PatentDe  


Dokumentenidentifikation EP1082739 24.03.2005
EP-Veröffentlichungsnummer 0001082739
Titel NITRIDIERTES NIOBIUMPULVER UND NIOBIUM-ELEKTROLYTKONDENSATOREN
Anmelder Cabot Corp., Boston, Mass., US
Erfinder FIFE, A., James, Reading, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69923773
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 03.05.1999
EP-Aktenzeichen 999202633
WO-Anmeldetag 03.05.1999
PCT-Aktenzeichen PCT/US99/09576
WO-Veröffentlichungsnummer 0099057739
WO-Veröffentlichungsdatum 11.11.1999
EP-Offenlegungsdatum 14.03.2001
EP date of grant 16.02.2005
Veröffentlichungstag im Patentblatt 24.03.2005
IPC-Hauptklasse H01G 9/052
IPC-Nebenklasse C22C 1/04   

Beschreibung[en]

The present invention relates to nitrided niobium powders and electrolytic capacitors using the nitrided niobium powders as well as methods of making the powders and electrolytic capacitors and the use of niobium powders for the production of a capacitor.

For many years, it has been the goal of various researchers to develop niobium electrolytic capacitors because of the high di-electric constant of its oxide and the relatively low cost of niobium compared to a variety of other metals. Initially, researchers in this field considered the possibility of using niobium as a substitute for tantalum capacitors. Accordingly, many studies were conducted to determine the suitability of replacing tantalum with niobium.

In some of these studies, however, it was concluded that niobium has serious fundamental deficiencies that needed to be resolved, thus inferring that niobium was not an acceptable substitute for tantalum. (See J. Electrochem. Soc. p. 408 C, December 1977). In another study, one conclusion reached was that the use of niobium in solid electrolytic capacitors seems very unlikely due to various physical and mechanical problems, such as field crystallization. (Electrocomponent Science and Technology, Vol. 1, pp. 27-37 (1974)). Further, in another study, the researchers concluded that anodically formed passive films on niobium were different from electrical properties accomplished with tantalum and that the use of niobium led to complexities which were not present with tantalum. (See Elecrochimica Act, Vol. 40, no. 16, pp. 2623-26 (1995)). Thus, while there was initial hope that niobium might be a suitable replacement for tantalum, the evidence showed that niobium was not capable of replacing tantalum in the electrolytic capacitor market.

US-A-5,448,447 is directed to a process for producing capacitor grade powder of at least one metal selected from Group V-B of the periodic table having a nitrogen content of 500 to 7000 ppm, and to electrodes and finished solid capacitors therefrom having reduced electrical leakage characteristics. In the examples of US-A-5,448,447 only tantalum has been used for the production of respective powders and capacitors.

Besides tantalum electrolytic capacitors, there is a market for aluminium electrolytic capacitors. However, the aluminium electrolytic capacitors have dramatically different performance characteristics from tantalum electrolytic capacitors.

A driving force in electronic circuitry today is the increasing move toward lower Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL). As IC performance increases with submicron geometry, there is a need for lower power supply voltage and noise margin. At the same time, increasing IC speeds require higher power needs. These conflicting requirements create a demand for better power management This is being accomplished through distributed power supplies which need larger currents for decoupling noise. Increasing IC speeds also mean lower switching times and higher current transients. The electrical circuit must, therefore, also be designed to reduce the transient load response. This broad range of requirements can be met if the circuit has large enough capacitance but low ESR and ESL.

Aluminum capacitors typically provide the largest capacitance of all capacitor types. ESR decreases with increase in capacitance. Therefore, currently a large bank of high capacitance aluminum capacitors are used to meet the above requirements. However, aluminum capacitors do not really satisfy the designers' requirements of low ESR and ESL. Their mechanical construction with liquid electrolyte inherently produce ESR in the 100s of milliohm along with high impedance.

A feature of the present invention is to provide nitrided niobium powders, preferably having high surface areas and physical characteristics which permit the nitrided niobium powders to be formed into a capacitor having high capacitance, and which, when formed into capacitors, have a low DC leakage, thus providing a method of reducing the DC leakage in a capacitor formed from nitrided niobium powder.

Additional features and advantages of the present invention will be set forth in part in the description which follows, and in part will be apparent from the description, or may be learned by practice of the present invention.

The present invention relates to a nitrided niobium powder, i.e., a nitrogen doped niobium powder having a nitrogen content of at least 300 ppm and a BET surface area of at least 1.0 m2/g. Preferred embodiments of the nitrogen doped niobium powder of the present invention are disclosed in subclaims 2 to 15.

The present invention further relates to a method of preparing the nitrogen doped niobium powder of the invention comprising the step of doping the nitrogen into the niobium during melting of a niobium ingot, during a deoxidation stage of the niobium, during hydriding of the niobium, during delubing of the niobium, during sintering of the niobium and/or, during thermal processing of the niobium.

The present invention also relates to a capacitor anode, especially an electrolytic capacitor anode, formed from the nitrogen doped niobium powder of the present invention. The anode preferably has a capacitance of 30,000 CV/g to about 61,000 CV/g.

In addition , the present invention relates to a method of preparing the capacitor anode of the present invention comprising sintering the niobium powder at a temperature in the range of 1200 to 1750°C.

According to the present invention, the DC leakage in a niobium anode made from nitrided niobium powder is reduced by introducing into the niobium powder a sufficient amount of nitrogen to reduce the DC leakage in a capacitor anode that is formed.

The invention further relates to the use of the nitrogen doped niobium powder of the present invention for the production of a capacitor.

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are intended to provide further explanation of the present invention, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

  • Figure 1 is a graph showing the BET surface areas of niobium powders and their respective capacitance when formed into anodes and sintered at a temperature of 1750C.
  • Figure 2 is a graph depicting the BET surface areas of niobium powders and their respective capacitance when formed into anodes and sintered at a temperature of 1600C.
  • Figure 3 is a graph depicting the BET surface areas of a niobium powders and their respective capacitance when formed into anodes and sintered at a temperature of 1450C.
  • Figure 4 is a graph depicting the BET surface areas of niobium powders and their respective capacitance when formed into anodes and sintered at a temperature of 1300°C.
  • Figure 5 is a graph showing various sintering temperatures of niobium anodes and their respective calculated maximum capacitance.
  • Figure 6 is a graph depicting the oxygen doping content of niobium powders as well as their respective DC leakage when formed into anodes and sintered at different temperatures and using a forming voltage of 50 volts.
  • Figure 7 is a graph showing niobium powders having various doping levels of oxygen as well as the respective DC leakage when formed into anodes and sintered at various temperatures and using a forming voltage of 30 volts.
  • Figure 8 is a graph showing the effects of various levels of phosphorus doping in niobium powders and their respective capacitance when formed into anodes.
  • Figure 9 is a graph showing the effects of various phosphorus doping levels of niobium powder and their respective DC leakage when formed into anodes.
  • Figure 10 is a graph showing the amount of nitrogen present in various niobium powders and their respective DC leakage when formed into anodes and sintered at 1300°C or 1450°C, using a forming voltage of 50 volts.
  • Figure 11 is a graph showing the amount of nitrogen present in various niobium powders and their respective DC leakage when formed into anodes and sintered at 1300°C or 1450°C, using a forming voltage of 35 volts.
  • Figure 12 is a graph showing the same niobium samples of Figure 10 with regard to oxygen content and DC leakage.
  • Figure 13 is a graph showing the same niobium samples of Figure 11 with regard to oxygen content and DC leakage.
  • Figure 14 is a graph showing the amount of nitrogen present in various niobium powders and their respective DC leakage when formed into anodes and sintered at 1300°C, using a forming voltage of 35 volts.
  • Figure 15 is a graph showing the same niobium samples of Figure 14 with regard to oxygen content and DC leakage.
  • Figure 16 is a graph showing the amount of nitrogen present in various niobium powders and their respective DC leakage when formed into anodes and sintered at 1450°C, using a forming voltage of 35 volts.
  • Figure 17 is a graph showing the same niobium samples of Figure 16 with regard to oxygen content and DC leakage.
  • Figure 18 is a graph showing the amount of nitrogen present in various niobium powders and their respective DC leakage when formed into anodes and sintered at 1300°C, using a forming voltage of 50 volts.
  • Figure 19 is a graph showing the same niobium samples of Figure 18 with regard to oxygen content and DC leakage.
  • Figure 20 is a graph showing the amount of nitrogen present in various niobium powders and their respective DC leakage when formed into anodes and sintered at 1450°C, using a forming voltage of 50 volts.
  • Figure 21 is a graph showing the same niobium samples of Figure 20 with regard to oxygen content and DC leakage.

In the following, the present invention is described in detail.

The present invention relates to niobium powders having nitrogen contained therein. The amount of nitrogen present is generally greater than nitrogen amounts found in niobium powders as impurities. The majority of the nitrogen present in the niobium powders of this embodiment is a result of intentional conditions which lead to increased levels of nitrogen in the niobium powders (i.e., nitriding of the niobium). The nitrogen present in the niobium can be accomplished in any manner. For instance, the nitrogen can be introduced (e.g., doped) into the niobium during any processing stage of the niobium, such as during one or more of the following stages: melting of a niobium ingot; a deoxidation stage; hydriding of the niobium; delubing of the niobium; any sintering of the niobium (e.g., such as sintering of the niobium capacitor anode); any thermal processing of the niobium; any heat treatment stage; or anytime before or after any one or more of these processing steps or stages.

Any means can be used to nitride the niobium material, such as, but not limited to, exposure to nitrogen containing environments (e.g., N2 gas) or nitrogen-containing materials, preferably during a thermal cycling to defuse the nitrogen in the material (e.g., preparing a solid-solution of nitrogen by reaction of nitrogen containing materials by diffusion from direct physical contact or gas adsorption and/or absorption.).

One of the benefits of nitrogen in the niobium is a decrease in DC leakage for capacitors made at least in part from the niobium powder. The amount of nitrogen in the niobium can be any amount and preferably amounts which do not lead to detrimental properties of the niobium powder or articles made from the niobium powder. Preferred amounts of the nitrogen are amounts which reduce the DC leakage of capacitors made from niobium powders. Some of the examples show that there is a point of diminishing return and that at certain levels of nitrogen, there is no added benefit with respect to reducing DC leakage. According to the present invention, the amount of nitrogen present is at least about 300 ppm, and can be at least about 400 ppm or at least about 500 ppm or higher. The nitrogen range can be from about 300 ppm to about 5,000 ppm and other ranges can be from about 500 ppm to about 4,000 ppm; from about 500 ppm to about 3,500 ppm; 1,500 ppm to about 5,000 ppm; and/or from about 500 ppm to about 3,000 ppm nitrogen.

With respect to DC leakage of capacitors made from the nitrided niobium, various decreases of the DC leakage can be observed. Generally, decreases of about 50% or less, or 25% or less, can be achieved by nitriding the niobium, compared to niobium powder having substantially no nitrogen (e.g., less than 100 ppm nitrogen).

The amount of nitrogen in the niobium powder and the benefits achieved from the presence of nitrogen can be based in part on the forming voltage of the capacitor as well as the sintering temperature of the niobium powder. Preferably the sintering temperature is from about 1200°C to about 1750°C, and more preferably from about 1300°C to about 1600°C. In one embodiment, the sintering temperature may be in the range of 1200 to 1400°C, preferably in the range of 1250 to 1350°C. Generally, the higher the sintering temperature, the lower the DC leakage. Accordingly, high sintering temperatures are preferred. Also, for purposes of this embodiment, the forming voltage of the capacitor made from the niobium powder with nitrogen can be any forming voltage suitable for capacitors made in part from niobium such as 60 volts or less or about 50 volts or less or ranges from about 30 volts to about 50 volts. Other ranges of forming voltages can be 30 volts or less or from about 30 to about 35 volts or less (25, 20, 15, 10, 5 volts) since lower forming voltages can also contribute to lowering DC leakage.

The niobium that can be used in this embodiment is any niobium powder, such as flaked, angular, nodular, and mixtures or variations thereof. Any of the embodiments set forth and/or described below can also be subjected to conditions which will lead to niobium powders having the above-described nitrogen amounts.

With respect to the flaked niobium powder, the flaked niobium powder can be characterized as flat, plate shaped, and/or platelet. Also, the flaked niobium powder can have an aspect ratio (ratio of diameter to thickness) of from about 3 to about 300, and preferably, from about 3 to about 30. The flaked niobium powder permits enhanced surface area due to its morphology. The BET surface area of the flaked niobium powder is at least about 1.0 m2/g and preferably, is at least about 2.0 m2/g. Preferred ranges of BET surface area for the flaked niobium powder are from about 1.0 m2/g to about 5.0 m2/g and more preferably from about 2.0 m2/g to about 5.0 m2/g or from about 2.0 m2/g to about 4.0 m2/g. The BET ranges are based on pre-agglomerated flaked niobium powders.

The flaked niobium powder can be agglomerated. The flaked niobium powder can also be hydrided or non-hydrided. The agglomerated flaked niobium powder preferably has a Scott Density of less than about 2.14 g/cm3 (35 g/in3), and more preferably about 0.61 to about 2.14 g/cm3 (about 10 to about 35 g/cm3). The unagglomerated flaked niobium powder preferably has a Scott Density of less than about 0.73 g/cm3 (12 g/in3), and more preferably, less than about 0.31g/cm3 (5 g/in3). Preferably, the agglomerated flaked niobium powder has a flow of greater than 80 mg/s, more preferably from about 80 mg/s to about 500 mg/s.

The flaked niobium powder can be prepared by taking a niobium ingot and making the ingot brittle by subjecting it to hydrogen gas for hydriding. The hydrided ingot can then be crushed into an angular powder, for instance, with the use of a jaw crusher. The hydrogen can then be removed by heating in a vacuum and the degassed angular powder can then be subjected to milling, such as with use of a stirred ball mill where the powder is dispersed in a fluid medium (aqueous or non-aqueous) such as ethanol, to form the flaked powder by the impact of the stainless steel balls moved by the action of rotating bars. Various sizes of flakes can be made by hydrogen embrittlement followed by subjecting the flakes to impact milling, for example with use of a fluidized bed jet mill, Vortec milling, or other suitable milling steps.

The flaked niobium powder can optionally have a high oxygen content, such as by doping or other oxygen introduction methods. The amount of oxygen doping content can be at least about 2,000 ppm. More preferably, the flaked niobium powder has an oxygen content of from about 2,000 ppm to about 20,000 ppm and more preferably from about 2,750 ppm to about 10,000 ppm, and most preferably from about 4,000 ppm to about 9,000 ppm. The doping of the niobium powder with oxygen can be done in a variety of ways including, but not limited to, repeated heating in vacuum at 900C and cooling in air. Alternatively, the flaked niobium or any other type of niobium can have a low oxygen content, such as less than 1,000 ppm.

Further, the flaked niobium powder can be also doped with phosphorus alone or with oxygen. The doping of the niobium powder with phosphorus is also optional. In one embodiment of the present invention, the amount of phosphorus doping of the niobium powder is less than about 400 ppm and more preferably less than about 100 ppm, and most preferably less than about 25 ppm.

Based on an example set forth herein, the amount of phosphorus doping can be unimportant with respect to the DC leakage and capacitance of an anode formed from a niobium powder having various levels of phosphorus as a dopant. Accordingly, in one embodiment, low amounts of phosphorus and even negligible amounts or no phosphorus is present since phosphorus can have small or no benefits for DC leakage and capacitance with respect to certain anodes formed from niobium powders.

Other examples of niobium powders include niobium powder (e.g., flaked, angular, nodular, and mixtures thereof) having a significant level of oxygen present in the niobium powder. The oxygen level can be achieved in the same manner as described above. Preferably, the amount of oxygen in the niobium powder is at least about 2,000 ppm, and more preferably from about 2,000 ppm to about 20,000 ppm. Other preferred ranges of oxygen content in niobium powder are from about 2,750 ppm to about 10,000 ppm and levels of from about 4,000 ppm to about 9,000 ppm. With respect to these niobium powders, like the embodiment relating to the flaked niobium powder only, the phosphorus levels in the niobium powders can be considerably low for certain embodiments. Preferably, in such embodiments, the phosphorus level (as a dopant) is less than about 400 ppm and more preferably less than about 100 ppm, and most preferably less than about 25 ppm.

Another example of niobium powders are niobium powders (e.g. flaked, angular, nodular, and mixtures thereof) having a BET surface area of at least about 1.0 m2/g, and preferably from about 1.0 to about 5.0 m2/g, and most preferably from about 2.0 to about 5.0 m2/g. The BET ranges are based on pre-agglomerated niobium powders. The niobium powder can be hydrided or non-hydrided. Also, the niobium powder can be agglomerated. The niobium powder in this embodiment is doped with nitrogen. Also, for certain uses, the niobium powder can have an oxygen content below about 2,000 ppm.

With respect to making the flaked niobium powder or the niobium powder having any morphology with the BET surface area, the examples show the preferred steps of forming the niobium powder which can then subsequently be made into a flake or other morphology. In general, the process is as follows and the examples provide specific details as to preferred embodiments of making the niobium powders of the present invention.

Generally, in preparing the niobium powders having a BET surface area of at least 0.5 m2/g, a niobium ingot is hydrided by heating in a vacuum to form an embrittled ingot which is crushed into a powder. The hydrogen in the powders can optionally be removed by heating the particle in a vacuum. The various BET surface areas can be achieved by subjecting the powder to milling, preferably an attritor milling process. The higher the BET surface area of the powder generally will require a longer milling time. For instance, with a milling time of approximately 60 minutes a BET surface area of approximately 1.0 m2/g can be achieved. To obtain even higher BET surface areas, longer milling times will be needed and to achieve the BET surface area of from about 4 to about 5 m2/g or greater, milling times on the order of approximately 24 hours or more in an attritor mill is one way of making such niobium powders having high BET surface area ranges. When making such high surface areas, it is preferred to use a 30-SL Union Process attritor mill using 454 kg 0.47 cm (1,000 lbs 3/16") SS media, and approximately 36.32 kg (80 pounds) of niobium powder with the mill set at a rotation of approximately 130 rpm. Also, the mill will contain a sufficient amount of a medium such as ethanol on the order of 49.2 &litre; or more (13 or more gallons). After milling, the niobium powders are then subjected to a heat treatment and preferably the niobium powders can have a phosphorus content to help in minimizing the reduction in surface area during the heat treatment. The heat treatment can be any temperature sufficient to generally cause agglomeration and preferably without reducing the surface area. A temperature for heat treatment which can be used is approximately 1100°C for 30 minutes. However the temperature and time can be modified to ensure that the high BET surface area is not reduced. The various niobium powders described above can be further characterized by the electrical properties resulting from the formation of a capacitor using the niobium powders of the present invention. In general, the niobium powders of the present invention can be tested for electrical properties by pressing the niobium powder into an anode and sintering the pressed niobium powder at appropriate temperatures and then anodizing the anode to produce an electrolytic capacitor anode which can then be subsequently tested for electrical properties.

Accordingly, another embodiment of the present invention relates to capacitors formed from the nitrogen containing niobium powders of the present invention. Anodes made from some of the niobium powders of the present invention can have a capacitance of from 30,000 CV/g to about 61,000 CV/g. In forming the capacitor anodes of the present invention, a sintering temperature is used which will permit the formation of a capacitor anode having the desired properties. Preferably, the sintering temperature is from about 1200°C to about 1750°C, and more preferably from about 1200°C to about 1400°C, and most preferably from about 1250°C to about 1350°C.

The anodes formed from the niobium powders of the present invention are preferably formed at a voltage of less than about 60 volts or 50 volts or less, and preferably from about 30 to about 50 volts and more preferably at about 40 volts. Lower forming voltages are also possible, such as about 30 volts or less. Preferably, the working voltages of anodes formed from the niobium powders of the present invention are from about 4 to about 16 volts and more preferably from about 4 to about 10 volts. Also, the anodes formed from the niobium powders of the present invention preferably have a DC leakage of less than about 5.0 na/CV. In an embodiment of the present invention, the anodes formed from some of the niobium powders of the present invention have a DC leakage of from about 5.0 na/CV to about 0.50 na/CV.

The present invention also relates to a capacitor in accordance with the present invention having a niobium oxide film on the surface thereof. Preferably, the niobium oxide film comprises a niobium pentoxide film.

The capacitors of the present invention can be used in a variety of end uses such as automotive electronics; cellular phones; computers, such as monitors or mother boards; consumer electronics including TVs and CRTs; printers/copiers; power supplies; modems; computer notebooks; and disk drives.

The present invention will be further clarified by the following examples, which are intended to be exemplary of the invention.

TEST METHODS Anode Fabrication:

  • size -(0.197" dia) 0.5cm dia
  • 3.5 Dp
  • powder wt = 341 mg

Anode Sintering:

  • 1300 Deg C° 10'
  • 1450 Deg C° 10'
  • 1600 Deg C° 10'
  • 1750 Deg C° 10'

30V Ef Anodization:

  • 30V Ef @ 60 Deg C/0.1% H3PO4 Electrolyte

       20 mA/g constant current

DC Leakage/Canacitance - ESR Testing:

  • DC Leakage Testing ---

       70% Ef (21 VDC) Test Voltage

       60 second charge time

       10% H3PO4 @ 21 Deg C
  • Capacitance - DF Testing: 18% H2SO4 @ 21 Deg C

       120Hz

50V Ef Reform Anodization:

  • 50V Ef @ 60 Deg C/0.1% H3PO4 Electrolyte

       20 mA/g constant current

DC Leakage/Capacitance - ESR Testing:

  • DC leakage Testing ---

       70% Ef (35 VDC) Test Voltage

       60 second charge time

       10% H3PO4 @ 21 Deg C
  • Capacitance - DF Testing:

       18% H2SO4 @ 21 Deg C

       120Hz

75V Ef Reform Anodization:

  • 75V Ef @ 60 Deg C/0.1% H3PO4 Electrolyte
  • 20 mA/g constant current

DC Leakage/Capacitance - ESR Testing:

  • DC leakage Testing ---

       70% Ef (52.5 VDC) Test Voltage

       60 second charge time

       10% H3PO4 @ 21 Deg C
  • Capacitance - DF Testing:

       18% H2SO4 @ 21 Deg C

       120 Hz

Scott Density, oxygen analysis, phosphorus analysis, and BET analysis were determined according to the procedures set forth in U.S. Patent Nos. 5,011,742; 4,960,471; and 4,964,906, all incorporated hereby in their entireties by reference herein.

EXAMPLE 1(Reference)

This example illustrates an embodiment comprising angular niobium powder. Electron beam produced niobium ingot was hydrided by heating the ingot in a vacuum of 1.33·10-2 Pa (10-4 torr) to 850°C for 120 minutes. The vacuum was replaced by hydrogen gas purge at 21 kPa for sufficient time to embrittle the ingot. The vacuum was then pumped down to (-28" mercury) 91.8 kPa and then backfilled with argon to 99.6 kPa (-5" Hg). The pressure was maintained until the temperature, as measured by a work thermocouple, stabilized. Air was gradually introduced in increasing pressure such that the work temperature did not rise. The embrittled ingot was crushed into angular powder in a jaw crusher and classified by extracting powder which passed through a No. 325 sieve screen (equivalent to a 44 micrometer particle size). Hydrogen was removed from the size-reduced hydrogen-containing particles by heating the particles to 850C in a vacuum until pressure was no longer affected by hydrogen being emitted from the particles to provide niobium metal angular powder having a Fisher Sub Sieve Size of 10.6 micrometers, a Scott density of 2.67 g/cc (43.8 g/in3), a pre-agglomerated BET surface area of 0.17 m2/g and 1770 ppm oxygen; the ratio of oxygen to BET surface area was 10,400 ppm O/m2/g, and the flow was 19 mg/sec. About 0.34 g samples of unagglomerated angular niobium powder were pressed into an anode mold 5 mm in diameter around a 0.6 mm diameter niobium lead wire to a density of 3.5 g/cc. Samples of the pressed niobium powder were sintered in a vacuum (at less than 10-3 Pa) at four different temperatures, i.e. 1300, 1450, 1600 and 1750°C for 10 minutes, then anodized by applying 20 mA/g constant current at 50 V to the anode immersed in 0.1 weight percent phosphoric acid to produce electrolytic capacitor anodes, which were washed and dried. The capacitor performance characteristics, evaluated by measurements on the anodes immersed in 18 wt% sulfuric acid, are reported in Table 1. Capacitance, determined at a frequency of 120 Hertz, is reported in units of microfarad volts per gram (CV/g) and microfarad volts per cubic centimeter of anode volume (CV/cc); DC leakage, measured after a I minute charge of 35 volts; is reported in units of nanoamperes per microfarad-volt (nA/CV).

EXAMPLE 2 (Reference)

This example illustrates an embodiment of the powder of this invention comprising agglomerated mixture of angular and flaked powder. 1.135kg (2.5 lbs) of degassed angular powder prepared essentially in the manner of Example 1 was processed in a 1-S Union Process attritor stirred ball mill (285 rpm for 90 minutes) where powder dispersed in 2,400 ml ethanol medium and 18.16 kg 0.47 cm (40 lbs 3/16") 440SS medium was formed into flaked powder by the impact of stainless steel balls moved by the action of rotating bars. After the desired deformation into flake, the niobium powder was then removed and washed to remove any alcohol present. The niobium powder was then washed with a mixture of deionized water, hydrofluoric acid and hydrochloric acid in an amount of 1.1 &litre;/kg, 8.8 m&litre;/kg and 0.55 &litre;/kg (500 ml/lb, 4 ml/lb and 250 ml/lb) of niobium respectively (18.6% HCl containing 22 ml/kg HF) to remove metal contamination (e.g. iron, nickel, chromium and the like transferred from contact with stainless steel balls). Afterwards, the niobium powder was again washed with deionized water and then dried. The acid washed flaked powder was dried in air at 85°F (30°C) and had an aspect ratio (determined by observation of micrographs) in the range of 50 to 70. The flaked powder was blended with starting angular powder (in the weight ratio of 30:70) and with a phosphorus containing powder, i.e. NH4PF6, in an amount to provide 60 ppm phosphorus, which serves as a grain retarding agent to minimize the reduction in surface area during subsequent heat treatment for agglomeration. The pre-agglomerated BET surface area was 0.31 m2/g. The mixed powders were agglomerated by heating in a vacuum at 1100°C for 30 minutes to form an agglomerated mass. The agglomeration procedure was performed in a manner such that the material was pumped down to a high vacuum and heated at a ramp rate of 3°C/minute to 700°C and held for outgassing until the high pressure was achieved. The heating continued in the furnace at a ramp rate of 8°C/minute to 1100°C under high pressure and held for 30 minutes. The material was then allowed to cool in the furnace and the material was manually passivated by exposing it to air. The material was then reduced to smaller agglomerated particles by jaw crushing; reduced particles passing a No. 50 sieve size (equivalent to a maximum agglomerated particle size of 300 micrometers) exhibited a Scott density of 1.3 g/cc (21.7 g/in3), a BET surface area of 0.26 m2/g, oxygen content of 3693 ppm and phosphorus content of 25 ppm; the ratio of oxygen to BET surface area was 14,000 ppm O/m2/g and a flow of 22 mg/sec. The agglomerated powder was fabricated into anodes and tested for electrical properties in the manner of Example 1 which are reported in the Table 1.

EXAMPLE 3 (Reference)

This example illustrates an embodiment comprising agglomerated flaked powder. Acid leached flaked powder having an aspect ratio of about 50 to 70 was prepared essentially as described in Example 2 (cycle time of 60 minutes) except the niobium powder was hydrided a second time by exposure to hydrogen at 20.7 kPa (3 psig) and 850°C to provide an embrittled flake which was cooled and reduced in size by self impaction in a fluidized bed Jet mill (obtained from Hosokawa Micron Powder Systems, Summit, NJ) to make flaked powder having a median particle size of 6 micrometers (as determined by laser particle size scanning). The pre-agglomerated BET surface area was 0.62 m2/g. The reduced-size flaked powder was agglomerated by heating in a hydrogen atmosphere by heating the furnace at a rate of 10°C/minute to 1050°C under a vacuum furnace and holding this temperature until the furnace pressure decreased below 13.3 Pa (100 microns). Tantalum coarse chips (10-20 mesh) were used as an oxygen getter in a weight ratio of 1 Nb to 1-1.5 Ta. The furnace was then backfilled with hydrogen to obtain a pressure of 4.8 kPa (360 mmHg) and the furnace temperature was then increased to 1200°C and held for 1 hour. The hydrogen was then evacuated until the furnace pressure decreased to less than 1 micron and the furnace was allowed to cool to room temperature. The niobium powder was then passivated in air for 30 cycles wherein the operating pressure was increased by 2.67 kPa (20 torr) for each cycle and held for 2 minutes before starting the next backfill of air. The agglomerated niobium powder was reduced in size to agglomerated particles by a jaw crusher; reduced agglomerated flaked niobium powder was separated by screening through a No. 50 sieve size screen (equivalent to a maximum agglomerated flaked particle size of 300 micrometers) and exhibited a Scott density of 1.21 g/cc (20.4 g/in3), a BET surface area of 0.46 m2/g, oxygen content of 8760 ppm; the ratio of oxygen to BET surface area was 19,000 ppm O/M2/g, and a flow of less then 1 mg/sec. The agglomerated powder was fabricated into anodes and tested for electrical properties in the manner of Example 1 and reported in Table 1.

EXAMPLE 4 (Reference)

This example illustrates another embodiment comprising high surface area, low oxygen, agglomerated niobium flaked powder. Niobium powder was prepared in the same manner as in Example 3 except the niobium powder was attritor milled for 90 minutes, and heat treatment was carried out in a vacuum at 1150°C for 30 minutes. The pre-agglomerated BET surface area was 0.85 m2/g. The oxygen content of quantities of flaked niobium powder prepared essentially in the manner of Example 3 was reduced by heating niobium powder admixed with 4 to 5 wt% magnesium powder under argon at a temperature in the range of 750 to 850°C for 2 hours. The magnesium content was established as being in the range of 2 to 3 times the stoichiometric amount of oxygen in the niobium powder. After cooling, residual magnesium and oxides were removed from agglomerated flaked niobium by nitric acid leach. Deoxidized flaked niobium was water washed, dried, and separated by screening through a No. 50 sieve size screen. The screened niobium flake exhibited a Scott density of 1.47 g/cc (24.1 g/in3), a BET surface area of 0.96 m2/g, an oxygen content of 3130 ppm; the ratio of oxygen to BET surface area was 3260 ppm O/m2/g, and a flow of 76 mg/sec. The agglomerated powder was fabricated into anodes and tested for electrical properties in the manner of Example 1, and reported in Table 1. Sinter temperature 1300°C 1450°C 1600°C 1750°C Example 1: Capacitance    (CV/g) 8400 7500 6400 5500    (CV/cc) 40900 37000 33400 30000 DC Leakage    (na/CV) 53 2.8 2.3 2.4 Sinter Density    (g/cc) 4.9 5.0 5.2 5.5 Example 2: Capacitance    (CV/g) 13600 11900 10000 8200    (CV/cc) 46000 41600 36900 33400 DC Leakage    (na/CV) 25 1.7 2.1 2.5 Sinter Density    (g/cc) 3.4 3.5 3.7 4.1 Example 3: Capacitance    (CV/g) 32500 21400 13400 7100    (CV/cc) 114100 94300 73600 45800 DC Leakage    (na/CV) 5.8 4.1 2.4 2.0 Sinter Density    (g/cc) 3.5 4.4 5.5 6.4 Example 4: Capacitance    (CV/g) 31,589 . 21,059 12,956 7,254    (CV/cc) 110,562 88,448 64,780 42,799 DC Leakage    (na/CV) 5.8 5.3 2.6 1.4 Sinter Density    (g/cc) 3.5 4.2 5.0 5.9

EXAMPLE 5 (Reference)

A niobium powder was prepared in the same manner as in Example 4 except the heat treatment occurred in a vacuum at 1250°C for 30 minutes. The pre-agglomerated BET surface area was 0.78 m2/g. The powder was formed into an anode as in Example 1 and had the following performance characteristics Cv/g @ 50 Vf 19,600 (1450°C) 31,040 (1300°C) Sinter Density, g/cc 4.8 (1450°C) DC Leakage, na/Cv 2.33 (1450°C) BET, m2/g 0.80 Oxygen, ppm 2,815 Scott Density, G/in3 24.0 Flow, mg/sec 97

EXAMPLE 6

A niobium powder was prepared in the same manner as in Example 4 except the niobium powder was in an attritor mill for 150 minutes and the heat treatment was in a vacuum furnace where the pressure was pumped down to 0.13 Pa (1 micron) and then the temperature was increased by 50°C/minute to 950°C and held until the high vacuum was achieved. The temperature was then increased by 15°C stages until a temperature of 1250°C was reached and that temperature was held for 30 minutes. The material was then allowed to cool to room temperature under vacuum and passivated for 30 cycles, wherein the pressure was increased by 2.67 kPa (20 torr) after each cycle and held for 2 minutes before starting the next backfill of air. The powder was then crushed in a -50 mesh jaw crusher and deoxidized by blending the powder with 4% w/w magnesium metal and placing the material in a retort furnace and pumping down to 13.3 Pa (100 microns). The pre-agglomerated BET surface area was 1.05 m2/g. The furnace was then backfilled with argon to a pressure of 10.67 kPa (800 torr) and the pressure increased to 800°C and held for 2 hours. The materiai was then allowed to cool to room temperature and passivated in air for 30 cycles in the same manner mentioned above in Example 3. The material was then washed with a mixture of deionized water [1.1 &litre;/kg (500 ml/lb)], hydrofluoric acid [8.8 ml/kg (4 ml/lb)] and nitric acid [0.55 &litre;/kg (250 ml/lb)]. The powder was then rinsed with deionized water and dried. The niobium powder was then formed into an anode as in Example 1 and had the following performance characteristics CV/g @ 50 Vf (Sintering Temp.) 24,300 (1450°C) 41,700 (1300°C) Sinter Density, g/cc 4.0 (1450°C) DC Leakage, na/Cv 1.5 (1450°C) BET, m2/g 1.11 Oxygen, ppm 3,738 Scott Density, g/in3 24.4 Flow, mg/sec 112

EXAMPLE 7

Niobium powder was prepared in the same manner as in Example 6 except the niobium powder was blended with phosphorus before heat treatment to achieve a phosphorus loading of 56 ppm. The pre-agglomerated BET surface area was 1.05 m2/g. The material was hydrided as in Example 3 and crushed, heat treated, and deoxidized as in Example 6. The niobium powder was then formed into an anode as in Example 1 and had the following performance characteristics Cv/g @ 50 Vf (Sintering Temp.) 29,900 (1450°C) 45,400 (1300°C) Sinter Density, g/cc 3.7 (1450°C) DC Leakage, na/Cv 1.3 (1450°C) BET, m2/g 1.07 Oxygen, ppm 3,690 Scott Density, g/in3 23.2 Flow, mg/sec 76

EXAMPLE 8

Niobium powder was prepared in the same manner as in Example 4 except the niobium powder was milled in a 30 S attritor mill (130 rpm) for 8 hours by using 454 kg (1,000 lbs) of 0.47cm (3/16") SS media 36.32 kg (80 lbs) of niobium powder, and 49.2 &litre; (13 gallons) of ethanol. The milled powder was acid leached and washed in the same manner as described before and the material had the following characteristics BET, m2/g 1.39 Oxygen, ppm 8,124 Scott Density, g/in3 3

The niobium powders of examples 1-8 were discovered to have nitrogen levels on the order of about 1,000 ppm to about 2,000 ppm N2 as a result of air leaking into a furnace during the degassing of the Nb ingot chip.

EXAMPLE 9

Figures 1, 2, 3, and 4 show CV/g vs BET for various Nb powders having a range of BETs. Each figure represents the measurement of CV/g for the powders determined at a specific sinter temperature. As the figures show, the higher the sinter temperature the greater is the loss of surface area of the anode and there is also a general reduction in CV/g for any particular powder sample as the sample is tested at higher sinter temperatures (CV/g is proportional to the residual specific surface area of the anode after sintering).

As illustrated by Figures 1 through 4, for any given sinter temperature, the CV/g achieved will have a relationship to the starting BET of the sample. As shown, low BET will produce low net CV/g and as BET rises the CV/g will rise. For materials having high BETs the degree of surface area loss during sintering is so great as to obliterate so much surface area that only a small fraction of the original high BET is left to be expressed as CV/g after the sinter so CV/g drops off with the highest BETs. For this reason, the response of CV/g vs BET shows a maximum at a BET value that preserves the most net specific surface area after sintering. In general, as shown in the figures, lower sinter temperature will achieve optimum CV/g with higher BET material; whereas, high sinter temperatures, which are very destructive to small, high BET particles, will achieve optimum CV/g with a lower BET powder.

There is generally an optimum BET for use at any given sinter temperature; and, the set of all optimum BETs form a response surface relative to the sinter temperatures. As shown in the figures, the CV/g is generally proportional to the BET, and CV/g shows a relationship to the sinter temperatures. Thus, Figure 5 shows the CV/g for each sinter temperature from Figures 1 through 3 plotted against the sinter temperature. Figure 5 shows the CV/g that would be achieved at the 1300°C sinter to be on the order of about 61,000.

The preparation of Figure 5 is based on an objective and mathematically correct procedure for determining the maximum CV/g from each of the Figures 1 through 3. Because the response of CV/g vs BET in each of Figures 1 through 3 is observed to exhibit a maximum, the requirement was resolved by finding the maximum of the best functional fit to the data for each figure. The actual response of CV/g to BET is a complex function of the variables; however, the Taylor Series expansion of functions teaches that all functions can be approximated by the first three terms of the Taylor Series within a limited domain of the independent variable (in this case BET). This amounts to approximating the function as a quadratic (F(x)=ax2 + bx + c) valid within a limited neighborhood of any selected value for x. This calculation is valid as long as the values of x are within the neighborhood. The optimum BET in each case was used as the center of the neighborhood of the BET domain so that the approximation is most valid for BET near this value; and, to therefore take the maximum of the quadratic fit to the data to be the best estimate for the peak CV/g of the data in Figures 1 through 3. For this reason, a best fit of the data was performed in Figures 1 through 3 to a quadratic function using the curve fitting tool in Microsoft Excel v 5.0 which generated the parabolic curves superimposed on the measured data in Figures 1 through 3. The maximum of the fitted parabolae in Figures 1 through 3 were used as the input data to make Figure 5.

The set of maximum CV/g vs sinter temperature data in Figure 5 was next fitted to an exponential decay function using the curve fitting tool in Microsoft Excel v 5.0. The reason for selecting exponential decay as the best approximation to the response of maximum CV/g vs sinter temperature is because, as shown in the figures, CV/g will decrease with increasing sinter temperature; however, CV/g can in principal never be lower than 0.0 because the specific surface area cannot be made less than zero (cannot be negative). The exponential function which asymptotically decays to zero is the simplest functional form that can be used with the data in Figure 5 that does not predict negative CV/g. The best fit of an exponential curve as determined by Microsoft Excel v 5.0 was added to the data in Figure 5 and this allowed the calculation of the maximum CV/g that would be achieved with a 1300°C sinter temperature based upon all of the data from Figures 1 through 3 as explained above.

Figure 4 is the actual data for the available Nb samples tested at the 1300C sinter; however, it is seen in Figure 4 that the data does not peak because none of the samples bad the optimum BET for the 1300°C sinter. The data was fitted to the quadratic function just as was used in Figures 1 through 3 and the result shown superimposed on Figure 4 shows the peak should exist following the observations of peaks in Figures I through 3; and, the peak is shown to be a CV/g>55,000 and BET> 1.7. It is readily apparent that in the case of Figure 4, the peak CV/g predicted by using the same analysis used to make the data in Figure 5 describes a maximum CV/g very close to the independently derived maximum estimated by Figure 5. The agreement between two separate determinations of the maximum CV/g at the 1300°C sinter agree and make it clear that the materials made with BET> 1.7 (BETs on the order of 2 or more) will exhibit CV/g>55,000 (CV/g on the order of 60,000) when tested at 1300°C sinter conditions. Example data used for Figures 1 through 4 1300 1300 1450 1450 1600 1600 1750 1750 BET CV/g BET CV/g BET CV/g BET CV/g 0.8 30,302 0.8 22,757 0.8 14,433 0.8 7,972 0.8 30,423 0.8 22,982 0.8 14,754 0.8 8,517 1.16 45,440 1.16 29,916 1.16 16,495 1.16 7,785 0.96 40,797 0.96 29,868 0.96 18,480 0.96 9,958 0.96 35,350 0.96 27,959 0.96 17,742 0.96 9,611 0.96 40,235 0.96 30,147 0.96 18,707 0.96 9,989 0.96 35,481 0.96 27,667 0.96 17,977 0.96 9,611

EXAMPLE 10 (Reference)

The effects of oxygen on niobium powders were studied. Five samples of flaked niobium powder (prepared as in Example 5) each weighing 0.454 kg (1 pound), were tested. One of the samples was a control and the four remaining samples were processed in such a manner as to increase the oxygen content in the niobium powder. In particular, the four samples were heat treated in a furnace at 900°C for 30 minutes. The powders were then passivated in air in a manner similar to the air passivation discussed in the proceeding examples. Then, one of the four samples was removed and the three remaining samples heat treated and passivated again in the same manner described above. As before, one of these three samples was then remove and the procedure was repeated again with the two remaining samples. Afterward, again one of the samples was removed and the final remaining sample was again heat treated and passivated as before. Thus, there were five samples prepared wherein either 0, 1, 2, 3, or 4 cycles of heat treatment were preformed. Prior to testing for the oxygen content in each of these samples, the samples were passed individually through a 40 mesh screen.

The powders were then agglomerated and sintered at various temperatures and formed into anodes based on three different forming voltages as indicated in Table 3. The results of the DC leakage are also set forth in Table 3. As can be seen from the results in Table 3 and in Figures 6 and 7, the DC leakage gradually decreased as the oxygen content in the niobium increased. The decrease in DC leakage was especially apparent with lower forming voltages such as 30 and 50 volts. Data showing effect of O2 on na/CV at 30, 50 and 60 Volts 30 Vf 1300 1450 1600 1750 Oxygen na/CV na/CV na/CV na/CV 2725 4.47 1.86 0.89 0.47 4074 3.96 1.41 0.62 0.47 4870 3.49 1.29 0.58 0.45 5539 2.7 1.04 0.55 0.45 6499 2.38 0.95 0.54 0.45 8909 2.25 0.88 0.57 0.54 50 Vf 1600 1750 Oxygen na/CV na/CV na/CV na/CV 2725 4.31 3.07 1.84 1.08 4074 4.47 2.55 1.46 1.01 4870 3.96 2.51 1.42 0.99 5539 3.26 2.21 1.29 0.97 6499 3.5 2.09 1.23 0.97 8909 3.85 2.02 1.26 0.97 60 Vf 1600 1750 Oxygen na/CV na/CV na/CV na/CV 2725 22.16 25.06 28.64 27.08 4074 19.78 24.07 28.51 28.78 4870 19.11 24.71 28.51 27.67 5539 17.84 21.75 26.62 27.37 6499 17.88 22.37 24.88 25.69 8909 25.2 29.67 33.2 28.99

EXAMPLE 11 (Reference)

The effect ofphosphorus on niobium powder was then examined. Six samples ofniobium powder prepared in a manner like Example 5 were tested. One of the samples was used as a control and the remaining five samples had sufficient phosphoric acid added to achieve phosphorus levels of 5 ppm, 10 ppm, 30 ppm, 100 ppm, and 500 ppm respectively. The phosphoric acid was added as a diluted solution with 150 ml of deionized water. The phosphoric acid solution and powder were mixed and the samples dried in a vacuum oven. After drying, the samples were individually blended and tested for phosphorus levels. The results are set forth in Table 4. As can be seen in Table 4 and Figures 8 and 9,there was a small effect caused by phosphorus doping and it was noticed that higher amounts of phosphorus doping did not necessarily improve the properties of DC leakage. P doped Niobium samples data doped P (ppm) anode P (ppm) CV/g (1300°C) na/CV (1300°C) 16 13 33009 22.96 26 13 33614 21.77 69 100 33676 19.53 200 58 33915 21.83 400 204 34213 20.65 CV/g (1450°C) na/CV (1420°C) 16 0 24095 25.06 26 20 24375 23.4 62 72 24459 24.33 200 50 25348 26.09 400 339 25664 24.69 CV/g (1600°C) na/CV (1600°C) 16 0 15757 25.51 26 0 15974 24.82 62 0 16131 24.57 200 56 16736 25.83 400 415 17011 27.18 CV/g (1750°C) na/CV (1750°C) 16 8575 16.39 26 9176 16.69 62 9315 17.35 200 9551 16.54 400 9670 18.74

EXAMPLE 12 (Reference)

The effects of nitrogen doping were studied.

Nitrogen Doping Example Pedigree: Lots of Samples 60-, 25-, 55-, and 46-14XX

Thrice melted electron beam produced niobium ingot was hydrided by heating the ingot in a vacuum of 1.33·10-2 Pa (10-4 torr) to 850°C for 120 minutes. The vacuum was replaced by hydrogen gas purge at 21 kPa for a sufficient time to embrittle the ingot. The vacuum was then pumped down to 91.8 kPa (-28" Hg) and backfilled with argon to 99.6 kPa (-5" Hg). The pressure was maintained until the temperature, as measured by work thermocouple, stabilized. Air was gradually introduced in increasing pressure such that the work temperature did not rise.

Size reduction was accomplished by a Granutec crusher to reduce the maximum particle to that which would pass through a No. 20 sieve screen. Further reduction was accomplished by repeated processing in an impact mill by Vortec Products operated at 20,000 rpm until the material met a minimum of 95% passage through a No. 325 sieve screen (equivalent to 44 µm (micron) particle size).

Hydrogen was removed by heating the particles to 850°C in a vacuum until pressure was no longer affected by hydrogen being emitted from the particles to provide niobium metal angular powder having a Scoff Density of 2.57 g/cm3 (42) and a BET of 0.22 m2/g.

The powder was then milled in a 30 S Union Process Attritor Mill

  • Media: 454 kg 0.47cm SS media (1,000 lbs. 3/16" SS media)
  • 36.32 kg (80 lbs.) Niobium powder
  • Duration: 4 hours, 30 minutes
  • 49.2 l (13 gallons) of ethanol
  • 130 rpm

The material was then vacuum filtered to remove residual ethanol and then washed with deionized water until no ethanol odor was noted and vacuum filtered to remove residual water. The wet powder was then washed in a slurry of hydrochloric acid [0.55 l/kg (250 ml/lb.)], hydrofluoric acid [13.2 ml/kg (6 ml/lb.)] and de-ionized water [0.55 l/kg (250 ml/lb.)] to remove metallic contamination. The powder was then washed with deionized water and dried in air at 80°C

The dried powder was hydrided a second time by exposure to hydrogen at 20.7 kPa and 850°C to provide an embrittled flake which was cooled and reduced in size by an impact mill by Vortec Products to achieve a Scott density of 1.31 g/cm3 (21.4).

The reduced size flaked powder was then agglomerated by heating in a vacuum at 1250°C for 60 minutes to provide an agglomerated mass which was reduced in size to agglomerated particles of a maximum of a No. 50 sieve by a jaw crusher.

The powder was then deoxidized by blending with 4% w/w magnesium metal. The following thermal treatment was then executed in a retort furnace.

  • Reduce pressure to 13.3 Pa (100 microns).
  • Backfill with argon to 106.6 kPa (800 torr) and 800°C for 2 hours
  • Cool to room temperature
  • Passivate by increasing air content over 30 cycles of 2 minutes each wherein the system pressure progresses from high vacuum to atmospheric.

The material was then washed with a mixture of deionized ice [1.1 kg/kg (500 g/lb.)], hydrofluoric acid [8.8 ml/kg (4 ml/lb.)] and nitric acid [0.55 l/kg (250 ml/lb.)]. The powder was then rinsed with deionized water and air dried at 80°C. (14B1)

Nitrogen doping procedure for samples 14XXX.

The niobium powder was then mixed with 4% magnesium powder and heated to 800°C in argon and held at that temperature for 60 minutes. The vessel was evacuated and allowed to cool to 70°C. 17.33 kPa (130 Torr) of N2 gas was held on the vessel and the temperature raised to 500°C and held for 60 minutes under the argon atmosphere. The product was cooled to 40°C and admitted to air gradually using standard passivation techniques.

Lots of samples 60-, 25-, 55, and 46-39XX

Thrice melted electron beam produced niobium ingot was hydrided by heating the ingot in a vacuum of 1.33·10-2Pa (10-4 torr) to 850°C for 120 minutes. The vacuum was replaced by hydrogen gas purge at 21 kPa for a sufficient time to embrittle the ingot. The vacuum was then pumped down to 91.8 kPa (-28" Hg) and backfilled with argon to 99.6 kPa (-5" Hg). The pressure was maintained until the temperature, as measured by work thermocouple, stabilized. Air was gradually introduced in increasing pressure such that the work temperature did not rise.

Size reduction was accomplished by a Granutec crusher to reduce the maximum particle to that which would pass through a No. 20 sieve screen. Further reduction was accomplished by repeated processing in an impact mill by Vortec Products operated at 20,000 rpm until the material met a minimum of 95% passage through a No. 325 sieve screen (equivalent to 44 µm (micron) particle size).

Hydrogen was removed by heating the particles to 850°C in a vacuum until pressure was no longer affected by hydrogen being emitted from the particles to provide niobium metal angular powder having a Scott Density of 2.57 g/cm3 (42) and a BET of 0.22 m2/g. The product was then classified at +8 µm (microns) utilizing a Vortec Classifier.

The powder was then milled in a 30 S Union Process Attritor Mill

  • Media: 454 kg 0.47cm SS media (1,000 lbs. 3/16" SS media)
  • 36.32 kg (80 lbs.) Niobium powder
  • Duration: 6 hours
  • 49.2 l (13 gallons) of ethanol
  • 130 rpm

The material was then vacuum filtered to remove residual ethanol then washed with deionized water until no ethanol odor was noted and vacuum filtered to remove residual water. The wet powder was then washed in a slurry of hydrochloric acid [0.55 l/kg (250 ml/lb.)], hydrofluoric acid [13.2 ml/kg (6 ml/lb.)] and de-ionized water [0.55 l/kg (250 ml/lb.)] to remove metallic contamination. The powder was then washed with de-ionized water and dried in air at 80°C

The dried powder was hydrided a second time by exposure to hydrogen at 20.7 kPa and 850°C to provide an embrittled flake which was cooled and reduced in size by an impact mill by Vortec Products to achieve a Scott density of 1.31 g/cm3 (21.4).

The reduced size flaked powder was then agglomerated by heating in a vacuum at 1200°C for 60 minutes to provide an agglomerated mass which was reduced in size to agglomerated particles of a maximum of a No. 50 sieve by a jaw crusher. It was then thermally agglomerated a second time to 1225°C for 60 minutes. After cooling the furnace down to a targeted level (see following table), nitrogen was pumped in at a rate of 5 SCFH for the specified time under vacuum. Material was then passivated by gradually increasing the operating pressure with air over a forty minute period until atmospheric pressure was restored. Temperature (°C) Soak Time (minutes) Nitrogen (ppm) 752 90 4,155 932 120 1,580 752 60 830 752 120 776

This material was then crushed a second time to reduce the maximum observed particle to one which would pass through a No. 50 sieve.

The powder was then deoxidized by blending with 4% w/w magnesium metal then doped with nitrogen. The following thermal treatment was then executed in a retort furnace.

  • Reduce pressure 13.3 Pa (100 microns).
  • Backfill with argon to 106.6 kPa (800 torr) and 800°C for 2 hours
  • Cool to 70°C add 66.7 kPa (500 torr) nitrogen
  • Heat to 500°C hold for 60 minutes and cool to 40°C
  • Passivate by increasing air content over 30 cycles of 2 minutes each wherein the system pressure progresses from high vacuum to atmospheric.

The material was then washed with a mixture of deionized ice [1.1 kg/kg (500 g/lb.)], hydrofluoric acid [8.8 ml/kg(4 ml./lb.)] and nitric acid [0.55 l/kg (250 ml./lb.)]. The powder was then rinsed with deionized water and air dried at 80°C. Table 5 sets forth the analysis of the powder. Results C (ppm) O (ppm) N (ppm) H (ppm) 14 251 2,202 273 30 14N2 289 1,231 3,399 41 14N3 292 1,149 4,409 40 39N1 204 1,530 2,877 48

The results of these experiments are set forth in Tables 6 and 7, which are also plotted in Figures 10-21. As can be seen, the nitrogen levels in the niobium contributed to lowering the DC leakage and at higher sintering temperatures of the anode, DC leakage was reduced even further, especially when using low forming voltages.

Capacitor anodes were prepared in a similar manner as the earlier examples. Niobium samples prepared to compare effects of nitrogen doping during deox on the DC leakage (na/CV) at 35 and 50 volts formations Forming Voltage 35v Sintering Temperature 1300°C 1450°C sample ID 25-14B1 55-39N1 46-14N2 55-14N3 25-14B1 55-39N1 46-14N2 55-14N3 CV/g 30,473 31,042 28,464 28,272 17,109 20,58 8 18,776 18,983 na/CV 8.44 5.03 4.20 4.46 3.70 1.94 0.99 0.92 N2 273 2877 3399 4409 273 2877 3399 4409 O2 2202 1530 1231 1149 2202 1530 1231 1149 Forming Voltage 50v Sintering Temperature 1300°C 1450°C sample m 25-14B1 55-39N1 46-14N2 55-14N3 25-14B1 55-39N1 46-14N2 55-14N3 CV/g 29,243 30,152 27,633 27,514 16,941 20,49 5 18,574 18,744 na/CV 7.74 4.57 4.70 6.86 2.90 2.22 2.36 1.93 N2 273 2877 3399 4409 273 2877 3399 4409 O2 2202 1530 1231 1149 2202 1530 1231 1149
Niobium DC Leakage, oxygen and CV/g versus nitrogen added during heat treatment sample CV/g N2 (ppm) O2 (ppm) DCL (na/cv) Vf (volts) Temp (°C) 60-39N1 33,111 3190 1877 6.49 35 1300 L 60-39N2 32,668 561 2248 5.68 35 1300 60-39N3 32,812 544 2172 5.87 35 1300 60-14B 29,348 286 1691 9.56 35 1300 60-39A 32,198 489 2134 5.17 35 1300 60-39N1 21,330 3190 1877 1.65 35 1450 60-39N2 19,879 561 2248 3.31 35 1450 60-39N3 19,591 544 2172 2.75 35 1450 60-14B 17,138 286 1691 3.85 35 1450 60-39A 19,492 489 2134 3.15 35 1450 60-39N1 32.224 3190 1877 7.60 50 1300 60-39N2 31,860 561 2248 6.05 50 1300 60-39N3 31,991 544 2172 6.49 50 1300 60-14B 28,411 286 1691 15.12 50 1300 60-39A 31,570 489 2134 6.84 50 1300 60-39N1 21,327 3190 1877 4.70 50 1450 60-39N2 19,853 561 2248 4.67 50 1450 60-39N3 19,598 544 2172 4.02 50 1450 60-14B 17,023 286 1691 8.96 50 1450 60-39A 19,428 489 2134 5.00 50 1450

Other embodiments of the present invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only.


Anspruch[de]
  1. Mit Stickstoff dotiertes Niobpulver mit einem Stickstoffgehalt von wenigstens 300 ppm und einer BET-Oberfläche von wenigstens 1,0 m2/g.
  2. Mit Stockstoff dotiertes Niobpulver nach Anspruch 1, wobei der Stickstoffgehalt wenigstens 400 ppm beträgt.
  3. Mit Stickstoff dotiertes Niobpulver nach Anspruch 1, wobei der Stickstoffgehalt wenigstens 500 ppm beträgt.
  4. Mit Stickstoff dotiertes Niobpulver nach Anspruch 1, wobei der Stickstoffgehalt zwischen 300 ppm bis 5.000 ppm beträgt.
  5. Mit Stickstoff dotiertes Niobpulver nach Anspruch 1, wobei der Stickstoffgehalt zwischen 500 ppm bis 4.000 ppm beträgt.
  6. Mit Stickstoff dotiertes Niobpulver nach Anspruch 1, wobei der Stickstoffgehalt zwischen 500 ppm bis 3.500 ppm beträgt.
  7. Mit Stickstoff dotiertes Niobpulver nach Anspruch 1, wobei der Stickstoffgehalt zwischen 500 ppm bis 3.000 ppm beträgt.
  8. Mit Stickstoff dotiertes Niobpulver nach Anspruch 1, wobei der Stickstoffgehalt zwischen 1.500 ppm bis 5.000 ppm beträgt.
  9. Mit Stickstoff dotiertes Niobpulver nach Anspruch 1, wobei das Niobpulver knotenförmiges bzw. kugeliges, flockiges oder kantiges Niobpulver oder deren Kombinationen umfasst.
  10. Mit Stickstoff dotiertes Niobpulver nach Anspruch 9, wobei das Niobpulver flockiges Niobpulver umfasst und eine BET-Oberfläche von wenigstens 2,0 m2/g beträgt.
  11. Mit Stickstoff dotiertes Niobpulver nach Anspruch 9, wobei das Niobpulver flockiges Niobpulver umfasst und eine BET-Oberfläche von zwischen 1,0 bis 5,0 m2/g.
  12. Mit Stickstoff dotiertes Niobpulver nach Anspruch 1 oder 9, wobei das Pulver eine BET-Oberfläche von zwischen 2,0 bis 5,0 m2/g aufweist.
  13. Mit Stickstoff dotiertes Niobpulver nach Anspruch 9, wobei das Niobpulver flockiges Niobpulver umfasst und eine Scott-Dichte von weniger als 2,14 g/cm3 (35 g/in3) aufweist.
  14. Mit Stickstoff dotiertes Niobpulver nach Anspruch 1, mit einem Phosphoranteil von weniger als 400 ppm.
  15. Mit Stickstoff dotiertes Niobpulver nach Anspruch 1, mit einem Sauerstoffgehalt von wenigstens 2.000 ppm.
  16. Verfahren zur Herstellung des Niobpulvers nach einem der Ansprüche 1 bis 15 umfassend den Schritt des Dotieren des Stickstoffs in das Niob während des Schmelzens eines Niobbarrens, während einer Desoxidationsstufe des Niobs, während der Hydrierung des Niobs, während der Entschmierung des Niobs, während des Sintern des Niobs und/oder während der thermischen Bearbeitung des Niobs.
  17. Verfahren nach Anspruch 16, des Weiteren umfassend das Dotieren des Niobpulvers mit Sauerstoff.
  18. Anode für einen Kondensator gebildet aus dem Niobpulver nach einem der Ansprüche 1 bis 15.
  19. Anode für einen Kondensator nach Anspruch 18, mit einer Kapazität von 30.000 CV/g bis 61.000 CV/g.
  20. Anode für einen Kondensator nach Anspruch 18 des Weiteren umfassend eine Nioboxidschicht auf einer Oberfläche dessen.
  21. Anode für einen Kondensator nach Anspruch 20, wobei die Schicht eine Niobpentoxidschicht umfasst.
  22. Anode für einen Kondensator nach Anspruch 18, welche bei einer Spannung von 60 Volt oder weniger gebildet ist.
  23. Anode für einen Kondensator nach Anspruch 18, welche bei einer Spannung von 50 Volt oder weniger gebildet ist.
  24. Verfahren zur Herstellung der Anode für den Kondensator nach einem der Ansprüche 18 bis 23, umfassend das Sintern des Niobpulvers bei einer Temperatur in dem Bereich von 1.200 bis 1.750 °C.
  25. Verfahren nach Anspruch 24, wobei die Sintertemperatur in dem Bereich von 1.200 bis 1.400 °C liegt.
  26. Verfahren nach Anspruch 24, wobei die Sintertemperatur in dem Bereich von 1.250 bis 1.350 °C liegt.
  27. Verfahren nach Anspruch 24, des Weiteren umfassend den Schritt des Formens der Anode bei einer Spannung von 60 V oder weniger.
  28. Verfahren nach Anspruch 24, des Weiteren umfassend den Schritt des Formens der Anode bei einer Spannung von 50 V oder weniger.
  29. Verfahren nach Anspruch 24, des Weiteren umfassend den Schritt des Formens der Anode bei einer Spannung von 30 V bis 50 V.
  30. Verfahren nach Anspruch 24, des Weiteren umfassend den Schritt des Formens der Anode bei einer Spannung von 30 V oder weniger.
  31. Kondensator umfassend eine Anode gebildet aus dem Niobpulver nach einem der Ansprüche 1 bis 15.
  32. Kondensator nach Anspruch 31, mit einem Gleichstrom-Leckstrom von weniger als 5,0 nA/CV.
  33. Kondensator nach Anspruch 31, mit einem DC Leckstrom zwischen 5,0 nA/CV bis 0,50 nA/CV.
  34. Verwendung des mit Stickstoff dotierten Niobpulvers nach einem der Ansprüche 1 bis 15 zur Herstellung eines Kondensators.
Anspruch[en]
  1. A nitrogen doped niobium powder having a nitrogen content of at least 300 ppm and a BET surface area of at least 1.0 m2/g.
  2. The nitrogen doped niobium powder of claim 1, wherein said nitrogen content is at least 400 ppm.
  3. The nitrogen doped niobium powder of claim 1, wherein said nitrogen content is at least 500 ppm.
  4. The nitrogen doped niobium powder of claim 1, wherein said nitrogen content is from 300 to 5,000 ppm.
  5. The nitrogen doped niobium powder of claim 1, wherein said nitrogen content is from 500 ppm to 4,000 ppm.
  6. The nitrogen doped niobium powder of claim 1, wherein said nitrogen content is from 500 ppm to 3,500 ppm.
  7. The nitrogen doped niobium powder of claim 1, wherein said nitrogen content is from 500 ppm to 3,000 ppm.
  8. The nitrogen doped niobium powder of claim 1, wherein said nitrogen content is from 1,500 ppm to 5,000 ppm.
  9. The nitrogen doped niobium powder of claim 1, wherein said niobium powder comprises nodular, flaked or angular niobium powder, or combinations thereof.
  10. The nitrogen doped niobium powder of claim 9, wherein the niobium powder comprises flaked niobium powder and has a BET surface are of at least about 2.0 m2/g.
  11. The nitrogen doped niobium powder or claim 9, wherein the niobium powder comprises flaked niobium powder and has a BET surface area of from 1.0 to 5.0 m2/g.
  12. The nitrogen doped nitrogen doped niobium powder of claim 1 or 9, wherein said powder has a BET surface area of from 2.0 to 5.0 m2/g.
  13. The nitrogen doped niobium powder of claim 9, wherein the niobium powder comprises flaked niobium powder and has a Scott Density of less than 2.14 g/cm3 (35 g/in3).
  14. The nitrogen doped niobium powder of claim 1, having a phosphorus level of less than 400 ppm.
  15. The nitrogen doped niobium powder of claim 1, having an oxygen content of at least 2,000 ppm.
  16. A process of preparing the niobium powder of any one of claims 1 to 15 comprising the step of doping the nitrogen into the niobium during melting of a niobium ingot, during a deoxidation stage of the niobium, during hydriding of the niobium, during delubing of the niobium, during sintering of the niobium and/or, during thermal processing of the niobium.
  17. The process of claim 16, further comprising doping said niobium powder with oxygen.
  18. A capacitor anode formed from the niobium powder of any one of claims 1 to 15.
  19. The capacitor anode of claim 18 having a capacitance of 30,000 CV/g to 61,000 CV/g.
  20. The capacitor anode of claim 18 further comprising a niobium oxide film on a surface thereof.
  21. The capacitor anode of claim 20, wherein said film comprises a niobium pentoxide film.
  22. The capacitor anode of claim 18 which is formed at a voltage of 60 volts or less.
  23. The capacitor anode of claim 18 which is formed at a voltage of 50 volts or less.
  24. A method of preparing the capacitor anode of any one of claims 18 to 23, comprising sintering the niobium powder at a temperature in the range of 1200 to 1750°C.
  25. The method of claim 24, wherein the sintering temperature is in the range of 1200 to 1400°C.
  26. The method of claim 24, wherein the sintering temperature is in the range of 1250 to 1350°C.
  27. The method of claim 24, further comprising the step of forming the anode at a voltage of 60 V or less.
  28. The method of claim 24 further comprising the step of forming the anode at a voltage of 50 V or less.
  29. The method of claim 24 further comprising the step of forming the anode at a voltage of 30 V to 50 V.
  30. The method of claim 24 further comprising the step of forming the anode at a voltage of 30 V or less.
  31. A capacitor comprising an anode formed from the niobium powder of any one of claims 1 to 15.
  32. The capacitor of claim 31, having a DC leakage of less than 5.0 nA/CV.
  33. The capacitor of claim 31, having a DC leakage of from 5.0 nA/CV to 0.50 nA/CV.
  34. Use of the nitrogen doped niobium powder of any one of claims 1 to 15 for the production of a capacitor.
Anspruch[fr]
  1. Une poudre de niobium dopée à l'azote présentant une teneur en azote d'au moins 300 ppm et une aire de surface BET d'au moins 1,0 m2/g.
  2. La poudre de niobium dopée à l'azote de la revendication 1, dans laquelle ladite teneur en azote est d'au moins 400 ppm.
  3. La poudre de niobium dopée à l'azote de la revendication 1, dans laquelle ladite teneur en azote est d'au moins 500 ppm.
  4. La poudre de niobium dopée à l'azote de la revendication 1, dans laquelle ladite teneur en azote est de 300 à 5000 ppm.
  5. La poudre de niobium dopée à l'azote de la revendication 1, dans laquelle ladite teneur en azote est de 500 ppm à 4000 ppm.
  6. La poudre de niobium dopée à l'azote de la revendication 1, dans laquelle ladite teneur en azote est de 500 ppm à 3500 ppm.
  7. La poudre de niobium dopée à l'azote de la revendication 1, dans laquelle ladite teneur en azote est de 500 ppm à 3000 ppm.
  8. La poudre de niobium dopée à l'azote de la revendication 1, dans laquelle ladite teneur en azote est de 1500 ppm à 5000 ppm.
  9. La poudre de niobium dopée à l'azote de la revendication 1, dans laquelle ladite poudre de niobium comprend de la poudre de niobium nodulaire, floconnée ou en fragments minces, ou des combinaisons de ceux-ci.
  10. La poudre de niobium dopée à l'azote de la revendication 9, dans laquelle la poudre de niobium comprend de la poudre de niobium floconnée et présente une aire de surface BET d'au moins environ 2,0 m2/g.
  11. La poudre de niobium dopée à l'azote de la revendication 9, dans laquelle la poudre de niobium comprend de la poudre de niobium floconnée et présente une aire de surface BET de 1,0 à 5,0 m2/g.
  12. La poudre de niobium dopée à l'azote de la revendication 1 ou 9, dans laquelle ladite poudre a une aire de surface BET de 2,0 à 5,0 m2/g.
  13. La poudre de niobium dopée à l'azote de la revendication 9, dans laquelle la poudre de niobium comprend de la poudre de niobium floconnée et présente une densité Scott de moins de 2,14 g/cm3 (35 g/pouce3).
  14. La poudre de niobium dopée à l'azote de la revendication 1, présentant un niveau phosphoreux de moins de 400 ppm.
  15. La poudre de niobium dopée à l'azote de la revendication 1, présentant une teneur en oxygène d'au moins 2000 ppm.
  16. Un procédé de préparation de la poudre de niobium de l'une quelconque des revendications 1 à 15 comprenant l'étape consistant à doper à l'azote le niobium pendant la fusion d'un lingot de niobium, pendant un stade de désoxydation du niobium, pendant une hydruration du niobium pendant un dégraissage du niobium, pendant un frittage du niobium et/ou pendant un traitement thermique du niobium.
  17. Le procédé de la revendication 16, comprenant en outre un dopage de ladite poudre de niobium avec de l'oxygène.
  18. Une anode de condensateur formée à partir de la poudre de niobium de l'une quelconque des revendications 1 à 15.
  19. L'anode de condensateur de la revendication 18 présentant une capacité de 30000 CV/g à 61000 CV/g.
  20. L'anode de condensateur de la revendication 18 comprenant en outre un film d'oxyde de niobium sur une surface de celle-ci.
  21. L'anode de condensateur de la revendication 20, dans laquelle ledit film comprend un film de pentoxide de niobium.
  22. L'anode de condensateur de la revendication 18 qui est formée à une tension de 60 volts ou moins.
  23. L'anode de condensateur de la revendication 18 qui est formée à une tension de 50 volts ou moins.
  24. Un procédé de préparation de l'anode de condensateur de l'une quelconque des revendications 18 à 23, comprenant le frittage de la poudre de niobium à une température dans la gamme de 1200 à 1750°C.
  25. Le procédé de la revendication 24, dans lequel la température du frittage est dans la gamme de 1200 à 1400°C.
  26. Le procédé de la revendication 24, dans lequel la température du frittage est dans la gamme de 1250 à 1350°C.
  27. Le procédé de la revendication 24, comprenant en outre l'étape de formation de l'anode à une tension de 60 V ou moins.
  28. Le procédé de la revendication 24 comprenant en outre l'étape de formation de l'anode à une tension de 50 V ou moins.
  29. Le procédé de la revendication 24 comprenant en outre l'étape de formation de l'anode à une tension de 30 V à 50 V.
  30. Le procédé de la revendication 30 comprenant en outre l'étape de formation de l'anode à une tension de 30 V ou moins.
  31. Un condensateur comprenant une anode formée à partir de la poudre de niobium de l'une quelconque des revendications 1 à 15.
  32. Le condensateur de la revendication 31, présentant une fuite en courant continu de moins de 5,0 nA/CV.
  33. Le condensateur de la revendication 31, présentant une fuite en courant continu de 5,0 nA/CV à 0,50 nA/CV.
  34. Utilisation de la poudre de niobium dopée à l'azote de l'une quelconque des revendications 1 à 15 pour la réalisation d'un condensateur.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com