PatentDe  


Dokumentenidentifikation EP1007323 02.12.2004
EP-Veröffentlichungsnummer 0001007323
Titel VERFAHREN UND GERÄT ZUM KÜHLEN EINES PRODUKTES IN EINER FORM
Anmelder Lupke, Manfred Arno Alfred, Thornhill, Ontario, CA;
Lupke, Stefan A., Thornhill, Ontario, CA
Erfinder Lupke, Manfred Arno Alfred, Thornhill, Ontario L3T 1W6, CA;
Lupke, Stefan A., Thornhill, Ontario L3T 1X6, CA
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69827273
Vertragsstaaten AT, DE, ES, FR, GB, IT, NL
Sprache des Dokument EN
EP-Anmeldetag 09.03.1998
EP-Aktenzeichen 989077789
WO-Anmeldetag 09.03.1998
PCT-Aktenzeichen PCT/CA98/00189
WO-Veröffentlichungsnummer 0098040198
WO-Veröffentlichungsdatum 17.09.1998
EP-Offenlegungsdatum 14.06.2000
EP date of grant 27.10.2004
Veröffentlichungstag im Patentblatt 02.12.2004
IPC-Hauptklasse B29C 47/88
IPC-Nebenklasse B29C 49/00   

Beschreibung[en]
FIELD OF THE INVENTION

The present invention relates to a method of molding a product including the step of cooling the product while the product is in the mold while at the same time cooling the mold. The invention is particularly used for the formation of molded plastic pipe.

BACKGROUND OF THE INVENTION

Plastic pipe is generally formed by extruding plastic into a mold tunnel. The pipe is formed by either vacuum forming or blow molding. After the pipe has been shaped, it is typically cooled by cooling of the mold blocks. As the pipe continues down the mold tunnel the cooling becomes less and less efficient because the pipe shrinks producing an air gap between the mold blocks and the pipe. Accordingly, the pipe is insulated from and has difficulty in giving heat off to the mold blocks as the pipe continues down the mold tunnel.

US 4,319,872 discloses an apparatus for producing corrugated thermoplastic tubing with mold blocks cooperating in pairs. The walls of the mold blocks have troughs for forming the corrugations which have passages which can be connected to a suction source to help in forming the corrugations. The passages can also be connected to a pressure source after cooling and setting of the tubing in order to urge it out of the mold.

US 4,226,580 describes a similar apparatus in which the mold blocks include an inner liner of a porous material and first and second passages. A cooling fluid can be fed through the first passages and the porous liner to the second passages in order to cool the mold blocks.

SUMMARY OF THE INVENTION

The present invention provides methods as defined in claims 1 and 2 for molding a plastic product with novel means for cooling of both the mold and the product. The invention is particularly applicable to the molding of a plastic pipe. of the mold through an outlet at a location remote from the inlet.

In the case of a plastic pipe, which is formed in a rounded mold tunnel, the cooling gas is introduced through mold block sections on one side of the mold tunnel and is moved circumferentially around the pipe.

The method of the present invention can be used in combination with interior cooling to further increase the cooling effect on the product.

BRIEF DESCRIPTION OF THE DRAWINGS

The above as well as other advantages and features of the present invention will be described in greater detail according to the preferred embodiments of the present invention in which;

  • Figure 1 is a side view of a plastic pipe molding apparatus according to a preferred embodiment of the present invention;
  • Figure 2 is a top perspective view looking down on a pair of mold block sections from the apparatus of Figure 1;
  • Figure 3 is a sectional view through the mold tunnel of the apparatus of Figure 1 showing pipe being vacuum formed according to one preferred embodiment of the present invention;
  • Figure 3a is a sectional view through the mold tunnel of the apparatus of Figure 1 with the pipe being blow formed according to another preferred embodiment of the present invention;
  • Figure 4 is a sectional view through the mold tunnel of the apparatus of Figure 1 showing initial cooling of the pipe;
  • Figure 5 is a sectional view through the mold tunnel of the apparatus of Figure 1 showing final cooling of the pipe;
  • Figure 6 is a sectional view through a mold tunnel of a further preferred mold apparatus.

DETAILED DESCRIPTION ACCORDING TO THE PREFERRED EMBODIMENTS OF THE PRESENT INVENTION

Figure 1 shows a pipe molding apparatus generally indicated at 1. In this apparatus, molten plastic is fed from an extruder 2 to a mold tunnel downstream of the extruder. Pipe indicated at P emerges from the downstream end of the mold tunnel.

The mold tunnel is formed by an upper track of mold block sections 3 and a lower track of mold block sections 4. The mold block sections meet with one another to define the mold tunnel generally indicated at 5.

Figure 2 shows a pair of side by side mold block sections 4 from the lower track of mold block sections. As will be seen, these mold block sections have an interior face generally indicated at 7 which defines the external shape of the pipe P. In this particular embodiment, the interior face of the mold block sections has alternating lands and grooves to produce a ribbed shaping of the pipe.

Mold block sections 4 are particularly designed for vacuum forming of the pipe in that they are provided with small vacuum slits 9 at each trough in the mold block face. For vacuum forming of the pipe, suction is drawn through these vacuum slits which pulls the molten plastic onto the faces of the mold block sections. These vacuum slits may be intermittent or they may be continuous around the semicircular face of each mold block section. Figure 2 shows two slits in each trough of each mold block section, however there may only be one slit or more than the two slits shown for each trough.

Mold block sections 3 in the upper track of mold block sections have an identical construction.

Figure 3 shows the vacuum forming of the pipe as it occurs in an upstream region of mold tunnel 5. Here it will be seen that the mold block sections 3 and 4, both of which are mounted to mold block carriers 2, are closed tightly with one another in the mold tunnel. A source of vacuum 11 which as shown in Figure 3 is located externally of the mold block section is in direct communication with the small slits 9 in the upper mold block section at discrete locations 16, 17 and 18 through passages 13, 14 and 15 respectively. These passages, as shown, go directly through the wall of the upper mold block section. A similar arrangement is found in the lower mold block section 4 where a source of vacuum 19 again outside of the mold tunnel is in connection with the vacuum slits 9 opening at the face of the lower mold block section through passages 21, 22 and 23 having separate access regions 25, 26 and 27 respectively with the vacuum slits.

Figure 3 shows that when vacuum is applied through both the upper and the lower vacuum source, the plastic is pulled onto the interior surfaces of the two mated mold block sections to shape the pipe P.

Figure 3a, while using the same mold block sections 3 and 4 shows that the pipe can also be blow molded from air pressure applied internally of the pipe as shown by the arrows in Figure 3a. This air pressure pushes the molten plastic outwardly onto the mold block faces.

Regardless of the method of forming the pipe, i.e. either by vacuum forming or by blow molding of the pipe, the pipe is cooled using openings in the mold block faces and in this case by using the vacuum slits 9 through the mold block sections. After the pipe has been shaped and as it continues down the mold tunnel where the plastic starts to set to hold the shape of the pipe, a cooling gas is introduced from one of the mold block sections into a gap between the mold tunnel and the pipe. Eventually, this cooling gas is drawn out of the mold tunnel through an outlet remote from the location where the gas is introduced to the mold tunnel.

More particularly, as indicated by the arrows in Figure 4, cooling gas is introduced to the upper mold block section 3. In the event that the pipe has been vacuum formed, the vacuum while being continued in the upstream region of the mold tunnel is replaced by a flow of cooling gas into the mold tunnel in the more downstream region of the tunnel after the pipe has been shaped and sufficiently set to hold its shape. Passage 11 which now becomes a pathway for the cooling gas. This cooling gas, which may be in a number of different forms including outside ambient air or air which is passed through a cooling device, is forced along the passages 13, 14 and 15 and in this case through the vacuum slits 9 in the upper mold block section. These slits now become inlets into the mold tunnel for directing the cooling gas onto the exterior surface of the pipe P.

Figure 5 shows that the pipe, with some initial cooling, shrinks away from the interior surface of the mold sections creating a gap G between the outside surface of the pipe and the interior face of mold tunnel. This allows the cooling gas to be forced circumferentially around the pipe as indicated by the arrows in gap G to the vacuum slits in the lower mold block section where the gas is then drawn out of the mold tunnel. Therefore, the slits in the lower mold block section which continue to be subjected to vacuum, now become gas outlets from the mold tunnel.

It is not necessary to introduce cooling gas to the mold tunnel in order to produce some initial shrinkage of the pipe away from the mold tunnel wall. This occurs naturally as a result of normal cooling of the pipe. Therefore, the cooling gas is introduced after the natural pipe shrinkage which still produces the gap G allowing the cooling gas to be fed into the mold tunnel from one of the mold block sections and around the pipe to the other mold block section.

The cooling gas has two benefits. Firstly, it provides faster cooling and setting up of the pipe. Secondly, it reduces the temperature of the mold blocks which results in greater ability of the mold blocks to absorb heat from the pipe which again allows the pipe to cool and set faster than normal.

One of the advantages of using the vacuum slits for both the introduction and the discharge of the cooling gas, preferably cooling air, is that the vacuum slits whether they be continuous or intermittent form paths for the cooling air completely through the main body of the mold block sections. Therefore, the cooling air not only runs around and along the interior surfaces of but additionally penetrates into the mold block sections. This substantially enhances cooling the mold block sections. This in turn increases the ability of the mold blocks to cool the pipe particularly after the mold block sections are returned along their endless loops in a much cooler state than normal to the upstream end of the mold tunnel where they are in direct contact with and have the greatest cooling effect on the plastic as it is extruded into the mold tunnel.

Figure 6 shows a slightly different mold tunnel design comprising a pair of mold block sections 21 and 25 provided with passages 23 and 27 respectively. These passages first provide vacuum paths during formation of the pipe P and later act as cooling gas inlet and outlet passages. They feed into the interior of the mold tunnel along the parting faces of the mold block sections where they meet as indicated at 29 rather than through holes provided directly in the walls of the mold block sections.

If desired, for faster cooling of the pipe in the mold tunnel, a cooling medium such as a cooling plug or even cooling gas can be introduced interiorly of the pipe simultaneously with the exterior cooling of the pipe.

In another embodiment of the invention a cooling gas is introduced at the interior face of the mold tunnel, e.g. through the slits in the mold blocks, along the parting faces of the mold block sections, or through other inlets provided in the mold block faces. After cooling both the product and the mold blocks the gas is discharged through the downstream end of the mold tunnel which is open for releasing the pipe from the mold tunnel as earlier described with respect to Figure 1 of the drawings.


Anspruch[de]
  1. Verfahren zur Herstellung eines Kunststoffproduktes in einer Form mit einem von einer Formwand umgebenen Formbereich, wobei die Form einen Gaseinlass in den sowie einen Gasauslass aus dem Formbereich aufweist und der Gaseinlass durch die Formwand hindurch ausgebildet ist, wobei der Gasauslass von dem Gaseinlass entfernt angeordnet ist, wobei das Verfahren ein Formen des Produktes in dem Formbereich gegen die Formwand sowie ein Schrumpfen des Produktes von der Formwand weg umfasst, um einen Spalt zwischen dem Produkt und der Formwand zu bilden, und daraufhin ein Kühlgas an dem Gaseinlass in den Formbereich und durch den Spalt geleitet wird, wo das Gas sowohl über das Produkt als auch über die Formwand streicht und beide kühlt, und das Kühlgas daraufhin an dem Gasauslass aus dem Formbereich geleitet wird.
  2. Verfahren zur Herstellung eines Rohres in einem Formtunnel, der durch erste und zweite Formblockabschnitte gebildet wird, die so zusammenpassen, dass sie einen von einer Formwand umgebenen Formbereich bilden, der eine gerundete innere Formfläche und ein stromabwärts gelegenes offenes Ende aufweist, wo das Rohr den Formbereich verlässt, wobei das Verfahren ein Formen des Rohres gegen die Formfläche und ein Schrumpfen des Rohres weg von der Formfläche zur Erzeugung eines Spaltes zwischen der Formfläche und dem Rohr umfasst, woraufhin dann ein Kühlgas längs eines sich durch den ersten Formblockabschnitt erstreckenden Gaseinlasses zu dem Spalt in dem Formbereich geleitet wird und das Kühlgas dann durch den Spalt sowohl längs des Rohres als auch der Formfläche zu einem Gasauslass aus dem Formbereich geführt wird, der entfernt von dem Gaseinlass angeordnet ist.
  3. Verfahren nach Anspruch 2, bei dem der Gasauslass in dem zweiten Formblockabschnitt angeordnet ist und wobei das Verfahren es umfasst, dass das Gas umfänglich innerhalb des Spaltes um den Formbereich sowohl längs des Rohres als auch der Formfläche von dem Gaseinlass in dem ersten Formblockabschnitt zu dem Gasauslass in dem zweiten Formblockabschnitt geleitet wird.
  4. Verfahren nach Anspruch 2, das es umfasst, dass das Kühlgas in dem Spalt in dem Formbereich von dem Gaseinlass in dem ersten Formblockabschnitt längs sowohl des Rohres als auch der Formfläche zu dem stromabwärts gelegenen offenen Ende des Formbereiches geleitet wird, wo das Kühlgas den Formbereich verlässt.
Anspruch[en]
  1. A method of making a plastic product in a mold having a mold region surrounded by a mold wall, the mold having a gas inlet to and a gas outlet from the mold region, the gas inlet being formed through the mold wall and the gas outlet being located away from the gas inlet, the method comprising shaping the product in the mold region against the mold wall, shrinking the product away from the mold wall to produce a gap between the product and the mold wall and then flowing a cooling gas into the mold region at the gas inlet, through the gap where the gas moves over and cools both the product and the mold wall, and then out of the mold region at the gas outlet.
  2. A method of making pipe in a mold tunnel formed by first and second mold block sections which mate with one another to form a mold region surrounded by a mold wall having a rounded interior molding surface and an open downstream end where the pipe leaves the mold region, said method comprising shaping the pipe against the molding surface, shrinking the pipe away from the molding surface to produce a gap between the molding surface and the pipe, then passing a cooling gas along a gas inlet extending through the first mold block section to the gap in the mold region and flowing the cooling gas through the gap along both the pipe and the mold surface to a gas outlet from the mold region which is located remotely of the gas inlet.
  3. A method as claimed in Claim 2 in which the gas outlet is located in the second mold block section and wherein said method comprises flowing the gas circumferentially within the gap around the mold region along both the pipe and the molding surface from the gas inlet in the first mold block section to the gas outlet in the second mold block section.
  4. A method as claimed in Claim 2 comprising flowing the cooling gas into the gap in the mold region from the gas inlet in the first mold block section along both the pipe and the molding surface to the open downstream end of the mold region where the cooling gas passes out of the mold region.
Anspruch[fr]
  1. Procédé de fabrication d'un produit plastique dans un moule ayant une région de moule entourée par une paroi de moule, le moule ayant une entrée de gaz vers et une sortie de gaz depuis la région de moule, l'entrée de gaz étant formée dans la paroi de moule et la sortie de gaz étant située loin de l'entrée de gaz, le procédé comprenant le formage du produit dans la région de moule contre la paroi de moule, le retrait du produit de la paroi de moule afin de produire un espace entre le produit et la paroi de moule, puis la circulation d'un gaz de refroidissement dans la région de moule au niveau de l'entrée de gaz, dans l'espace où le gaz passe sur et refroidit à la fois le produit et la paroi de moule, puis son retrait de la région de moule au niveau de la sortie de gaz.
  2. Procédé de fabrication d'une conduite dans un tunnel de moulage formé d'une première et deuxième section de bloc de moule qui sont adaptées l'une à l'autre afin de former une région de moule entourée par une paroi de moule ayant une surface de moulage intérieure arrondie et une extrémité d'aval ouverte où la conduite quitte la région de moule, ledit procédé comprenant le formage de la conduite contre la surface de moulage, le retrait de la surface de moulage afin de produire un espace entre la surface de moulage et la conduite, puis le passage d'un gaz de refroidissement dans une entrée de gaz allant de la première section de bloc de moule à l'espace dans la région de moule et la circulation du gaz de refroidissement dans l'espace suivant à la fois la conduite et la surface de moule jusqu'à une sortie de gaz de la région de moule qui est éloignée de l'entrée de gaz.
  3. Procédé selon la revendication 2 dans lequel la sortie de gaz est située dans la deuxième section de bloc de moule et dans lequel ledit procédé comprend la circulation du gaz de manière circulaire dans l'espace autour de la région de moule suivant à la fois la conduite et la surface de moulage de l'entrée de gaz dans la première section de bloc de moule jusqu'à la sortie de gaz dans la deuxième section de bloc de moule.
  4. Procédé selon la revendication 2 comprenant la circulation du gaz de refroidissement dans l'espace de la région de moule suivant à la fois la conduite et la surface de moulage jusqu'à l'extrémité d'aval ouverte de la région de moule où le gaz de refroidissement sort de la région de moule.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com