PatentDe  


Dokumentenidentifikation EP0845854 28.04.2005
EP-Veröffentlichungsnummer 0000845854
Titel FÜHLER FÜR MECHANISCHE VIBRATIONEN UND VIBRATIONS-DÄMPFUNGS-REGLER
Anmelder Kabushiki Kaisha Yaskawa Denki, Kitakyushu, Fukuoka, JP
Erfinder NAKAMURA, Hiroshi, Kitakyushu-shi, Fukuoka 806, JP;
TAKAMATSU, Shouji, Kitakyushu-shi, Fukuoka 806, JP;
KAKU, Yasuhiko, Kitakyushu-shi, Fukuoka 806, JP
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69634513
Vertragsstaaten DE, GB, SE
Sprache des Dokument EN
EP-Anmeldetag 13.08.1996
EP-Aktenzeichen 969266378
WO-Anmeldetag 13.08.1996
PCT-Aktenzeichen PCT/JP96/02289
WO-Veröffentlichungsnummer 0097007590
WO-Veröffentlichungsdatum 27.02.1997
EP-Offenlegungsdatum 03.06.1998
EP date of grant 23.03.2005
Veröffentlichungstag im Patentblatt 28.04.2005
IPC-Hauptklasse H02P 5/00
IPC-Nebenklasse G01H 1/00   

Beschreibung[en]

The present invention relates to a mechanical-vibration detecting apparatus, a mechanical-vibration reduction control apparatus and a motor control apparatus.

As a mechanical-vibration detecting apparatus and a vibration-reduction control apparatus in a motor control system has been considered, wherein a motor containing mechanism system is separated into an equivalent rigid body system and a mechanical vibration system so that mechanical vibration is estimated at a high speed by an observer based on an equivalent rigid body system model to perform vibration reduction control.

In the prior art, however, a quadratic observer is constituted with the angular velocity and step-like torque disturbance of the equivalent rigid body system as state variables, so that not only an equivalent rigid body model and a proportional operation means but also an integrating operation means are required in order to constitute a mechanical-vibration detecting apparatus. Two parameters are required to be set for the observer and, furthermore, the phase of a mechanical vibration signal varies largely in accordance with the set-values of the parameters so that there arises a problem that it is difficult to adjust the parameters.

From prior art document EP 0 523 255 A1 a method for suppressing torsional vibration in a motor speed control system and an apparatus therefore is known. Moreover, in the pamphlet "Torsional Vibration Suppression Control in 2-Mass System by State Feedback Speed Controller", proceedings of the conference on control applications, Vancouver, September 13 - 16, 1993, pages 129 - 133, an observer-based state feedback speed controller for torsional vibration suppression of a 2-mass system is proposed.

Therefore, an object of the present invention is to provide a mechanical-vibration detecting apparatus in which not only adjustment is easy but also mechanical vibration can be taken out with high accuracy, and to provide a vibration-reduction control apparatus by which reduction of mechanical vibration can be achieved.

According to a first aspect, said objective is solved by a mechanical-vibration detecting apparatus having the features of independent claim 1. According to a further aspect of the present invention, said objective is also solved by a mechanical-vibration detecting reduction control apparatus having the features of claim 3. According to still a further aspect of the present invention, said objective is also solved by a mechanical-vibration reduction control apparatus having the feature of claim 4. Furthermore, according to still a further aspect, said objective is also solved by a motor control apparatus having the features of claims 6.

Preferred embodiments are laid down in the respective independent claims.

By the aforementioned means, a linear equivalent rigid body observer is constituted so that one integrating means becomes unnecessary and the range of the parameter for stabilizing the system is widened correspondingly. Furthermore, because only one parameter is required for setting the observer and the sensitivity of the parameter is low with respect to the phase of the mechanical vibration signal, it is easy to adjust the parameter.

As described above, it is possible to constitute an equivalent rigid body observer in which the number of parameters to be set is small and the range of the parameter to be set is wide. Accordingly, there arises an effect that it is possible to provide a mechanical-vibration detecting apparatus in which not only adjustment is easy but also mechanical vibration can be taken out with high accuracy, and to provide a vibration-reduction control apparatus by which reduction of mechanical vibration can be achieved.

Hereinafter the present invention is illustrated and explained by means of preferred embodiments in conjunction with the accompanying drawings. In the drawings wherein:

  • Fig. 1 is a diagram showning a first embodiment. Fig 2 is a diagram for explaining an example of resonance mechanism. Fig. 3 is a diagram showing a second embodiment. Fig. 4 is a diagram showing a third embodiment.

Specific features of the embodiments will be described below.

A first embodiment as to a mechanical-vibration detecting apparatus illustrated in Fig. 1 will be described. In the drawing, a block 102 shows a mechanical- vibration detecting apparatus constituted by an equivalent rigid body model 103, a proportional operation means 104, and a high-pass filter 105. The apparatus is supplied with a motor torque signal τ and a motor velocity signal (a motor angular velocity vm is used here) and outputs a mechanical vibration signal. A block 101 shows a mechanism (including a motor) having a mechanical resonance system.

The theory of detection of a mechanical vibration signal will be described below. Using an approximate method proposed in Japanese Patent Application No. 7-337057, a transmission function of the mechanism system 101 can be separated into an equivalent rigid body system G1(s) and a mechanical resonance system G2(s) as follows: G1(s)=γ / (s+D0) G2(s)=ω2r / (ω2a) s2a / (Qa)s2a / (s2r / (Qr)s2r) in which y is the reciprocal of a moment of inertia of the equivalent rigid body system, D0/γ is the viscous friction coefficient of the equivalent rigid body system, and ωr and ωa are the resonance frequency and antiresonance frequency of the mechanical resonance system.

First, the theory of the present teaching will be described. In Fig. 1, the block 101 surrounded by a broken line shows an mechanism (including electric motor) with a mechanical resonance phenomenon, and the block 102 surrounded by a one-dotted chain line shows a mechanical-vibration detecting apparatus according to the present teaching. As an example of the mechanism, assume a 2-inertia torsional resonance system shown in Fig.. 2. Equations of motion in the mechanical system in the drawing are given as follows:

in which &thetas;m angle of the motor axis [rad] &thetas;L angle of the load axis [rad] δ&thetas; torsional angle of the equivalent linear spring [rad] Jm moment of inertia on the motor axis side [Kgm2] JL moment of inertia on the load axis side [Kgm2] K spring constant of the equivalent linear spring [Nm/rad] Dm viscous friction coefficient of the motor axis [Nm/(rad/s)] DL viscous friction coefficient of the load axis [Nm/(rad/s)] DT equivalent viscous friction coefficient of the equivalent linear spring system [Nm/(rad/s)] u1 torque generated on the motor axis [Nm]

Assuming now that a state variable and an observation output (angular velocity of the motor) are given by the following equations (4a) and (4b) respectively,

and y(t)=&thetas;m(t)=x3(t)=[0 0 1 0]x(t) then state equations (5a) and (5b) are given according to the equations (1a) and (1b) as follows: x(t)=Ax(t)+bu(t) y(t)=cx(t) in which
c=[0 0 1 0]

The transfer function from the torque generated in the electric motor to the angular velocity (observation output) of the electric motor is given as follows: G(s)=C(sI-A)-1b =Gs(s)=1 / (Jm)s2+DL+DT / (JL)s+K / (JL) / (P(s)) in which the characteristic equation P(s) is given as follows: P(s)=s3+(Dm / (Jm)+DT / (Jm)+DL / (JL)+DT / (JL))s2+(K / (Jm)+K / (JL)+Dm / (Jm)DT / (JL)+Dm / (Jm)DT / (JL)+Dm / (Jm)DT / (JL))s +K(Dm+DL) / (JmJL)

It was very difficult to factorize the equation (8) into a product of a first-order expression and a second-order expression because parameters for the electric motor were combined with parameters for the mechanical resonance system. Accordingly, the physical meaning of the equation was not clear, so that a state observer could not but be formed with respect to the whole of the control system.

Therefore, in the present teaching, factors in the equation (8) are replaced as follows: D0=Dm+DL / ((1 + α)Jm)1 / (1+DmDT+DLDT+DmDL / ((1+α)JmK)) ωr / (Qr)=1 / (Jm)(Dm+1 / (α)DL+1+α / (α)Dr)-D0 ω2r=(1+α)K / (αJm)[1+DmDT+DLDT+DmDL / ((1+α)JmK)] in which α is the ratio of moment of inertia of the load to that of the motor as follows: α=JL/Jm Using the equations (9a) to (9c), the equation (8) is expressed as follows: P(s)=s3((ωr/Qr)+D0)s22rs2rD0 Assume newly the following equation:

=s3+(ωr / (Qr)+D0)s2+(1+ε)ω2rs2rD0 in which ε=(1/Qr) (D0r).

From the equations (11) and (12b), the equality

holds when ε=0. Accordingly,
is an equation of approximating P(s), and e expresses an approximation error. It is apparent from the equation (13) that the approximation error e decreases as Qr increases. For example, ε<0.01 holds in the case of Qr>10 and ωr>10D0.

Assuming the equations (9a) to (9c), then the characteristic equation P(s) can be approximated by

in the equation (12b) as follows: P(s)=s3+(Dm / (Jm)+DT / (Jm)+DL / (JL)+DT / (JL))s2+(K / (Jm)+K / (JL)+Dm / (Jm)DT / (JL)+Dm / (Jm)DT / (JL)+Dm / (Jm)DT / (JL))s+K(Dm+DL) / (JmJL) =(s+D0)(s2r / (Qr)s2r)

The equation (7) is rearranged by the following equations: ω2a=K / (JL)=K / (αJm) ωa / (Qa)=DL+DT / (JL)=DL+DT / (αJm)

Using the equations (14), (15a) and (15b) in the equation (7), the approximate equation of the transfer function can be deduced as follows:

=1 / (Jm2a / (ω2r) 1 / (s+D0) ω2r / (s2r / (Qr)s2r)s2a / (Qa)s2a / (ω2a)

When the equations (16a) and (16b) are used, the 2-inertia resonance system can be separated into the equivalent rigid body system G1(s) shown in the block 101 surrounded by the broken line in Fig. 1 and the mechanical resonance system G2(s) as follows: G1(s)=1 / (Jm2a / (ω2r)1 / (s+D0) G2(s)=ω2r / (s2r / (Qr)s2r)s2a / (Qa)s2a / (ω2a)

If the velocity of the equivalent rigid body system can be detected, the mechanical vibration component can be detected selectively on the basis of a difference signal which expresses a value obtained by subtracting the detected velocity of the equivalent rigid body system from the observation output.

Therefore, a state observer is constituted with the equivalent rigid body system as a model. If the torque τ of the motor is used as a control input u under the condition that only the angular velocity v is considered with respect to a state x, according to the differential equation v(t)=-D0v(t)+γτ(t) the state equation of the equivalent rigid body system and the output equation are given as follows: x(t)=ax(t)+bu(t) y(t)=cx in which x(t)=v(t), u(t)=τ(t), a=-D0, b=γ, c=1.

From the aforementioned equations, the observer can be formed as represented by the following equation:

From the equations (19) and (20), the estimated angular velocity value v is given by the following equation:

Assuming that the output y is given as the motor angular velocity vm instead of v, then the equation (21) can be expressed by the block diagram in the block 102 of Fig. 1.

The mechanical vibration signal to be measured is obtained on the basis of the following signal e of difference between the angular velocity of the motor and the estimated angular velocity value of the equivalent rigid body system: e(t)=vm(t)-v(t) However, because the observer represented by the equation (20) does not consider torque disturbance d, an estimation error remains in the difference signal e if there is step-like torque disturbance d. Therefore, the difference signal e is passed through the high-pass filter 105 so that a signal obtained by removal of the estimated error due to the torque disturbance is used as a mechanical vibration signal. From the above description, a mechanical vibration signal is obtained by the configuration in the mechanism vibration detecting apparatus 102.

A second embodiment as to the vibration-reduction control apparatus will be described below with reference to Fig. 3. Fig. 3 shows the case where the present invention is applied to a motor torque control apparatus. In Fig. 3, the motor-containing mechanism system 101 and the mechanical- vibration detecting apparatus 102 are the same as those in the first embodiment. The reference numeral 106 designates a motor drive device which is supplied with a torque command and which outputs torque generated by the motor. The motor drive device 106 is constituted by a power amplifier, and so on. As a motor torque signal τ to be supplied to the mechanical-vibration detecting apparatus 102, a generated torque monitor signal or a torque command signal is used. The mechanical vibration signal estimated by the mechanical-vibration detecting apparatus 102 is supplied to the phase adjuster 107. The output of the phase adjuster 107 is supplied to the amplitude adjuster 108, so that a signal obtained by addition of the output w of the amplitude adjuster 108 to the torque command is supplied, as a new torque command, to the motor torque control apparatus.

The phase adjuster 107 and the amplitude adjuster 108 adjust the phase and amplitude of the mechanical vibration signal which is an output of the mechanical-vibration detecting apparatus 102 so as to suppress the vibration of the control system containing the motor and the mechanical resonance system. Because the mechanical vibration signal output from the mechanical-vibration detecting apparatus 102 is advanced in phase than the vibration of motor angular velocity vm and the degree of the phase advance is adjusted on the basis of the gain k of the proportional operation means 104, the phase adjuster 107 may be constituted by a phase delay element such as a low-pass filter, or the like. The amplitude adjuster 108 may be constituted by an amplifier or an arithmetic unit for multiplying the output signal of the phase adjuster 107 by the gain.

A third embodiment as to the vibration-reduction control apparatus will be described below with reference to Fig. 4. Fig. 4 shows the case where the present teaching is applied to a motor velocity control. apparatus. In Fig. 4, the motor-containing mechanism system 101 and the mechanical vibration detecting apparatus 102 are the same as those in the first embodiment, and the motor drive device 106, the phase adjuster 107 and the amplitude adjuster 108 have the same functions as those in the second embodiment, except that the output w of the amplitude adjuster 108 is added to a velocity command so that the added-up signal is supplied, as a new velocity command, to the motor velocity control apparatus. The reference numeral 109 designates a velocity control compensator which is supplied with a difference signal between the velocity command and a velocity feedback signal, and which outputs a torque instruction.

As described above, in the first, second and third embodiments, a value obtained by addition of torque disturbance d to the torque instruction may be supplied, as a new torque signal, to the mechanical-vibration detecting apparatus 102 if the detected or estimated value of the torque disturbance d is obtained. In this case, the high-pass filter 105 becomes unnecessary. When, for example, the torque instruction is determined on the basis of proportional integrating control in the velocity control compensator 109 in the third embodiment, a value obtained by inversion of the positive/negative sign of the resulting value of the integrating operation may be used as the estimated torque disturbance value.

The present teaching can be applied to various motor-driven industrial machines such as machine tools, robots, semiconductor producing apparatuses, metallurgical apparatuses, and other general industrial machines, and office machines.


Anspruch[de]
  1. Erfassungsvorrichtung für mechanische Schwingungen (102), angewandt an einer Motorsteuerungsvorrichtung zum Steuern des Drehmomentes eines Motors,dadurch gekennzeichnet, dass die Erfassungsvorrichtung aufweist ein äquivalentes Starrkörpermodel (103) des Motors, das die Übertragungscharakteristik von G1 = y / (s + D0) hat, wo γ der Kehrwert des Trägheitsmomentes eines äquivalenten Starrkörpersystems ist, und D0/γ der viskose Reibungskoeffizient des äquivalenten Starrkörpersystems ist; eine Proportional- Betriebseinrichtung (104); einen Hochpassfilter (105); und

    eine Einrichtung zum Addieren eines Drehmomentsignales (τ, τr) der Motorsteuerungsvorrichtung und eines Ausgangssignales der Proportional- Betriebseinrichtung (104), um ein resultierendes zusätzliches Signal zu dem äquivalenten Starrkörpermodels (103) zuzuführen, und zum Subtrahieren eines Ausgangssignales des äquivalenten Starrkörpermodels (103) von einem Geschwindigkeitssignal (Vm) der Motorsteuervorrichtung, um ein resultierendes Differenzsignal zu dem Hochpassfilter (105) zuzuführen, so dass ein Ausgangssignal des Hochpassfilters (105) als ein mechanisches Schwingungssignal verwendet wird; und eine Einrichtung zum Zuführen des Differenzsignales zu der Proportional- Betriebseinrichtung (104).
  2. Erfassungsvorrichtung für mechanische Schwingungen nach Anspruch 1, wobei der Motor mit einer Last durch eine äquivalente lineare Feder verbunden ist, K eine Konstante der äquivalenten linearen Feder ist, Jm ein Trägheitsmoment des Motors ist, JI ein Trägheitsmoment der Last ist, Dm ein viskoser Reibungskoeffizient des Motors ist, DL ein viskoser Reibungskoeffizient der Last ist, und DT ein äquivalenter viskoser Reibungskoeffizient der äquivalenten linearen Feder ist (wo y = ωa2/(Jmωr2), ωa2 = K/JL, ωr2 = {(1 + a) K/ (aJM)} [(1 + (DmDT + DLDT + DmDL) / {(1 + a)JmK}], a = JL/Jm, D0 = [( Dm + DL) / {(1 + a)Jm}] · (1/[1 + (DmDT + DLDT +DmDL) / {(1 + a) JmK}], wobei s der Laplace- Operator ist).
  3. Steuervorrichtung zur Reduzierung mechanischer Schwingung, die aufweist:
    • eine Erfassungsvorrichtung für mechanische Schwingungen nach Anspruch 1 und
    • außerdem aufweist
    • einen Phaseneinsteller (107);
    • einen Amplitudeneinsteller (108), wobei
    • das Ausgangssignal des Hochpassfilters (105) zu dem Phaseneinsteller (107) zugeführt wird, und ein Ausgangssignal des Phaseneinstellers (107) zu dem Amplitudeneinsteller (108) zugeführt wird, so dass ein Signal, erhalten durch Addieren eines Ausgangssignales (w) des Amplitudeneinstellers (108) zu einem Drehmomentbefehl (τr), gegeben zu der Motorsteuervorrichtung, als ein neuer Drehmomentbefehl verwendet wird.
  4. Steuervorrichtung für die Reduzierung mechanischer Schwingungen, die aufweist eine Erfassungsvorrichtung für mechanische Schwingungen nach Anspruch 1 und die außerdem aufweist:
    • einen Phaseneinsteller (107);
    • einen Amplitudeneinsteller (108); und
    • eine Einrichtung zum Zuführen des Differenzsignales zu der Proportional- Betriebseinrichtung (104);
    • einen Geschwindigkeits- Steuerkompensator (109), dem ein Differenzsignal zwischen dem Geschwindigkeitsbefehl und dem Geschwindigkeits- Rückkopplungssignal zugeführt wird, und der eine Drehmomentinstruktion ausgibt,
    wobei ein Ausgangssignal des Hochpassfilters (105) zu dem Phaseneinsteller (107) zugeführt wird, und ein Ausgangssignal des Phaseneinstellers (107) zu dem Amplitudeneinsteller (108) zugeführt wird, so dass ein Signal, erhalten durch Addieren eines Ausgangssignales (w) des Amplitudeneinstellers (108) zu einem Geschwindigkeitsbefehl (Vr), gegeben zu der Motorsteuervorrichtung, als ein neuer Geschwindigkeitsbefehl verwendet wird.
  5. Steuervorrichtung für die Reduzierung mechanischer Schwingungen nach Anspruch 4, wobei der Motor mit einer Last durch eine äquivalente, lineare Feder verbunden ist, K eine Konstante der äquivalenten, linearen Feder ist, Jm eine Trägheitsmoment des Motors ist, JL ein Trägheitsmoment der Last ist, Dm ein viskoser Reibungskoeffizient des Motors ist, DL ein viskoser Reibungskoeffizient der Last ist und DT ein äquivalenter viskoser Reibungskoeffizient der äquivalenten, linearen Feder ist (wo γ = ωa2 /(Jmωr2), ωa2 = K/JL, ωr2 = {(1 + a) K/ (aJM)} [(1 + (DmDT + DLDT + DmDL) / {(1 + a)JmK}], a = JL/Jm, D0 = [( Dm + DL) / {(1 + a)Jm}] · (1/[1 + (DmDT + DLDT +DmDL) / {(1 + a) JmK}], wobei s der Laplace-Operator ist).
  6. Motorsteuerungsvorrichtung mit einer Erfassungsvorrichtung für mechanische Schwingungen oder einer Reduzierungsvorrichtung für mechanische Schwingungen nach zumindest einem der Ansprüche 1 bis 5, wobei die Motorsteuerungsvorrichtung außerdem eine Einrichtung aufweist, um ein Drehmoment- Störungssignal (d) durch Erfassen oder Abschätzen zu erhalten, und eine Einrichtung, um das Drehmoment- Störungssignal (d) zu dem Drehmomentsignal (τ) zu addieren, um dadurch ein resultierendes Signal als ein neues Drehmomentsignal zu verwenden.
Anspruch[en]
  1. A mechanical-vibration detecting apparatus (102) applied to motor control apparatus for controlling the torque of a motor, characterized in that said detecting apparatus comprises an equivalent rigid body model (103) of the motor having transfer characteristics of G1 = γ / (s + Do), where γ is the reciprocal of the moment of inertia of an equivalent rigid body system, and Do/γ is the viscous friction coefficient of the equivalent rigid body system; a proportional operation means (104);

    a high-pass filter (105); and

    means for adding a torque signal (τ, τr) of said motor control apparatus and an output of said proportional operation means (104) to supply a resulting additional signal to said equivalent rigid body model (103), and for subtracting an output of said equivalent rigid body model (103) from a velocity signal (Vm) of said motor control apparatus to supply a resulting difference signal to said high-pass filter (105) so that an output of said high-pass filter (105) is used as a mechanical vibration signal; and

    means for supplying the difference signal to said proportional operation means (104).
  2. A mechanical-vibration detecting apparatus according to claim 1, wherein the motor is connected to a load by an equivalent linear spring, K is a constant of the equivalent linear spring, Jm is a moment of inertia of the motor, JL is a moment of inertia of the load, Dm is a viscous friction coefficient of the motor, DL is a viscous friction coefficient of the load, and DT is an equivalent viscous friction coefficient of the equivalent linear spring (where γ = ωa2/(Jmωr2), ωa2 = K/JL, ωr2 = {(1 + a) K/ (αJM)}[(1 + (DmDT + DLDT + DmDL) / {(1 + α)JmK}], α = JL/Jm, D0 = [( Dm + DL) / {(1 + α)Jm}] • (1/[1 + (DmDT + DLDT + DmDL) / {(1 + α)JmK}]), s is Laplace operator).
  3. A mechanical-vibration reduction control apparatus comprising a mechanical-vibration detecting apparatus according to claim 1 and further comprising:
    • a phase adjuster (107);
    • an amplitude adjuster (108), wherein
    • the output of said high-pass filter (105) is supplied to said phase adjuster (107), and an output of said phase adjuster (107) is supplied to said amplitude adjuster (108), so that a signal obtained by adding an output (w) of said amplitude adjuster (108) to a torque command (τr) given to said motor control apparatus is used as a new torque command.
  4. A mechanical-vibration reduction control apparatus comprising a mechanical-vibration detecting apparatus according to claim 1 and further comprising:
    • a phase adjuster (107);
    • an amplitude adjuster (108); and
    • means for supplying the difference signal to said proportional operation means (104);
    • a velocity control compensator (109) which is supplied with a difference signal between the velocity command and a velocity feedback signal, and
    • which outputs a torque instruction,
    wherein an output of said high-pass filter (105) is supplied to said phase adjuster (107), and an output of said phase adjuster (107) is supplied to said amplitude adjuster (108), so that a signal obtained by adding an output (w) of said amplitude adjuster (108) to a velocity command (Vr) given to said motor control apparatus is used as a new velocity command.
  5. A mechanical-vibration reduction control apparatus according to claim 4, wherein the motor is connected to a load by an equivalent linear spring, K is a constant of the equivalent linear spring, Jm is a moment of inertia of the motor, JL is a moment of inertia of the load, Dm is a viscous friction coefficient of the motor, DL is a viscous friction coefficient of the load, and DT is an equivalent viscous friction coefficient of the equivalent linear spring (where γ = ωa2/(Jmωr2), ωa2 = K /JL, ωr2 = {(1 + a) K/ (αJm)} [(1 + (DmDT + DLDT + DmDL) / {(1 + α)JmK}], α = JL/Jm, D0 = [(Dm + DL) / {(1 + α) Jm}] • (1/[1 + (DmDT + DLDT + DmDL) / {(1 + α)JmK}]), s is Laplace operator).
  6. A motor control apparatus comprising a mechanical-vibration detecting apparatus or a mechanical-vibration reduction apparatus according to at least one of the claims 1 to 5, wherein said motor control apparatus further comprises means for obtaining a torque disturbance signal (d) by detection or estimation, and means for adding said torque disturbance signal (d) to said torque signal (τ) to thereby use a resulting signal as a new torque signal.
Anspruch[fr]
  1. Appareil de détection de vibrations mécaniques (102) appliqué à un appareil de commande de moteur afin de commander le couple d'un moteur, caractérisé en ce que ledit appareil de détection comprend un modèle de corps rigide équivalent (103) du moteur ayant une caractéristique de transfert G1 = γ / (s + Do), où γ est l'inverse du moment d'inertie d'un système de corps rigide équivalent, et Do / γ est le coefficient de frottement visqueux d'un système de corps rigide équivalent; un élément à action proportionnelle (104);

    un filtre passe-haut (105); et

    des moyens pour additionner un signal de couple (τ,τr) dudit appareil de commande de moteur et un signal de sortie dudit élément à action proportionnelle (104) pour délivrer un signal d'addition résultant audit modèle de corps rigide équivalent (103), et pour retrancher un signal de sortie dudit modèle de corps rigide équivalent (103) d'un signal de vitesse (Vm) dudit appareil de commande de moteur pour délivrer un signal de différence résultant audit filtre passe-haut (105) de sorte qu'un signal de sortie dudit filtre passe-haut (105) soit utilisé en tant que signal de vibration mécanique; et des moyens pour délivrer le signal de différence audit élément à action proportionnelle (104).
  2. Appareil de détection de vibrations mécaniques selon la revendication 1, dans lequel le moteur est relié à une charge par un ressort linéaire équivalent, K est une constante du ressort linéaire équivalent, Jm est un moment d'inertie du moteur, JL est un moment d'inertie de la charge, Dm est un coefficient de frottement visqueux du moteur, DL est un coefficient de frottement visqueux de la charge, et DT est un coefficient de frottement visqueux équivalent du ressort linéaire équivalent (où γ = ωa2/(Jmωr2), ωa2 = K/JL, ωr2 = {(1+a)K/(αJM)} [(1 + (DmDT + DLDT + DmDL)/ { (1 + α)JmK}], α = JL/Jm, D0 = [(Dm + DL)/{(1+α)Jm}]• (1/[1+DmDT+DLDT+DmDL)/{(1+α)JmK}], s est un opérateur de Laplace).
  3. Appareil de commande de réduction de vibrations mécaniques comprenant un appareil de détection de vibrations mécaniques selon la revendication 1 et comprenant en outre:
    • un ajusteur de phase (107);
    • un ajusteur d'amplitude (108), dans lequel
    • le signal de sortie dudit filtre passe-haut (105) est délivré audit ajusteur de phase (107), et un signal de sortie dudit ajusteur de phase (107) est délivré audit ajusteur d'amplitude (108), de sorte qu'un signal obtenu en ajoutant un signal de sortie (w) dudit ajusteur d'amplitude (108) à une commande de couple (τr) appliquée audit appareil de commande est utilisé en tant que nouvelle commande de couple.
  4. Appareil de commande de réduction de vibrations mécaniques comprenant un appareil de détection de vibrations mécaniques selon la revendication 1 et comprenant en outre:
    • un ajusteur de phase (107);
    • un ajusteur d'amplitude (108); et
    • des moyens pour délivrer le signal de différence audit élément à action proportionnelle (104);
    • un compensateur de commande de vitesse (109) qui est alimenté par un signal de différence entre la commande de vitesse et un signal de rétroaction de vitesse,, et qui délivre une instruction de couple,
    dans lequel un signal de sortie dudit filtre passe-haut (105) est délivré audit ajusteur de phase (107), et un signal de sortie dudit ajusteur de phase (107) est délivré audit ajusteur d'amplitude (108), de sorte qu'un signal obtenu en additionnant un signal de sortie (w) dudit ajusteur d'amplitude (108) à une commande de vitesse (Vr) délivrée audit appareil de commande de moteur est utilisé en tant que nouvelle commande de vitesse.
  5. Appareil de commande de réduction de vibrations mécaniques selon la revendication 4, dans lequel le moteur est relié à une charge par un ressort linéaire équivalent, K est une constante du ressort linéaire équivalent, Jm est un moment d'inertie du moteur, JL est un moment d'inertie de la charge, Dm est un coefficient de frottement visqueux du moteur, DL est un coefficient de frottement visqueux de la charge, et DT est un coefficient de frottement visqueux équivalent du ressort linéaire équivalent (où γ = ωa2/(Jmωr2), ωa2 = K/JL, ωr2 = {(1+a)K/(αJm}[(1+(DùDT+DLDT+DmDL)/{(1+α)JmK}], α = JL/Jm, D0 = [(Dm + DL)/{1 + α)Jm}] · (1/1+(DmDT+DLDT+DmDL=/{(1+α)JmK}]), s est un opérateur de Laplace.
  6. Appareil de commande de moteur comprenant un appareil de détection de vibrations mécaniques ou un appareil de réduction de vibrations mécaniques selon au moins une des revendications 1 à 5, dans lequel ledit appareil de commande de moteur comprend en outre des moyens en vue d'obtenir un signal de perturbation de couple (d) par détection ou estimation, et des moyens afin d'additionner ledit signal de perturbation de couple (d) audit signal de couple (τ) pour ainsi utiliser un signal résultant en tant que nouveau signal de couple.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com