PatentDe  


Dokumentenidentifikation EP1156902 04.11.2004
EP-Veröffentlichungsnummer 0001156902
Titel SÄGEMASCHINE MIT SCHWINGBEWEGUNG
Anmelder Milwaukee Electric Tool Corp., Brookfield, Wis., US
Erfinder NEITZELL, D., Roger, North Prairie, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69920763
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 09.02.1999
EP-Aktenzeichen 999068497
WO-Anmeldetag 09.02.1999
PCT-Aktenzeichen PCT/US99/02799
WO-Veröffentlichungsnummer 0000047358
WO-Veröffentlichungsdatum 17.08.2000
EP-Offenlegungsdatum 28.11.2001
EP date of grant 29.09.2004
Veröffentlichungstag im Patentblatt 04.11.2004
IPC-Hauptklasse B23D 51/16
IPC-Nebenklasse B23D 49/16   

Beschreibung[en]
FIELD OF THE INVENTION

The present invention generally relates to the field of reciprocating saws.

BACKGROUND OF THE INVENTION

Reciprocating saws are used to cut a variety of objects, such as metal pipes, wood and drywall. Such saws typically include a housing and a spindle mounted in the housing for reciprocating motion along an axis that is parallel to the longitudinal extent of the spindle. An electric motor provides power to the spindle through a mechanical reciprocating device that converts the rotary motion of a motor shaft to reciprocating motion. Such mechanical reciprocating devices can, for example, include an eccentric drive, as disclosed in U.S. Patent No. 5,079,844, or a wobble plate drive, as disclosed in U.S. Patent Nos. 5,025,562 and 5,050,307.

In some reciprocating saws, the spindle reciprocates in an orbital motion as opposed to a straight line reciprocating motion. The orbital motion is characterized by a forward (i.e., in the cutting direction) motion of the saw blade as the saw blade is being retracted toward the saw on the cutting stroke, and a corresponding rearward (i.e., opposite the cutting direction) motion of the saw blade as the saw blade is being extended away from the saw on the return stroke. The result is a circuitous, or orbital, path of the saw blade. Such orbital motion is believed to improve the speed at which the saw cuts a workpiece by driving the saw blade into the workpiece during the cutting stroke and withdrawing the saw blade from the workpiece during the return stroke.

Orbital motion has been achieved in a number of different ways. For example, in U.S. Patent Nos. 4,238,884 and 4,628,605, a forward force (in the cutting direction) is applied by a blade roller directly to the saw blade during the cutting stroke, and forward motion of the saw blade is accommodated by a forgiving interconnection between the spindle and the drive mechanism. In U.S. Patent No. 5,212,887, the spindle reciprocates through a pivotally-mounted bushing, and the back end of the spindle is connected to an eccentric member that provides forward-rearward motion to the spindle. In U.S. Patent Nos. 4,962,588 and 4,550,501, the back end of the spindle is moved forward-rearward by connection to a cam surface on a rotating gear, and in U.S. Patent No. 5,392,519 the back end of the spindle is moved forward-rearward by connection to an eccentric member.

The U.S. Patent No. 4,238,884 discloses a portable electric orbital jig saw of the adjustable orbital type incorporating an improved manually adjustable orbit drive mechanism which transmits a smooth, continuous orbital motion to a reciprocating saw blade with no lost motion, from a full orbit mode operation to a rear orbit mode operation in which the saw blade reciprocates along a straight line.

The U.S. Patent No. 3,945,120 discloses a vibration dampening and heat sink mechanism for a reciprocating power saw. A carrier guide serves both as a counterweight and a heat sink. The draft shaft for an eccentric to provide such limited axial and radial movement also drives a wobble mechanism for reciprocating a saw blade carrier slidably mounted in the carrier guide. The center of gravity of the carrier guide travels in an elliptical path.

SUMMARY OF THE INVENTION

The utilization of blade rollers, cam surfaces, and eccentric members can be unnecessarily complicated and expensive. Further, such devices tend to wear down, and some can introduce unwanted vibrations into the saw. Accordingly, it is an object of the present invention to provide a saw that approaches the better cutting performance of orbital saws without the complexity required for orbital motion. It is a related object of the present invention to achieve a forward motion of the saw blade during the cutting stroke without resorting to orbital motion.

The above-noted objects are achieved by a method according to claim 1. By virtue of this method, the front end of the spindle follows a path that is not orbital, and therefore can be achieved using a much simpler mechanism. In addition, the front end of the spindle can be moved in a neutral path or, alternatively, in an oblique path that plunges into the workpiece.

Moreover, the spindle has a first cutting direction and a second cutting direction opposite the first cutting direction. The method comprises the steps of moving the front end along a first cutting path during the cutting stroke, the first cutting path characterized by movement at least partially in the first cutting direction, returning the front end along a return stroke (e.g., along the first cutting path), and adjusting the saw such that the front end moves along a second cutting path during the cutting stroke, the second cutting path comprising by movement at least partially in the second cutting direction. Preferably, the saw can also be adjusted such that the front end moves along a neutral cutting path during the cutting stroke, the neutral cutting path characterized by movement substantially perpendicular to the first and second cutting directions. By virtue of this method, the saw can be used to achieve a plunge cut in either down-cutting or up-cutting situations.

BRIEF DESCRIPTION OF THE DRAWINGS

  • Fig. 1 is a partial side section view of a reciprocating saw embodying the present invention with the guide member in a down-cutting position and the spindle in a fully retracted position.
  • Fig. 2 is the partial side section view of Fig. 1 with the spindle in a fully extended position.
  • Fig. 3 is a front view of the reciprocating saw shown in Fig. 1.
  • Fig. 4 is a partial right side view of the reciprocating saw shown in Fig. 1.
  • Fig. 5 is a section view taken along line 5-5 in Fig. 1.
  • Fig. 6 is a section view taken along line 6-6 in Fig. 1.
  • Fig. 7 is a right side view of the reciprocating saw taken along line 7-7 in Fig. 5.
  • Fig. 8 is a section view taken along line 8-8 in Fig. 5.
  • Fig. 9 is a section view taken along line 9-9 in Fig. 5.
  • Fig. 10 is a perspective assembly view of the housing insert, follower member, eccentric cam member and adjustment knob.
  • Fig. 11 is a partial side view of the internal drive components of the reciprocating saw of Fig. 1 with the guide member in a neutral or non-rocking position.
  • Fig. 12 is a partial side view of the internal drive components of the reciprocating saw of Fig. 1 with the guide member in an up-cutting position.

DETAILED DESCRIPTION

Figs. 1 and 2 illustrate a reciprocating saw 20 embodying the present invention. The reciprocating saw 20 generally includes a main housing 22, a spindle 24 reciprocatably mounted within the housing 22, and a counterweight 26 reciprocatably mounted with the housing 22. The spindle 24 includes a front end 28 that supports a saw blade 30, which is designed to cut in a cutting direction 32 (i.e., in the direction of the saw teeth) opposite a non-cutting direction 34. The spindle 24 reciprocates the saw blade 30 through a cutting stroke (usually toward the housing 22) and a return stroke (usually away from the housing 22). The counterweight 26 provides a vibration-reducing force that at least partially counteracts the forces created by movement of the spindle 24 and the saw blade 30.

A drive means in the form of an electric motor (not shown) is mounted in the housing 22. The motor includes a drive pinion 36 that engages a gear 38 mounted on a jack shaft 40 that is rotatably mounted within the housing 22. A wobble shaft 42 is positioned over the jack shaft 40 and is designed to drive primary and secondary wobble plates 44,46 in a conventional manner. The primary wobble plate 44 includes a primary drive arm 48 that extends through a slot 50 (Fig. 6) in the counterweight 26 to drivingly engage the reciprocating spindle 24. The secondary wobble plate 46 includes a secondary drive arm 52 that drivingly engages the counterweight 26.

In addition to being mounted for reciprocating motion, the reciprocating spindle 24 is also mounted for rocking motion relative to the housing 22. Such rocking motion is facilitated by a spherical bearing sleeve 54 pivotably mounted within the housing 22. The spherical bearing sleeve 54 rocks relative to the housing 22, and the reciprocating spindle 24 reciprocates through the bearing sleeve 54. In should be appreciated that, instead of a spherical bearing sleeve 54, the bearing sleeve 54 could comprise a plane bearing sleeve mounted to the housing 22 for pivoting motion about a horizontal axis.

The illustrated reciprocating spindle 24 is designed to move in three distinct motions: a down-cutting rocking motion, a neutral or non-rocking motion, and an up-cutting rocking motion. Figs. 1 and 2 illustrate the down-cutting rocking motion. Such motion is generated due to the interconnection between the spindle 24 and an inclined track member 56. Such interconnection is provided by the interconnection between a rear end 58 of the spindle 24 and the counterweight 26, and further by the interconnection between the counterweight 26 and the inclined track member 56. More specifically, the rear end 58 of the spindle 24 is designed to be supported by and to slide within the counterweight 26. Accordingly, any oblique motion (i.e., angled relative to the longitudinal extent of the reciprocating spindle 24) of the counterweight 26 will result in oblique motion of the rear end of the spindle 24 and rocking motion of the spindle 24 about the spherical bearing sleeve 54.

Referring to Fig. 5, in addition to riding on the reciprocating spindle 24, the counterweight 26 is slidably interconnected with the track member 56. In this regard, two follower members in the form of bearings 60 are secured to opposing sides of the counterweight 26 and slidably engage a slot 62 in the track member 56. Because the track member 56 is inclined relative to the longitudinal extent of the counterweight 26 (as shown in Fig. 1), the sliding interaction between the counterweight 26 and the track member 56 will result in oblique movement of the counterweight 26 as the counterweight 26 is reciprocated within the housing 22. More specifically, as the counterweight 26 is moved from the position shown in Fig. 1 to the position shown in Fig. 2, the counterweight 26 moves downwardly (as viewed in Figs. 1 and 2) within the housing 22, resulting in upward movement of both the front end 28 of the spindle 24 and the corresponding saw blade 30. During this upward movement of the saw blade 30, the spindle 24 is being extended. As the spindle 24 is being retracted, the counterweight 26 is extended and moved upward slightly, following the track member 56. Such upward movement of the counterweight 26 results in downward movement of the saw blade 30. Accordingly, it can be seen that the saw blade 30 moves downward slightly (i.e., in the cutting direction 32) during the cutting stroke, and upward slightly (i.e., in the non-cutting direction 34) during the return stroke. However, the cutting stroke and return stroke occur along the same path, and therefore the path of the saw blade 30 is not orbital.

In the illustrated embodiment, the slot 62 in the track member 56 is substantially linear. Alternatively, the slot could be curved.

Turning to Fig.6, in order to accommodate oblique movement of the counterweight 26, the interconnection between the secondary drive arm 52 and the counterweight 26 is provided by a spherical slide bearing 64. More specifically, the spherical slide bearing 64 provides for rocking motion between the secondary drive arm 52 and the counterweight 26, and the secondary drive arm 52 is also slidable within the spherical slide bearing 64 to accommodate transverse movement of the counterweight 26 relative to the secondary drive arm 52. Similarly, the primary drive arm 48 is interconnected with the spindle 24 by a spherical slide bearing (not shown).

In order to allow the path of the saw blade 30 to be adjusted, the angle of the track member 56 is adjustable. More specifically, referring to Figs. 3-5 and 7-9, the track member 56 is pivotally mounted to a housing insert 66 by a pivot member 68. Adjustment of the angle of the track member 56 is accomplished by rotating an adjustment knob 70. The adjustment knob 70 can be rotated to provide rotation to an eccentric cam member 72 having an eccentric pin 74 that slidably engages an adjustment slot 76 in the track member 56. As the eccentric cam member 72 is rotated, the eccentric pin 74 provides transverse movement to the front end 78 of the track member 56, thereby causing rotation of the track member 56 about the pivot member 68.

Referring to Fig. 10, to secure the position of the track member 56, the adjustment knob 70 is provided with two teeth 80 designed to selectively engage three pairs of corresponding recesses 82 in the housing insert 66. The adjustment knob 70 is biased toward the housing insert 66 by a spring 84 and a corresponding spring stop 86 secured to the eccentric cam member 72. Rotation of the adjustment knob 70 is accomplished by pulling the adjustment knob 70 away from the housing insert 66 until the teeth 80 are disengaged from the recesses 82 in the housing insert 66. Subsequently, the adjustment knob 70 can be rotated until the teeth 80 are aligned with a different pair of recesses 82. The adjustment knob 70 can then be released whereby the spring 84 will force the adjustment knob 70 and corresponding teeth 80 toward the housing insert 66 and into the corresponding recesses 82. The positions of the three pairs of recesses 82 in the housing insert 66 correspond with the three desired motions of the saw blade 30: down-cutting rocking motion, neutral or non-rocking motion, and up-cutting rocking motion.

Fig. 11 illustrates the reciprocating saw 20 with the track member 56 in the neutral or non-rocking position, resulting in movement of the front end 28 of the reciprocating spindle 24 in a path different than described above with respect to Fig. 1. Such positioning of the track member 56 is accomplished by rotating the adjustment knob 70, as described above in more detail. With the track member 56 in this position, the counterweight 26 and spindle 24 will not significantly rock about the spherical bearing sleeve 54, thereby resulting in a neutral or non-rocking motion of the saw blade 30. The neutral motion of the saw blade 30 is generally illustrated in Fig. 11 with the fully extended position of the saw blade 30 shown in solid lines and the fully retracted position of the saw blade 30 shown in broken lines. With the track member 56 in this position, the reciprocating saw 20 can be used for either up-cutting (as illustrated) or down-cutting.

Fig. 12 illustrates the reciprocating saw 20 with the track member 56 positioned in an up-cutting rocking position, resulting in movement of the front end 28 of the reciprocating spindle 24 in a path different than described above with respect to Figs. 1 and 11. As noted above, such positioning of the track member 56 is accomplished by rotating the adjustment knob 70 to the appropriate position. With the track member 56 in this position, the saw blade 30 will follow the illustrated path, with the fully extended position of the saw blade 30 shown in solid lines and the fully retracted position of the saw blade 30 shown in broken lines. With the track member 56 in this position, the reciprocating saw 20 can be used for up-cutting in a cutting direction opposite that shown in Fig. 1.

The foregoing description of the present invention has been presented for purposes of illustration and description.

The embodiments described herein are further intended to explain best modes known for practicing the invention and to enable others skilled in the art to utilize the invention in such, or other, embodiments and with various modifications required by the particular applications or uses of the present invention as defined in the appended claims.


Anspruch[de]
  1. Wechselhubbewegungsverfahren für einen Stößel (24) einer Stichsäge (20), wobei der Stößel (24) ein vorderes Ende (28) aufweist, das dazu eingerichtet ist, ein Sägeblatt aufzunehmen, wobei das Sägeblatt (30) entlang eines Bewegungsweges, der einen Sägehub und einen Rücklaufhub beinhaltet, bewegt werden kann und das Sägeblatt (30) eine erste Ausrichtung relativ zum Stößel (24) mit einer ersten Schnittrichtung (32) und eine zweite Ausrichtung relativ zum Stößel (24) mit einer zweiten Schnittrichtung hat, die der ersten Schnittrichtung entgegengesetzt ist, und das Verfahren durch folgende Vorgänge gekennzeichnet ist: Bewegen des vorderen Endes (28) entlang eines ersten Schnittweges während eines ersten Schnitthubs, wobei der Schnittweg durch eine Bewegung gekennzeichnet ist, die wenigstens teilweise in der ersten Schnittrichtung während des ersten Schnitthubes erfolgt; Zurückziehen des vorderen Endes (28) entlang eines ersten Rücklaufhubs auf demselben ersten Schnittweg; und Einstellen der Ausrichtung des Sägeblattes (30) relativ zum Stößel (24) aus der ersten Ausrichtung in die zweite Ausrichtung; Einstellen des Bewegungsweges des Sägeblattes (30) derart, daß sich das vordere Ende (28) entlang eines zweiten Schnittweges während eines zweiten Schnitthubs bewegt, wobei der zweite Schnittweg eine Bewegung umfaßt, die wenigstens teilweise in der zweiten Schnittrichtung während des zweiten Schnitthubs erfolgt; und Zurückziehen des vorderen Endes (28) entlang eines zweiten Rücklaufhubs auf demselben Schnittweg.
  2. Verfahren nach Anspruch 1, weiterhin enthaltend den Vorgang der wiederholten Hubbewegung des vorderen Endes (28) des Stößels (24) in der Art, daß das Sägeblatt sich entlang des ersten Schnittweges während des ersten Schnitthubs und entlang desselben ersten Wegs während des ersten Rücklaufhubs bewegt.
  3. Verfahren nach einem der Ansprüche 1 oder 2, bei dem die Säge zudem eine Führung und einen Führungsfolger (56) aufweist, der mit dem Sägeblatt verbunden ist, und bei dem der Bewegungsvorgang des vorderen Endes (28) die Bewegung des Führungsfolgers (56) entlang der Führung beinhaltet.
  4. Verfahren nach Anspruch 3, bei dem der Stößel (24) mit dem Führungsfolger verbunden ist und bei dem der Bewegungsvorgang des vorderen Endes (28) ein derartiges Bewegen des Stößels (24) umfaßt, daß sich der Führungsfolger (56) entlang der Führung bewegt.
  5. Verfahren nach Anspruch 3, bei dem die Säge weiterhin ein Gegengewicht enthält, wobei dieses Gegengewicht (26) beweglich gelagert und mit dem Führungsfolger verbunden ist, und bei dem der Bewegungsvorgang des vorderen Endes (28) eine derartige Bewegung des Gegengewichtes (26) beinhaltet, daß der Führungsfolger (56) sich entlang der Führung bewegt.
  6. Verfahren nach einem der obigen Ansprüche, bei dem der Stößel (24) eine Längsrichtung definiert, und bei dem der erste Schnittweg im wesentlichen parallel zur Längsrichtung des Stößels (24) verläuft.
  7. Verfahren nach einem der obigen Ansprüche, bei dem der Stößel (24) eine Längsrichtung definiert, und bei dem der zweite Schnittweg zur Längsrichtung des Stößels (24) schräg verläuft.
  8. Verfahren nach einem der obigen Ansprüche, weiterhin enthaltend den Vorgang des Einstellens des Bewegungswegs des Sägeblattes (30) derart, daß sich das vordere Ende entlang eines neutralen Schnittwegs während des Schnitthubs bewegt, wobei der neutrale Schnittweg durch eine Bewegung gekennzeichnet ist, die im wesentlichen senkrecht zur ersten und zur zweiten Schnittrichtung verläuft.
Anspruch[en]
  1. A method of reciprocating a spindle (24) of a reciprocating saw (20), the spindle (24) having a front end (28) adapted to receive a saw blade, the saw blade (30) being movable through a path of travel including a cutting stroke and a return stroke, the saw blade (30) having a first orientation relative to the spindle (24) to have a first cutting direction (32) and a second orientation relative to the spindle (24) to have a second cutting direction opposite the first cutting direction, said method characterized by the acts of: moving the front end (28) along a first cutting path during a first cutting stroke, the first cutting pathcharacterized by movement at least partially in the first cutting direction during the first cutting stroke; returning the front end (28) along a first return stroke in the same first cutting path; and adjusting the orientation of the saw blade (30) relative to the spindle (24) from the first orientation to the second orientation; adjusting the path of travel of the saw blade (30) such that the front end (28) moves along a second cutting path during a second cutting stroke, the second cutting path comprising movement at least partially in the second cutting direction during the second cutting stroke; and returning the front end (28) along a second return stroke in the same second cutting path.
  2. A method as claimed in claim 1, further comprising the act of repeatedly reciprocating the front end (28) of the spindle (24) such that the saw blade moves along the first cutting path during the first cutting stroke and along the same first path during the first return stroke.
  3. A method as claimed in one of the claims 1 or 2, wherein the saw also includes a track and a track follower (56) connected to the saw blade, and wherein said act of moving the front end (28) includes moving the track follower (56) along the track.
  4. A method as claimed in claim 3, wherein the spindle (24) is connected to the track follower, and wherein said act of moving the front end (28) includes moving the spindle (24) so that the track follower (56) moves along the track.
  5. A method as claimed in claim 3, wherein the saw further includes a counterweight, the counterweight (26) being movably supported and connected to the track follower, and wherein said act of moving the front end (28) includes moving the counterweight (26) so that the track follower (56) moves along the track.
  6. A method as claimed in one of the above claims, wherein the spindle (24) defines a longitudinal extent, and wherein the first cutting path is substantially parallel to the longitudinal extent of the spindle(24).
  7. A method as claimed in one of the above claims, wherein the spindle (24) defines a longitudinal extent, and wherein the second cutting path is oblique to the longitudinal extent of the spindle (24).
  8. A method as claimed in one of the above claims, further comprising the act of adjusting the path of travel of the saw blade (30) such that the front end (28) moves along a neutral cutting path during the cutting stroke, the neutral cutting path characterized by movement substantially perpendicular to the first and second cutting directions.
Anspruch[fr]
  1. Un procédé de déplacement alternatif d'une broche (24) d'une scie alternative (20), la broche (24) présentant une extrémité avant (28) apte à recevoir une lame de scie, la lame de scie (30) étant déplaçable sur une trajectoire de course comprenant une course de travail et une course de retour, la lame de scie (30) ayant une première orientation par rapport à la broche (24) de manière à avoir une première direction de coupe (32) et une deuxième orientation par rapport à la broche (24) de m anière à avoir un e deuxième direction de coupe opposé e à la première direction de coupe, ledit procédé étant caractérisé par les étapes consistant à : déplacer l'extrémité avant (28) le long d'une première trajectoire de coupe durant une première course de travail, la première trajectoire de coupe étant caractérisée par un mouvement au moins partiel dans la première direction de coupe durant la première course de travail ; rappeler l'extrémité avant (28) le long d'une première course de travail dans la même première trajectoire de coupe ; et ajuster l'orientation de la lame de scie (30) par rapport à la broche (24) à partir de la première orientation vers la deuxième orientation ; ajuster la trajectoire de course de la lame de scie (30) de telle sorte que l' extrémité avant (28) se déplace le long d'une deuxième trajectoire de coupe durant une deuxième course de travail, la deuxième trajectoire de coupe comprenant un mouvement au moins partiel dans la deuxième direction de coupe durant la deuxième course de travail ; et rappeler l'extrémité avant (28) le long d'une deuxième course de travail dans la même deuxième trajectoire de coupe.
  2. Un procédé selon la revendication 1, comprenant en outre l'étape consistant à déplacer alternativement et de façon répétée l 'extrémité avant (28) de la broche (24) de telle sorte que la lame de scie se déplace le long de la première trajectoire de coupe durant la première course de travail et le long de la même première trajectoire durant la première course de retour.
  3. Un pr océdé selon l'une des revendications 1 ou 2, dans lequel la scie comprend également un guide et un suiveur de guide (56) raccordé à la lame de scie, et dans lequel ladite étape consistant à déplacer l'extrémité avant (28) inclut le déplacement du suiveur de guide (56) le long du guide.
  4. Un procédé selon la revendication 3, dans lequel la broche (24) est raccordée au suiveur de guide, et dans lequel ladite étape consistant à déplacer l'extrémité avant (28) inclut le déplacement de la broche (24) de telle sorte que le suiveur de guide (56) se déplace le long du guide.
  5. Un procédé selon la revendication 3, dans lequel la scie comprend en outre un contrepoids, le contrepoids (26) étant supporté et raccordé de manière mobile au suiveur de guide, et dans le quel ladite étape consistant à déplacer l'extrémité avant (28) inclut le déplacement du contrepoids (26) de telle sorte que le suiveur de guide (56) se déplace le long du guide.
  6. Un procédé selon l'une quelconque des revendications ci-dessus, dans leque 1 la broche (24) définit une étendue longitudinale, et dans lequel la première trajectoire de coupe est sensiblement parallèle à l'étendue longitudinale de la broche (24).
  7. Un procédé selon l'une quelconque des revendications ci-dessus, dans lequel la b roche (24) définit une étendue longitudinale, et dans lequel la deuxième trajectoire de coupe est oblique par rapport à l'étendue longitudinale de la broche (24).
  8. Un procédé selon l'une quelconque des revendications ci-dessus, comprenant en outre l'éta pe consistant à ajuster la trajectoire de course de la lame de scie (30) de telle sorte que l'extrémité avant (28) se déplace le long d'une trajectoire de course neutre durant la course de travail, la trajectoire de course neutre étant caractérisée par un mouvement sensiblement perpendiculaire à la première et à la deuxième direction de coupe.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com