet.

Dieses Einströmen erfolgt jedoch nur, wenn im Heizvolumen 13 ein niedrigerer Druck herrscht als in dem Kompressionsvolumen 21. Dies ist beispielsweise vor der Kontakttrennung der Fall oder vor dem Stromnulldurchgang des Ausschaltstroms oder dann, wenn der Lichtbogen 35 so stromschwach ist, dass er die Lichtbogenzone nicht intensiv genug aufheizen kann. Heizt jedoch ein stromstarker Lichtbogen 35 die Lichtbogenzone sehr stark auf, sodass ein vergleichsweise grosser Druck des Isoliergases im Heizvolumen 13 auftritt, so erfolgt bei diesem grossen Druck zunächst keine Einströmung des in der Kolben-Zylinder-Anordnung erzeugten Druckgases. Wird im Heizvolumen 13 ein vorgegebener Grenzwert des gespeicherten Drucks überschritten, so öffnet sich nach dem Überschreiten dieses vorgegebenen Grenzwerts ein nicht dargestelltes Überdruckventil und der überschüssige Druck wird direkt in das Löschkammervolumen 29 hinein abgebaut. Wird im Kompressionsvolumen 21 ein vorgegebener Grenzwert des Kompressionsdrucks überschritten, so öffnet sich nach dem Überschreiten dieses vorgegebenen Grenzwerts ein weiteres, nicht dargestelltes Überdruckventil und der überschüssige Kompressionsdruck wird direkt in das Löschkammervolumen 29 hinein abgebaut. Auf diese Art wird mit grosser Sicherheit verhindert, dass in diesem Bereich eine unzulässige Überschreitung der mechanischen Belastbarkeit der Bauelemente vorkommen kann. Es ist aber auch möglich, wenn der Leistungsschalter beispielsweise nur für vergleichsweise kleine Ausschaltströme ausgelegt ist, auf diese Überdruckventile zu verzichten.

Solange in der Lichtbogenzone ein Überdruck herrscht, strömt sehr heisses ionisiertes Gas auch durch die Volumen 30 und 31 ab in das Löschkammervolumen 29. Die beiden Gasströmungen bilden sich wegen der ähnlich gestalteten Strömungsquerschnitte ähnlich aus, sodass der in der Lichtbogenzone aufgebaute Druck etwa gleichmässig und kontrolliert nach beiden Seiten abströmt, wodurch das im Heizvolumen 13 für die Löschung des Lichtbogens 35 vorhandene Heissgas unter Druck so lange gespeichert werden kann, bis eine erfolgreiche, zum Löschen führende Beblasung des Lichtbogens 35 erfolgen kann.

Die Abströmung des Heissgases aus der Lichtbogenzone in das Volumen 31 kann mit Hilfe des Schaltstifts 3 gesteuert werden, da der ringförmige Abströmquerschnitt zwischen dem Schaltstift 3 und dem Halteteil 11 mit zunehmendem Hub des Schaltstifts 3 grösser wird. Es ist auch möglich, die Wand des Halteteils 11, welche das Volumen 31 radial begrenzt, so auszubilden, dass sich, abhängig vom Hub, der gewünschte optimale Abströmquerschnitt ergibt.

Bei dem erfindungsgemässen Leistungsschalter ist das Heizvolumen 13 mit den beiden Abbrandkontaktanordnungen 5 und 6 starr gekoppelt, sodass das Heizvolumen 13 immer gleich, in der Regel sogar symmetrisch zum Ringspalt 36 positioniert ist. Während des gesamten Ausschaltvorgangs, also sowohl während der Aufheizphase als auch während der Beblasung des Lichtbogens 35, ändert sich an dieser Position nichts. Die Einströmung des Heissgases in das Heizvolumen 13 und auch das Abströmen des Gasgemischs aus dem Heizvolumen 13 während der Beblasungsphase erfolgt, wegen der gleichbleibenden Geometrie, immer auf die gleiche Weise, sodass Schwankungen des Ausschaltvermögens, die durch Strömungsinstabilitäten im Bereich des Ringspalts 36 des Leistungsschalters verursacht werden, nicht auftreten können. Die unterschiedlichen strömungsverbessernden Massnahmen im Bereich des Ringspalts 36 erlauben eine optimale Anpassung des Leistungsschalters an die am jeweiligen Einsatzort des Schalters herrschenden Einsatzbedingungen.

Der erfindungsgemässe Leistungsschalter ist besonders für Schaltanlagen im Mittelspannungsbereich geeignet, er kann jedoch, wenn entsprechend der höheren Spannungsbeanspruchung die Abmessung des Ringspalts 36 und der Abstand zwischen Kontaktzylinder 15 und Nennstromkontaktrohr 17 modifiziert wird, auch in Hochspannungsschaltanlagen eingesetzt werden.

BEZEICHNUNGSLISTE

1
Kontaktzone
2
zentrale Achse
3
Schaltstift
4
Spitze
5,6
Abbrandkontaktanordnung
7
Kappe
8
Kontaktkorb
9
Kappe
10
Kontaktkorb
11
Halteteil
12
Isolierrohr
13
Heizvolumen
14
Bund
15
Kontaktzylinder
16
Kontaktfinger
17
Nennstromkontaktrohr
18
Zylinderboden
19
Durchbrüche
20
Rückschlagventil
21
Kompressionsvolumen
22
Kompressionskolben
23
Rohr
24
Kolbenschaft
25,26
Gleitdichtung
27
Durchbrüche
28
Rückschlagventil
29
Löschkammervolumen
30,31
Volumen
32
Leitblech
33,34
Pfeil
35
Lichtbogen
36
Ringspalt
37
Vorderkante
38
Ring
39
Steg
40
Durchbrüche
41
Steg
42
Durchbrüche
43,44
Bohrung
45,46
Achse
47
Schnittpunkt
a
Abstand
α,β
Schnittwinkel
Q1,Q2,Q3
Querschnitt


Anspruch[de]
  1. Leistungsschalter mit mindestens einer mit einem isolierenden Medium gefüllten, rotationssymmetrisch ausgebildeten, entlang einer zentralen Achse (2) erstreckten, mindestens eine Leistungsstrombahn aufweisenden Löschkammer, welche mindestens zwei auf der zentralen Achse (2) angeordnete, voneinander in axialer Richtung konstant beabstandete, in der Leistungsstrombahn angeordnete, eine Lichtbogenzone begrenzende, Abbrandkontaktanordnungen (5,6) aufweist, welche ein mit der Lichtbogenzone verbundenes Heizvolumen (13) und einen, die Abbrandkontaktanordnungen (5,6) im eingeschalteten Zustand elektrisch leitend verbindenden Überbrückungskontakt aufweist, wobei der Überbrückungskontakt entlang der zentralen Achse (2) erstreckt, zentral im Innern der Abbrandkontaktanordnungen (5,6) angeordnet ist, und wobei zwischen den Abbrandkontaktanordnungen (5,6) ein Ringspalt (36) vorgesehen ist, dadurch gekennzeichnet,
    • dass dieser Ringspalt (36) direkt in ein die Abbrandkontaktanordnungen (5,6) umgebendes konstantes, ringförmig ausgebildetes Heizvolumen (13) übergeht, und
    • dass in der Nennstrombahn liegende bewegliche Kontaktübergänge in einem von der Lichtbogenzone vollständig abgetrennten Bereich angeordnet sind.
  2. Leistungsschalter nach Anspruch 1, dadurch gekennzeichnet,
    • dass die Abbrandkontaktanordnungen (5,6) im Innern eines als Nennstromkontaktrohr (17) ausgebildeten Gegenkontakts angeordnet sind.
  3. Leistungsschalter nach Anspruch 1 oder 2, dadurch gekennzeichnet,
    • dass das Heizvolumen (13) mit einem Kompressionsvolumen (21), in welchem das isolierende Medium mit Druck beaufschlagt wird, in Wirkverbindung steht.
  4. Leistungsschalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet,
    • dass das Heizvolumen (13) konzentrisch um die Abbrandkontaktanordnungen (5,6) angeordnet ist, und
    • dass das Heizvolumen (13) symmetrisch oder asymmetrisch zum Ringspalt (36) in axialer Richtung erstreckt angeordnet ist.
  5. Leistungsschalter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,
    • dass das Heizvolumen (13) gemeinsam mit einem der Abbrandkontakte beweglich ist.
  6. Leistungsschalter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,
    • dass der Ringspalt (36) mit Öffnungen aufweisenden Mitteln verschlossen ist, welche für eine Optimierung der Strömungsverhältnisse in diesem Bereich vorgesehen sind.
  7. Leistungsschalter nach Anspruch 6, dadurch gekennzeichnet,
    • dass der Ringspalt (36) zumindest teilweise mit einem Ring (38) aus einem elektrisch isolierenden Material, welcher als Öffnungen im wesentlichen radial ausgerichtete Durchbrüche (40,42) oder Bohrungen (43,44) aufweist, verschlossen ist.
  8. Leistungsschalter nach Anspruch 6, dadurch gekennzeichnet,
    • dass der Ring (38) einen inneren Kranz von ersten Stegen (39) aufweist, zwischen denen radial ausgerichtete erste Durchbrüche (40) angeordnet sind, und
    • dass, beabstandet von dem inneren Kranz, ein äusserer Kranz von zweiten Stegen (41) zwischen denen radial ausgerichtete zweite Durchbrüche (42) angeordnet sind, den inneren Kranz so umschliesst, dass die zweiten Stege (41) die ersten Durchbrüche (40) abdecken.
  9. Leistungsschalter nach Anspruch 6, dadurch gekennzeichnet,
    • dass der Ring (38) mit mindestens zwei Reihen von über den Umfang verteilten und gegeneinander versetzten, zylindrisch oder konisch ausgebildeten, Achsen (45,46) aufweisenden Bohrungen (43,44) versehen ist,
    • dass die Achsen (45,46) einen gemeinsamen, auf der zentralen Achse (2) liegenden Schnittpunkt (47) aufweisen, und
    • dass die Achsen (45,46) einander entgegengesetzt geneigt sind und jeweils den gleichen Schnittwinkel (a) mit der zentralen Achse (2) aufweisen.
  10. Leistungsschalter nach Anspruch 9, dadurch gekennzeichnet,
    • dass der Schnittwinkel (α) im Bereich von 45° bis 75° liegt.
  11. Leistungsschalter nach Anspruch 6, dadurch gekennzeichnet,
    • dass der Ring (38) mit mindestens zwei Reihen von über den Umfang verteilten, zylindrisch oder konisch ausgebildeten, Achsen (45,46) aufweisenden Bohrungen (43,44) versehen ist,
    • dass die Achsen (45,46) einen gemeinsamen, auf der zentralen Achse (2) liegenden Schnittpunkt (47) aufweisen, und
    • dass die Achsen (45,46) einander entgegengesetzt geneigt sind und unterschiedliche Schnittwinkel (α,β) mit der zentralen Achse (2) aufweisen.
  12. Leistungsschalter nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet,
    • dass ein verbleibender Querschnitt (Q3) der Öffnungen des Ringspalts (36) an der engsten Stelle des Ringspalts (36) die folgende Bedingung erfüllt: Q3 / (Q1 + Q2) = 0,8 1,6 , wobei als Querschnitt Q1 die Fläche der inneren Öffnung der Abbrandkontaktanordnung (6) an ihrer engsten Stelle einzusetzen ist, und als Querschnitt Q2 die Fläche der inneren Öffnung der Abbrandkontaktanordnung (5) an ihrer engsten Stelle einzusetzen ist.
  13. Leistungsschalter nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet,
    • dass der als Schaltstift (3) ausgebildete Überbrückungskontakt und das Nennstromkontaktrohr (17) mit gleicher oder unterschiedlicher Geschwindigkeit in entgegengesetzter Richtung beweglich sind.
  14. Leistungsschalter nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet,
    • dass der Überbrückungskontakt als feststehender Kontakt und der Gegenkontakt mit dem Nennstromkontaktrohr (17) als beweglicher Kontakt ausgebildet ist.
  15. Leistungsschalter nach einem der Ansprüche 3 bis 14, dadurch gekennzeichnet,
    • dass im Heizvolumen (13) im Bereich der Verbindung zum Kompressionsvolumen (21) Mittel vorgesehen sind, welche das Vermischen zwischen heissem und frischem isolierendem Medium verbessern.
  16. Leistungsschalter nach Anspruch 15, dadurch gekennzeichnet,
    • dass als Mittel, welches das Vermischen verbessert, mindestens ein mit einem Rückschlagventil (20) zusammenwirkendes konzentrisch angeordnetes Leitblech (32) vorgesehen ist, und
    • dass das mindestens eine Leitblech (32) zylinderförmig oder kegelstumpfförmig ausgebildet ist, wobei die zentrale Achse (2) die Achse des Leitblechs (32) bildet.
  17. Leistungsschalter nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet,
    • dass zu mindestens einer der Abbrandkontaktanordnungen (5,6) eine Blasspule in Reihe geschaltet ist.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com