PatentDe  


Dokumentenidentifikation DE10334002A1 10.02.2005
Titel Verfahren zum Entsäuern eines Fluidstroms mittels einer inerten Waschkolonne und Vorrichtung hierzu
Anmelder BASF AG, 67063 Ludwigshafen, DE
Erfinder Meckl, Stefan, Dr., 67157 Wachenheim, DE;
Asprion, Norbert, Dr., 68163 Mannheim, DE
DE-Anmeldedatum 25.07.2003
DE-Aktenzeichen 10334002
Offenlegungstag 10.02.2005
Veröffentlichungstag im Patentblatt 10.02.2005
IPC-Hauptklasse B01D 53/18
Zusammenfassung Verfahren zum Entsäuern eines Fluidstroms, der Sauergase als Verunreinigungen enthält, wobei man in wenigstens einem Absorptionsschritt bei einem Druck von 0,5 bis 20 bar den Fluidstrom mit einem Absorptionsmittel in innigen Kontakt bringt, mit der Maßgabe, dass man den Absorptionsschritt und im Fall von mehreren Absorptionsschritten wenigstens einen der Absorptionsschritte in einer inerten Waschkolonne, deren innere Oberfläche im Wesentlichen aus Kunststoff oder Gummi besteht, durchführt.

Beschreibung[de]

Die vorliegende Erfindung betrifft ein Verfahren zum Entsäuern eines Fluidstroms, der Sauergase als Verunreinigungen enthält und eine Vorrichtung hierfür.

In zahlreichen Prozessen in der chemischen Industrie treten Fluidströme auf, die Sauergase, wie z.B. CO2, H2S, SO2, CS2, HCN, COS oder Mercaptane als Verunreinigungen enthalten. Bei diesen Fluidströmen kann es sich beispielsweise um Gasströme (wie Erdgas, Raffineriegas, bei der Oxidation organischer organischen Materialien, wie beispielsweise organische Abfälle Kohle oder Erdöl, oder bei der Kompostierung organischer Substanzen enthaltender Abfallstoffe entstehende Reaktionsgase handeln.

Die Entfernung der Sauergase ist aus unterschiedlichen Gründen von besonderer Bedeutung. Beispielsweise muss der Gehalt an Schwefelverbindungen von Erdgas durch geeignete Aufbereitungsmaßnahmen unmittelbar an der Erdgasquelle reduziert werden, denn auch die Schwefelverbindungen bilden in dem vom Erdgas häufig mitgeführten Wasser Säuren, die korrosiv wirken. Für den Transport des Erdgases in einer Pipeline müssen daher vorgegebene Grenzwerte der schwefelhaltigen Verunreinigungen eingehalten werden. Die bei der Oxidation organischer Materialien, wie beispielsweise organische Abfälle, Kohle oder Erdöl, oder bei der Kompostierung organischer Substanzen enthaltender Abfallstoffe entstehenden Reaktionsgase müssen entfernt werden, um die Emission von Gasen, die die Natur schädigen oder das Klima beeinflussen können zu verhindern.

Zu den in Gaswäscheverfahren eingesetzten Waschlösungen existiert auch eine umfangreiche Patentliteratur. Grundsätzlich kann man dabei zwei unterschiedlichen Typen von Absorptions- bzw. Lösungsmitteln für die Gaswäsche unterscheiden:

Zum einen werden sog. physikalische Lösungsmittel eingesetzt, in denen nach erfolgter Absorption die gelösten Sauergase in molekularer Form vorliegen. Typische physikalische Lösungsmittel sind Cyclotetramethylensulfon (Sulfolan) und dessen Derivate, aliphatische Säureamide (Acetylmorpholin, N-Formylmorpholin), NMP (N-Methylpyrrolidon), Propylencarbonat, N-alkylierte Pyrrolidone und entsprechende Piperidone, Methanol und Gemische aus Dialkylethern von Polyethylenglykolen (Selexol®, Union Carbide, Danbury, Conn., USA).

Zum anderen werden chemische Lösungsmittel eingesetzt, deren Wirkungsweise auf chemischen Reaktionen beruht, bei denen nach erfolgter Absorption die gelösten Sauergase in Form chemischer Verbindungen vorliegen. Beispielsweise werden bei den im industriellen Maßstab am häufigsten als chemische Lösungsmittel eingesetzten wässrigen Lösungen aus anorganischen Basen (z.B. Pottaschelösung im Benfield-Prozess) oder organischen Basen (z.B. Alkanolamine) beim Lösen von Sauergasen Ionen gebildet. Das Lösungsmittel kann durch Entspannen auf einen niedrigeren Druck oder Strippen regeneriert werden, wobei die ionischen Spezies zu Sauergasen zurück reagieren und/oder mittels Dampf abgestrippt werden. Nach dem Regenerationsprozess kann das Lösungsmittel wiederverwendet werden. Bevorzugte, beim Entfernen von Sauergasverunreinigungen aus Kohlenwasserstoffgasströmen verwendete Alkanolamine umfassen Monoethanolamin (MEA), Diethanolamin (DEA), Triethanolamin (TEA), Diethylethanolamin (DEEA), Diisopropylamin (DIPA), Aminoethoxyethanol (AEE) und Methyldiethanolamin (MDEA).

Zur Absorption der Sauergase werden die Fluidströme in einem Absorptionsschritt mit der Waschlösung in Kontakt gebracht. Es ist aus "Gas Purification", Arthur Kohl, Richard Nielsen, Gulf Publishing Company, Houston, Texas, 1997, 5th edition, Chapter 3, Subchapter Amine Plant Corrosion, 187–230 bekannt, diesen Absorptionsschritt in Waschkolonnen aus Stahl durchzuführen. Gleichfalls ist beschrieben (loc. cit.), dass der Stahl, sofern nicht kostspielige hochlegierte Stähle eingesetzt werden, bedingt durch den Anteil der Sauergase, durch Korrosion angegriffen wird. Hierdurch wird die Lebensdauer der Anlagen erheblich eingeschränkt.

Es bestand deshalb die Aufgabe, eine Vorrichtung zur Absorption von Sauergasen aus Fluidströmen umfassend eine Waschkolonne bereitzustellen, bei dem die Waschkolonne gegenüber den Fluidströmen weitgehend inert ist.

Demgemäß wurde ein Verfahren zum Entsäuern eines Fluidsfroms gefunden, der Sauergase als Verunreinigungen enthält, wobei man in wenigstens einem Absorptionsschritt bei einem Druck von 0,5 bis 20 bar den Fluidstrom mit einem Absorptionsmittel in innigen Kontakt bringt, mit der Maßgabe, dass man den Absorptionsschritt und im Fall von mehreren Absorptionsschritten wenigstens einen der Absorptionsschritte in einer inerten Waschkolonne, deren innere Oberfläche im wesentlichen aus Kunststoff oder Gummi besteht, durchführt.

Der Fluidstrom, meistens ein an sauren Gasbestandteilen reiches Ausgangsgas (Rohgas), wird in einem Absorptionsschritt in einer inerten Waschkolonne in Kontakt mit einem Absorptionsmittel gebracht, wodurch die sauren Gasbestandteile zumindest teilweise ausgewaschen werden.

Bei dem Ausgangsgas handelt es sich im Allgemeinen um Erdgas oder einen Gasstrom, der auf folgende Weise gebildet wird:

  • a) der Oxidation organischer Substanzen,
  • b) der Kompostierung und Lagerung organischer Substanzen enthaltender Abfallstoffe, oder
  • c) der bakteriellen Zersetzung organische Substanzen.

Als organische Substanzen, die einer Oxidation unterworfen werden, handelt es sich üblicherweise um fossile Brennstoffe wie Kohle, Erdgas oder Erdöl oder organische Substanzen enthaltende Abfallstoffe.

Als organische Substanzen enthaltende Abfallstoffe, die der Oxidation, der Kompostierung oder Lagerung unterzogen werden, werden vor allem Hausmüll, Kunststoffabfälle oder Verpackungsmüll verwendet.

Die Oxidation der organische Substanzen erfolgt meistens in üblichen Verbrennungsanlagen mit Luft.

Die Kompostierung und Lagerung organischer Substanzen enthaltender Abfallstoffe erfolgt im Allgemeinen auf Mülldeponien.

Als organische Substanzen bei der bakteriellen Zersetzung werden üblicherweise Stalldung, Stroh, Jauche, Klärschlamm, Fermentationsrückstände verwendet.

Die bakterielle Zersetzung erfolgt z.B. in üblichen Biogasanlagen.

Im Allgemeinen enthalten diese Gasströme bei Normalbedingungen weniger als 50 mg/m3 Schwefeldioxid.

Die Ausgangsgase können entweder den Druck aufweisen, der in etwa dem Druck der Umgebungsluft entspricht, also z.B. Normaldruck oder einen Druck der vom Normaldruck um bis zu 0,2 bar abweicht. Weiterhin können die Ausgangsgase einen einen höheren Druck als 0,2 bar als Normaldruck aufweisen, einen Druck bis 20 bar. Ausgangsgase mit einem höheren Druck als werden gilldet, indem die Ausgangsgase mit dem Druck, der in der Nähe des Drucks der Umgebungsluft liegt, durch Kompression verdichtet oder das Ausgangsgas bei höherem Druck erzeugt z.B. durch Oxidation von organischen Substanzen mit komprimierter Luft entstehen. Der damit anfallende Volumenstrom des Gases verringert sich dadurch und zusätzlich erhöht sich der Partialdruck der abzutrennenden Sauergase, was für die Absorption und den dabei anfallenden Regenerationsbedarf vorteilhaft ist. Nachteilig sind zum einen der Kompressionsaufwand (Investition und Betriebskosten) und die evtl. zusätzlich anfallenden höheren Investionskosten aufgrund der Verwendung von Druckapparaten, so dass es hier ein Kostenoptimum gibt.

Als Absorptionsmittel eignen sich praktisch alle üblichen Absorptionsmittel.

Bevorzugte Absorptionsmittel sind z.B. chemische Lösungsmittel ausgewählt aus der Gruppe bestehend aus

  • – Lösungen bestehend hauptsächlich aus aliphatischen oder cycloaliphatischen Aminen mit 4 bis 12 Kohlenstoffatomen, Alkanolaminen mit 4 bis 12 Kohlenstoffatomen, cyclischen Amine bei denen 1 oder 2 Stickstoffatome zusammen mit 1 oder 2 Alkandiylgruppen 5-, 6- oder 7-gliedrige Ringe bilden, Mischungen der vorstehenden Lösungen, wässrige Lösungen der vorstehenden Mischungen und Lösungen,
  • – wässrige Lösungen enthaltend Salze von Aminosäuren
  • – wässrige Pottaschelösungen, die ggf. Piperazin oder Methylethanolamin enthalten
  • – wässrige NaOH-Lauge oder Kalkmilch.

Besonders bevorzugt werden als chemisches Lösungsmittel Lösungen, bestehend hauptsächlich aus Monoethanolamin (MEA), Diethanolamin (DEA), Triethanolamin (TEA), Diethylethanolamin (DEEA), Diisopropylamin (DIPA), Aminoethoxyethanol (AEE) und Methyldiethanolamin (MDEA) Mischungen der vorstehenden Lösungen und wässrige Lösungen der vorstehenden Mischungen und Lösungen, eingesetzt.

Ganz besonders bewährt hat sich das in dem US-Patent US 4,336,233 beschriebene Absorptionsmittel. Es handelt sich dabei um eine wässrige Lösung von Methyldiethanolamin (MDEA) und Piperazin als Absorptionsbeschleuniger oder Aktivator (aMDEA®, BASF AG, Ludwigshafen). Die dort beschriebene Waschflüssigkeit enthält 1,5 bis 4,5 mol/l Methyldiethanolamin (MDEA) und 0,05 bis 0,8 mol/l, bevorzugt bis zu 0,4 mol/l Piperazin.

Bezüglich weiterer bevorzugter chemischer Lösungsmittel wird Bezug genommen auf DE-A-10306254, DE-A-10210729, DE-A-10139453, und EP-A-1303345.

Als Absorptionsmittel haben sich weiterhin physikalisches Lösungsmittel ausgewählt aus der Gruppe bestehend aus Cyclotetramethylensulfon (Sulfolan) und dessen Derivate, aliphatische Säureamide (Acetylmorpholin, N-Formylmorpholin), NMP (N-Methylpyrrolidon), Propylencarbonat, N-alkylierte Pyrrolidone und entsprechende Piperidone, Methanol und Gemische aus Dialkylethern von Polyethylenglykolen bewährt.

Die im erfindungsgemäßen Verfahren eingesetzten inerten Waschkolonnen bestehen im wesentlichen aus Kunststoffen, ausgewählt aus der Gruppe bestehend aus Polyvinylchlorid, Polyethylen, Polypropylen, Polyvinylidenfluorid, Ethylenchlortrifluorethylen-Copolymere (Halar® der Fa. Allied Chemical Comp.), Polyfluorethylenpropylen, Perfluoralkoxypolymere, Copolymere von Tetrafluorethylen und Perfluor-Vinylether, Polytetrafluorethylen. Bevorzugt sind diese Kunststoffe glasfaserverstärkt. Weiterhin eignen sich Waschkolonnen aus Stahl, deren Innenraum mit Kunststoff oder Gummi beschichtet ist.

Geeignete inerte Waschkolonnen sind beispielsweise Füllkörper, Packungs- und Bodenkolonnen. Bevorzugt werden als Absorber ausschließlich inerte Waschkolonnen eingesetzt, es ist jedoch ebenfalls möglich, diese in Kombination mit anderen bekannten Absorbern wie Membrankontaktoren, Radialstromwäscher, Strahlwäscher, Venturi-Wäscher und Rotations-Sprühwäscher oder Waschkolonnen aus Stahl einzusetzten. Die Behandlung des Fluidstroms mit dem Absorptionsmittel erfolgt dabei bevorzugt in einer inerten Waschkolonne im Gegenstrom. Das Fluid wird dabei im Allgemeinen in den unteren Bereich und das Absorptionsmittel in den oberen Bereich der Kolonne eingespeist.

Die Temperatur des Absorptionsmittels beträgt im Absorptionsschritt im Allgemeinen etwa 40 bis 100°C, bei Verwendung einer Kolonne beispielsweise 40 bis 70°C am Kopf der Kolonne und 50 bis 100°C am Boden der Kolonne. Der Gesamtdruck beträgt im Absorptionsschritt im Allgemeinen etwa 0,5 bis 20 bar, bevorzugt etwa 0,7 bis 12 bar, besonders bevorzugt 0,7 bis 6. Ganz besodners bevorzugt beträgt liegt der Druck bei Normaldruck oder einem Druck, der vom Normaldruck um bis zu 0,2 bar abweicht. Es wird ein an sauren Gasbestanteilen armes, d.h. ein an diesen Bestandteilen abgereichertes Produktgas (Beigas) und ein mit sauren Gasbestandteilen beladenes Absorptionsmittel erhalten.

Im Allgemeinen werden Absorptionskolonnen aus Kunststoff konstruktiv bedingt nur bis zu einem Druck von 5 bar eingesetzt. Der Einsatz von Absorptionskolonnen aus Kunststoff ist zwar auch bei höheren Drücken grundsätzlich möglich, jedoch sind in solchen Fällen wegen der im Vergleich zu Stahl im Allgemeinen geringeren Festigkeit des Kunststoff vergleichsweise hohe Wandstärken erforderlich. Bei Drücken von mehr als 5 bar sind deshalb Absorptionskolonnen aus Stahl, deren Innenraum mit Kunststoff oder Gummi beschichtet ist, bevorzugt.

Das erfindungsgemäße Verfahren kann einen oder mehrere, insbesondere zwei, aufeinanderfolgende Absorptionsschritte umfassen. Die Absorption kann in mehreren aufeinanderfolgenden Teilschritten durchgeführt werden, wobei das die sauren Gasbestandteile enthaltende Rohgas in jedem der Teilschritte mit jeweils einem Teilstrom des Absorptionsmittels in Kontakt gebracht wird. Das Absorptionsmittel, mit dem das Rohgas in Kontakt gebracht wird, kann bereits teilweise mit sauren Gasen beladen sein, d.h. es kann sich beispielsweise um ein Absorptionsmittel, das aus einem nachfolgenden Absorptionsschritt in den ersten Absorptionsschritt zurückgeführt wurde, oder um teilregeneriertes Absorptionsmittel handeln. Bezüglich der Durchführung der zweistufigen Absorption wird Bezug genommen auf die Druckschriften EP-A 0 159 495, EP-A 0 20 190 434, EP-A 0 359 991 und WO 00100271.

Gemäß einer bevorzugten Ausführungsform wird das erfindungsgemäße Verfahren so durchgeführt, dass das die sauren Gase enthaltende Fluid zunächst in einem ersten Absorptionsschritt mit dem Absorptionsmittel bei einer Temperatur von 40 bis 100°C, bevorzugt 50 bis 90°C und insbesondere 60 bis 90°C behandelt wird. Das an sauren Gasen abgereicherte Fluid wird dann in einem zweiten Absorptionsschritt mit dem Absorptionsmittel bei einer Temperatur von 30 bis 90°C, bevorzugt 40 bis 80°C und insbesondere 50 bis 80°C, behandelt. Dabei ist die Temperatur um 5 bis 20°C niedriger als in der ersten Absorptionsstufe.

Aus dem mit den sauren Gasbestandteilen beladenen Absorptionsmittel können die sauren Gasbestandteile in üblicher Weise (analog zu den nachfolgend zitierten Publikationen) in einem Regenerationsschritt freigesetzt werden, wobei ein regeneriertes Absorptionsmittel erhalten wird. Im Regenerationsschritt wird die Beladung des Absorptionsmittels verringert und das erhaltene regenerierte Absorptionsmittel wird vorzugsweise anschließend in den Absorptionsschritt zurückgeführt.

Im Allgemeinen beinhaltet der Regenerationsschritt mindestens eine Druckentspannung des beladenen Absorptionsmittels von einem hohen Druck, wie er bei der Durchführung des Absorptionsschritts herrscht, auf einen niedrigeren Druck. Die Druckentspannung kann beispielsweise mittels eines Drosselventils und/oder einer Entspannungsturbine geschehen. Die Regeneration mit einer Entspannungsstufe ist beispielsweise beschrieben in den Druckschriften US 4,537,753 und US 4,553,984.

Die Freisetzung der sauren Gasbestandteile im Regenerationsschritt kann beispielsweise in einer Entspannungskolonne, z.B. einem senkrecht oder waagerecht eingebauten Flash-Behälter oder einer Gegenstromkolonne mit Einbauten, erfolgen. Es können mehrere Entspannungskolonnen hintereinandergeschaltet werden, in denen bei unterschiedlichen Drücken regeneriert wird. Beispielsweise kann in einer Vorentspannungskolonne bei hohem Druck, der typischerweise ca. 1,5 bar oberhalb des Partialdrucks der sauren Gasbestandteile im Absorptionsschritt liegt, und in einer Hauptentspannungskolonne bei niedrigem Druck, beispielsweise 1 bis 2 bar absolut, regeneriert werden. Die Regeneration mit zwei oder mehr Entspannungsstufen ist beschrieben in den Druckschriften US 4,537,753, US 4,553,984, EP-A 0 159 495, EP-A 0 202 600, EP-A 0 190 434 und EP-A 0 121 109.

Die letzte Entspannungsstufe kann auch unter Vakuum durchgeführt werden, das beispielsweise mittels eines Wasserdampfstrahlers, gegebenenfalls in Kombination mit einem mechanischen Vakuumerzeugungsapparat, erzeugt wird, wie beschrieben in EP-A 0 159 495, EP-A 0 202 600, EP-A 0 190 434 und EP-A 0 121 109 (US 4,551,158).

Wegen der optimalen Abstimmung des Gehalts an den Aminkomponenten weist das erfindungsgemäße Absorptionsmittel eine hohe Beladbarkeit mit sauren Gasen auf, die auch leicht wieder desorbiert werden können. Dadurch können bei dem erfindungsgemäßem Verfahren der Energieverbrauch und der Lösungsmittelumlauf signifikant reduziert werden.

Das erfindungsgemäße Verfahren wird nachfolgend anhand der 1 und 2 erläutert.

In 1 ist schematisch eine Vorrichtung dargestellt, bei der die Absorptionsstufe einstufig und die Entspannungsstufe zweistufig durchgeführt werden. Das Ausgangsgas (nachfoldgend auch als Feedgas bezeichnet) wird über Leitung 1 in den unteren Bereich des Absorbers 2 eingespeist. Beim Absorber 2 handelt es sich um eine Kolonne, die mit Füllkörpern gepackt ist, um den Massen- und Wärmeaustausch zu bewirken. Das Absorptionsmittel, bei dem es sich um regeneriertes Absorptionsmittel mit einem geringen Restgehalt an sauren Gasen handelt, wird über die Leitung 3 auf den Kopf des Absorbers 2 im Gegenstrom zu dem Feedgas aufgegeben. Das an sauren Gasen abgereicherte Gas verlässt den Absorber 2 über Kopf (Leitung 4). Das mit sauren Gasen angereicherte Absorptionsmittel verlässt den Absorber 2 am Boden über Leitung 5 und wird in den oberen Bereich der Hochdruck-Entspannungskolonne 6 eingeleitet, die im Allgemeinen bei einem Druck betrieben wird, der oberhalb des CO2-Partialdrucks des dem Absorber zugeführten Rohgases liegt. Die Entspannung des Absorptionsmittels erfolgt im Allgemeinen mit Hilfe üblicher Vorrichtungen, beispielsweise eines Stand-Regelventils, einer hydraulischen Turbine oder einer umgekehrt laufenden Pumpe. Bei der Entspannung wird der größte Teil der gelösten nicht-sauren Gase sowie ein kleiner Teil der sauren Gase freigesetzt. Diese Gase werden über Leitung 7 aus der Hochdruck-Entspannungskolonne 6 über Kopf ausgeschleust.

Das Absorptionsmittel, das nach wie vor mit dem Großteil der sauren Gase beladen ist, verlässt die Hochdruck-Entspannungskolonne über Leitung 8 und wird im Wärmetauscher 9 aufgeheizt, wobei ein kleiner Teil der sauren Gase freigesetzt werden kann. Das aufgeheizte Absorptionsmittel wird in den oberen Bereich einer Niederdruck-Entspannungskolonne 10 eingeleitet, die mit einer Füllkörperpackung ausgerüstet ist, um eine große Oberfläche zu erzielen und so die Freisetzung des CO2 und die Einstellung des Gleichgewichts zu bewirken. In der Niederdruck-Entspannungskolonne 10 werden der größte Teil des CO2 und das H2S praktisch vollständig durch Flashen freigesetzt. Das Absorptionsmittel wird auf diese Weise gleichzeitig regeneriert und abgekühlt. Am Kopf der Niederdruck-Entspannungskolonne 10 ist ein Rückflusskühler 11 mit einem Auffangbehälter 12 vorgesehen, um die freigesetzten sauren Gase zu kühlen und einen Teil des Dampfes zu kondensieren. Die Hauptmenge des sauren Gases verlässt den Rückflusskühler 11 über Leitung 13. Das Kondensat wird mittels Pumpe 14 auf den Kopf der Niederdruck-Entspannungskolonne 10 zurückgepumpt. Das regenerierte Absorptionsmittel, das noch einen geringen Teil des CO2 enthält, verlässt die Niederdruck-Entspannungskolonne 10 am Boden über Leitung 15 und wird mittels Pumpe 16 über Leitung 3 auf den Kopf des Absorbers 2 aufgegeben. Über Leitung 17 kann Frischwasser zum Ausgleich des mit den Gasen ausgetragenen Wassers eingespeist werden.

2 zeigt schematisch eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens unter Verwendung eines zweistufigen Absorbers und einer zweistufigen Entspannung. Der Absorber umfasst den Rohabsorber 1 und den Reinabsorber 2. Das Feedgas wird 20 über Leitung 3 in den unteren Bereich des Rohabsorbers 1 eingespeist und im Gegenstrom mit regeneriertem Absorptionsmittel behandelt, das über Leitung 4 auf den Kopf des Rohabsorbers 1 aufgegeben wird und noch etwas saure Gase enthält. Auf den Kopf des Reinabsorbers 2 wird über Leitung 5 regeneriertes Absorptionsmittel aufgegeben, das im Wesentlichen keine sauren Gase mehr enthält. Beide Teile des Absorbers enthalten eine Packung, um den Massen- und Wärmeaustausch zwischen Rohgas und Absorptionsmittel zu bewirken. Das behandelte Gas verlässt den Reinabsorber 2 über Kopf (Leitung 6). Das mit sauren Gasen beladene Absorptionsmittel wird am Boden des Rohabsorbers 1 ausgetragen und über Leitung 7 in den oberen Bereich der Hochdruck-Entspannungskolonne 8 eingespeist. Die Kolonne 8 ist mit einer Packung ausgerüstet und wird bei einem Druck betrieben, der zwischen dem Druck im Absorber und der nachfolgenden Niederdruck-Entspannungskolonne 11 liegt. Die Entspannung des mit sauren Gasen beladenen Absorptionsmittels erfolgt mit Hilfe üblicher Vorrichtungen, beispielsweise eines Stand-Regelventils, einer hydraulischen Turbine oder einer umgekehrt laufenden Pumpe. Bei der Hochdruckentspannung wird der größte Teil der gelösten nicht-sauren Gase sowie ein kleiner Teil der sauren Gase freigesetzt. Diese Gase werden über Leitung 9 aus der Hochdruck-Entspannungskolonne 8 über Kopf ausgeschleust.

Das Absorptionsmittel, das nach wie vor mit dem Großteil der sauren Gase beladen ist, verlässt die Hochdruck-Entspannungskolonne 8 über Leitung 10 und wird in den oberen Bereich der Niederdruck-Entspannungskolonne 11 eingespeist, wo der größte Teil des CO2 und H2S durch Flashen freigesetzt werden. Das Absorptionsmittel wird auf diese Weise regeneriert. Die Niederdruck-Entspannungskolonne 11 ist mit einer Packung ausgestattet, um eine große Oberfläche für den Wärme- und Massenübergang bereitzustellen. Am Kopf der Niederdruck-Entspannungskolonne 11 ist ein Rückflusskühler 12 mit 20 Kondensatbehälter 13 vorgesehen, um die über Kopf aus der Niederdruck-Entspannungskolonne 11 austretenden sauren Gase zu kühlen und einen Teil des Dampfes zu kondensieren. Das nicht kondensierte Gas, das die Hauptmenge der sauren Gase enthält, wird über Leitung 14 ausgetragen. Das Kondensat aus dem Kondensatbehälter 13 wird über Pumpe 15 auf den Kopf der Niederdruck-Entspannungskolonne 11 aufgegeben.

Das teilregenerierte Absorptionsmittel, das noch einen Teil der sauren Gase enthält, verlässt die Niederdruck-Entspannungskolonne 11 am Boden über Leitung 16 und wird in zwei Teilströme aufgespalten. Der größere Teilstrom wird über Pumpe 17 und Leitung 4 auf den Kopf des Rohabsorbers 1 aufgegeben, wohingegen der kleinere Teil über Leitung 18 mittels Pumpe 19 im Wärmetauscher 20 aufgeheizt wird. Das aufgeheizte Absorptionsmittel wird dann in den oberen Bereich des Strippers 21 eingespeist, der mit einer Packung ausgestattet ist. Im Stripper 21 wird der größte Teil des absorbierten CO2 und H2S mittels Dampf ausgestrippt, welcher im Reboiler 22 erzeugt und in den unteren Bereich des Strippers 21 eingespeist wird. Das den Stripper 21 am Boden über Leitung 23 verlassende Absorptionsmittel weist einen nur geringen Restgehalt an sauren Gasen auf. Es wird über den Wärmetauscher 20 geleitet, wobei das aus der Niederdruck-Entspannungskolonne 11 kommende, teilregenerierte Absorptionsmittel aufgeheizt wird. Das gekühlte, regenerierte Absorptionsmittel wird mittels Pumpe 24 über Wärmetauscher 25 zurück auf den Kopf des Beinabsorbers 2 gepumpt. Über Leitung 26 kann auf den Kopf des Beinabsorbers 2 Frischwasser aufgegeben werden, um das durch die Gasströme ausgetragene Wasser zu ersetzen. Das aus dem Stripper 21 über Kopf austretendes Gas wird über Leitung 27 in den unteren Bereich der Niederdruck-Entspannungskolonne 11 eingespeist.


Anspruch[de]
  1. Verfahren zum Entsäuern eines Fluidstroms, der Sauergase als Verunreinigungen enthält, wobei man in wenigstens einem Absorptionsschritt bei einem Druck von 0,5 bis 20 bar den Fluidstrom mit einem Absorptionsmittel in innigen Kontakt bringt, mit der Maßgabe, dass man den Absorptionsschritt und im Fall von mehreren Absorptionsschritten wenigstens einen der Absorptionsschritte in einer inerten Waschkolonne, deren innere Oberfläche im wesentlichen aus Kunststoff oder Gummi besteht, durchführt.
  2. Verfahren nach Anspruch 1, wobei es sich um einen Fluidstrom handelt, welcher bei

    a) der Oxidation organischer Substanzen,

    b) der Kompostierung oder Lagerung organischer Substanzen enthaltender Abfallstoffe, oder

    c) der bakteriellen Zersetzung organischer Substanzen

    gebildet wird.
  3. Verfahren nach Anspruch 2, wobei man als organische Substanzen, die einer Oxidation unterworfen werden, fossile Brennstoffe oder organische Substanzen enthaltende Abfallstoffe verwendet.
  4. Verfahren nach Anspruch 2, wobei man als organische Substanzen enthaltende Abfallstoffe, die einer Kompostierung oder Lagerung unterzogen werden, Hausmüll, Kunststoffabfälle oder Verpackungsmüll verwendet.
  5. Verfahren nach Anspruch 2, wobei man als organische Substanzen, die einer bakteriellen Zersetzung unterzogen werden, Stalldung, Stroh, Jauche, Klärschlamm oder Fermentationsrückstände verwendet.
  6. Verfahren nach einem der vorstehenden Ansprüche, wobei man inerte Waschkolonnen im wesentlichen bestehend aus glasfaserverstärkten Kunststoffen, ausgewählt aus der Gruppe bestehend aus Polyvinylchlorid, Polyethylen, Polypropylen, Polyvinylidenfluorid, Ethylenchlortrifluorethylen-Copolymere, Halar, Polyfluorethylenpropylen, Perfluoralkoxypolymere, Copolymere von Tetrafluorethylen und Perfluor-Vinylether, Polytetrafluorethylen, einsetzt.
  7. Verfahren nach einem der Ansprüche 1 bis 5, wobei man eine inerte Waschkolonne aus Stahl, deren Innenraum mit Gummi beschichtet ist, einsetzt.
  8. Verfahren nach einem der vorstehenden Ansprüche, wobei man als Absorptionsmittel ein chemisches Lösungsmittel, ausgewählt aus der Gruppe bestehend aus

    – Lösungen bestehend hauptsächlich aus aliphatischen oder cycloaliphatischen Aminen mit 4 bis 12 Kohlenstoffatomen, Alkanolaminen mit 4 bis 12 Kohlenstoffatomen, cyclischen Amine, bei denen 1 oder 2 Stickstoffatome zusammen mit 1 oder 2 Alkandiylgruppen 5-, 6- oder 7-gliedrige Ringe bilden, Mischungen der vorstehenden Lösungen, wässrige Lösungen der vorstehenden Mischungen und Lösungen,

    – wässrige Lösungen enthaltend Salze von Aminosäuren

    – wässrige Pottaschelösungen, die ggf. Piperazin oder Methylethanolamin enthalten

    – wässrige NaOH-Lauge oder Kalkmilch

    einsetzt.
  9. Verfahren nach Anspruch 8, wobei man als chemisches Lösungsmittel Lösungen, bestehend hauptsächlich aus Monoethanolamin (MEA), Methylaminopropylamin (MAPA), Piperazin, Diethanolamin (DEA), Triethanolamin (TEA), Diethylethanolamin (DEEA), Diisopropylamin (DIPA), Aminoethoxyethanol (AEE), Dimethylaminopropanol (DIMAP) und Methyldiethanolamin (MDEA), Mischungen der vorstehenden Lösungen und wässrige Lösungen der vorstehenden Mischungen und Lösungen einsetzt.
  10. Verfahren nach einem der vorstehenden Ansprüche, wobei man als Absorptionsmittel ein physikalisches Lösungsmittel, ausgewählt aus der Gruppe bestehend aus Cyclotetramethylensulfon (Sulfolan) und dessen Derivaten, aliphatische Säureamide (Acetylmorpholin, N-Formylmorpholin), NMP (N-Methylpyrrolidon), Propylencarbonat, N-alkylierte Pyrrolidone und entsprechende Piperidone, Methanol und Gemische aus Dialkylethern von Polyethylenglykolen, einsetzt.
  11. Verfahren nach einem der vorstehenden Ansprüche, wobei man als Waschlösung eine Mischung aus einem physikalischen und chemischen Lösungsmittel einsetzt.
  12. Verfahren nach einem der vorstehenden Ansprüche, wobei man als Waschlösung eine wässrige Lösung, enthaltend Methyldiethanolamin und Piperazin, einsetzt.
  13. Verfahren nach einem der vorstehenden Ansprüche, wobei man die Waschflüssigkeit nach Durchlaufen des Absorptionsschritts regeneriert und dann in einen Absorptionsschritt zurückführt.
  14. Verfahren gemäß Anspruch 12, wobei man die Waschflüssigkeit durch ein- oder mehrstufiges Entspannen regeneriert.
  15. Verfahren gemäß Anspruch 12, wobei man die Waschflüssigkeit nach dem Entspannen durch Strippen mit einem inerten Fluid, insbesondere Stickstoff oder Wasserdampf, regeneriert.
  16. Verfahren gemäß einem der vorstehenden Ansprüche, wobei man den Absorptionsschritt in mehreren aufeinanderfolgenden Teilschritten durchführt und den sauergashaltigen Fluidstrom in jedem der Teilschritte mit jeweils einem Teilstrom der Waschlösung in Kontakt bringt.
  17. Verfahren gemäß einem der vorstehenden Ansprüche, wobei man einen Fluidstrom einsetzt, der unter Normalbedingungen weniger als 50 mg/m3 Schwefeldioxid enthält.
  18. Vorrichtung zur Durchführung des Verfahrens gemäß einem der Ansprüche 1 bis 16, bestehend aus einer oder mehreren nacheinander geschalteten Waschkolonnen, welche mit einer Waschlösung gefüllt sind, wobei es sich bei mindestens einer Waschkolonne um eine inerte Waschkolonne handelt, deren innere Oberfläche aus Kunststoff oder Gummi besteht.
Es folgen 2 Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com