PatentDe  


Dokumentenidentifikation DE102004006988A1 30.06.2005
Titel Überspannungsschutzeinrichtung auf Funkenstreckenbasis, umfassend mindestens zwei in einem druckdichten Gehäuse befindliche Hauptelektroden
Anmelder Dehn + Söhne GmbH + Co. KG, 92318 Neumarkt, DE
Erfinder Zahlmann, Peter, Dr.-Ing., 92318 Neumarkt, DE;
Ehrhardt, Arnd, Dr.-Ing., 92318 Neumarkt, DE
Vertreter Meissner, Bolte & Partner GbR, 80538 München
DE-Anmeldedatum 12.02.2004
DE-Aktenzeichen 102004006988
Offenlegungstag 30.06.2005
Veröffentlichungstag im Patentblatt 30.06.2005
IPC-Hauptklasse H01T 4/02
IPC-Nebenklasse H01T 2/02   H01T 15/00   H02H 9/06   
Zusammenfassung Die Erfindung betrifft eine Überspannungsschutzeinrichtung auf Funkenstreckenbasis, insbesondere für Niederspannungs-Anwendungen, umfassend mindestens zwei in einem druckdichten Gehäuse befindliche Hauptelektroden sowie mindestens eine Zündhilfselektrode, wobei im Gehäusevolumen eine Funktionsbaugruppe zum Reduzieren der Ansprechspannung der Funkenstrecke untergebracht ist, welche mit einer der Hauptelektroden und der Zündhilfselektrode in Verbindung steht. Erfindungsgemäß besteht die Funktionsbaugruppe zum Reduzieren der Ansprechspannung der Funkenstrecke aus einer vollständig in das druckdichte Gehäuse integrierten, außerhalb des Lichtbogen-Brennraums befindlichen Reihenschaltung eines spannungsschaltenden Elements, einer Impedanz und einer Trennstrecke, wobei die Trennstrecke durch den Abstand der Zündhilfselektrode zur nächstliegenden Hauptelektrode gebildet ist. Beim Auftreten einer Überspannung, welche die Summe der Ansprechspannungen des Schaltelements und der Trennstrecke übersteigt, fließt ein Strom von der ersten Hauptelektrode zur zweiten Hauptelektrode, mit der Folge, dass der die Trennstrecke überbrückende Lichtbogen Ladungsträger zur sofortigen Ionisation der Trennstrecke zwischen den Hauptelektroden bereitstellt, wodurch die Spannungsfestigkeit dieser Trennstrecke verringert ist und aufgrund des mit der Stromstärke steigenden Spannungsabfalls an der Impedanz ein Überschreiten der reduzierten Spannungsfestigkeit der Trennstrecke zwischen den ...

Beschreibung[de]

Die Erfindung betrifft eine Überspannungsschutzeinrichtung auf Funkenstreckenbasis, umfassend mindestens zwei in einem druckdichten Gehäuse befindliche Hauptelektroden sowie mindestens eine Zündhilfselektrode, wobei im Gehäusevolumen eine Funktionsbaugruppe zum Reduzieren der Ansprechspannung der Funkenstrecke untergebracht ist, welche mit einer der Hauptelektroden und der Zündhilfselektrode in Verbindung steht, gemäß Oberbegriff des Patentanspruchs 1.

Der Trend bei der Entwicklung elektrischer und elektronischer Anlagen geht hin zu größerer Kompaktheit und geringeren Außenabmessungen. Gleichzeitig steigt aber die Empfindlichkeit gegenüber inneren und äußeren Überspannungen derartiger Anlagen. Darüber hinaus besteht der Wunsch und auch die Notwendigkeit nach einem möglichst störungsfreien Betrieb von elektrischen und elektronischen Einrichtungen, woraus sich neue Anforderungen an die Überspannungsschutztechnik ergeben.

So sind Überspannungsableiter mit reduzierter Ansprechspannung z.B. aus der DE 199 52 004 A1 oder der DE 198 03 636 A1 bekannt geworden. Um die Anlagen noch kompakter zu gestalten, verstärkt sich in den letzten Jahren die Tendenz, Blitzstromableiter zum Grobschutz und Überspannungsableiter zum Feinschutz ohne die früher übliche Entkopplung über Kabelstrecken bzw. durch speziell bemessene Induktivitäten direkt räumlich nebeneinander anzuordnen.

Damit das leistungsschwächere Feinschutzelement nicht zwangsweise bei einer solchen kompakten Anordnung überlastet wird, ergeben sich spezielle Anforderungen an den Blitzstromableiter bzw. das Grobschutzelement.

Zur Realisierung dieser Aufgabenstellung wurde es bekannt, separate und extern an die Blitzstromableiter auf Funkenstreckenbasis angekoppelte, zum Teil recht komplexe Zündhilfen einzusetzen. Gemäß DE 199 52 004 A1 übernehmen diese Zündhilfen unter bestimmten Bedingungen auch Funktionen oder Teilfunktionen des Feinschutzes.

Im Allgemeinen sind die Zündhilfen bei leistungsfähigen Überspannungsableitern für den Einsatz in Niederspannungsnetzen zwischen L und N bzw. auch N und PE als aktive Zündhilfen ausgeführt. Diese Zündhilfen generieren mit Hilfe eines Impulsübertragers eine hohe Zündspannung, durch welche bei einer typischen Dreielektroden-Funkenstreckenanordnung eine der Teilstrecken überschlagen wird.

Nachteilig bei einer solchen Lösung ist einerseits der zum Teil beachtliche Platzbedarf der Zündhilfe, die in der Regel aus einer Vielzahl von Bauelementen besteht, und andererseits die sich daraus ergebenden Störfaktoren.

Der Platzbedarf dieser Zündeinrichtung schränkt bei den relativ geringen Abmessungen der Überspannungsableiter die konstruktiven Möglichkeiten für das Hauptfunktionselement, nämlich die eigentliche Funkenstrecke ein. Diese Einschränkung betrifft nicht nur das allgemein zur Verfügung stehende Volumen, sondern auch die Notwendigkeit der erforderlichen zusätzlichen Kontaktierung einer dritten Elektrode.

Gegenüber einer einfachen Funkenstrecke ohne Zündhilfe ergibt sich derzeit eine Vielzahl an zusätzlichen Störquellen.

In der Funkenstrecke an sich muss nicht mehr nur die Funktion einer Trennstrecke gewährleistet werden, sondern die Funktion von zwei oder sogar drei Trennstrecken zwischen der Dreielektroden-Anordnung. Kommt es zu Schädigungen einer dieser Trennstrecken, besteht die Gefahr des Versagens des Ableiters. Hierbei kann es zu Schäden innerhalb der Funkenstrecke, aber auch der Zündhilfe selbst kommen. Dies kann insbesondere bei Überlastungen der Zündhilfe schnell zu einer Zerstörung des gesamten Ableiters und zu einer Gefährdung benachbarter Elemente führen. Selbiges ist jedoch nicht nur bei Beschädigungen innerhalb der Funkenstrecke, sondern auch bei Störungen wie Erschütterungen, Schwingungen, Abbrand, mangelhafte Installation und so weiter, Beschädigungen oder Korrosion der Kontakte der Zündeinrichtung mit den Hauptanschlüssen bzw. den Verbindern zur Funkenstrecke durchaus möglich.

Schlechte oder gealterte Kontaktstellen können außerhalb der Funkenstrecke zur Funkenbildung und letztendlich zum Außenüberschlag der Funkenstrecke führen.

Zwar gibt es durchaus Möglichkeiten, die Zündhilfen vor Überlastung zumindest teilweise zu schützen, jedoch bedeuten solche Maßnahmen, wie beispielsweise in der DE 199 14 313 A1 gezeigt, nur weiteren, kostenintensiven Aufwand und Platzbedarf.

Bei all den oben erläuterten Schwierigkeiten ist jedoch eine Zündhilfe für gewünschte tiefe Schutzpegel unabdingbar. Die allgemeine Reduktion des Abstands der Hauptelektroden, wie dies bei älteren Geräten des Standes der Technik der Fall war, ist bei modernen Ableitern nicht zielführend, da bei den üblichen geometrischen Bedingungen die erforderlichen Abstände nicht realisierbar sind bzw. diese eine deutliche Verschlechterung der erreichbaren Stoßstromwerte bedeuten.

Bei der gattungsbildenden DE 101 57 817 A1 wird eine Anordnung für eine Trennfunkenstrecke vorgestellt, bei welcher eine konventionelle aktive Zündhilfe mit einem Impulsübertrager in einem von den Elektroden kammerförmig umschlossenen Gehäuse integriert ist.

Diese Anordnung hat jedoch den Nachteil, dass eine aktive Zündhilfe notwendig ist, wodurch der Platzbedarf und die Störanfälligkeit steigen. Diese sichere Funktionsweise aktiver Zündhilfen wird z.B. unter anderem durch Veränderung der Ansprechwerte und des Isolationswerts der einzelnen Trennstrecken gestört. Da diese Erscheinungen mit der Anzahl und der Höhe der Belastungen zunehmen, kann dies zur thermischen Überlastung bzw. sogar zum Versagen der Zündhilfe führen. Die Gefahr der thermischen Überlastung erhöht sich bei der oben erwähnten Anordnung zusätzlich durch die mangelnde Kühlung bzw. auch durch die Aufheizung infolge des Leistungsumsatzes in der Funkenstrecke und damit der Zündeinrichtung bei Belastungen.

Die Ausführung der Elektroden gemäß DE 101 57 817 A1 müsste zudem relativ groß sein, damit einerseits die Zündhilfe aufgenommen werden kann und andererseits die Zündhilfe vor einer Temperatureinwirkung der thermisch stark belasteten Elektroden geschützt ist. Des weiteren besteht die Notwendigkeit des Kraftschlusses zur Herstellung reproduzierbarer Abstände der Teilfunkenstrecken zwischen den Elektroden, wodurch die Zündhilfe nicht nur thermisch, sondern auch durch mechanische Kräfte belastet wird.

Ebenfalls treten starke dynamische Belastungen zwischen den Elektroden beim Ansprechen der Funkenstrecke auf. Weitere Einschränkungen ergeben sich bei dieser Anordnung bei dem Einsatz in einer Funkenstrecke für Netzanwendungen. Im Gegensatz zur Trennfunkenstrecke müssen Netzfunkenstrecken Folgeströme im kA-Bereich beherrschen und lösen, wodurch nicht nur weitere und insbesondere länger einwirkende thermische Belastungen auftreten, sondern auch entsprechende Folgestrom löschende bzw. sogar Folgestrom begrenzende Maßnahmen realisiert werden müssen. Insbesondere hinsichtlich der Möglichkeiten zur Begrenzung des Netzfolgestroms in konventionellen Abmessungen der Überspannungsableiter für Netzanwendung, welche im Allgemeinen kleiner als Trennfunkenstrecken sind, führt eine Anordnung, wie in der DE 101 57 817 A1 vorgestellt, zu extremen Einschränkungen bei der Wahl einer geeigneten Methode zur Strombegrenzung.

In der DE 195 10 181 A1 wird eine Zündhilfe aus einer ersten Funkenstrecke, welche der Zündung eines Überschlags dient, und einer zweiten Funkenstrecke, welche der ersten parallel geschaltet ist und der Löschung des Folgestroms dient, vorgestellt. Weiterhin wird dort auf die Integration einer passiven, einfachen Zündhilfe in einer Funkenstrecke verwiesen. Bei den dargestellten Funkenstrecken dient die erste Funkenstrecke der Einstellung der Ansprechspannung und der entstehende Funke der Vorionisation der zweiten, längeren und stromtragfähigeren Funkenstrecke. Infolge der Vorionisation und des Spannungsabfalls über der mit der Funkenstrecke in Reihe geschalteten Impedanz wird die zweite Funkenstrecke gezündet. Die zweite Funkenstrecke besitzt im Gegensatz zur ersten Funkenstrecke eine hohe Stoßstrom-Tragfähigkeit und ein gutes Folgestrom-Löschvermögen.

Nachteilig ist bei dieser Lösung jedoch, dass die erste Funkenstrecke den thermischen Belastungen infolge des Lichtbogens und auch den Verunreinigungen infolge der Belastungen ausgesetzt ist. Das Einhalten von niedrigen und nahezu konstanten Ansprechspannungen wird hierdurch erschwert oder unmöglich. Bei einer räumlich getrennten Anordnung von erster und zweiter Funkenstrecke kann zwar die Einhaltung eines niedrigen Ansprechwerts gewährleistet werden, nachteilig ist jedoch, dass auf die Vorionisation der zweiten Funkenstrecke zur Herabsetzung der Ansprechspannung verzichtet werden muss. Dadurch muss der Spannungsabfall über der Impendanz bis zum Erreichen der unverminderten Ansprechspannung der zweiten Funkenstrecke erhöht werden. Sollen niedrigere Ansprechwerte der gesamten Funkenstrecke erreicht werden, wird die Wahl und die Leistungsfähigkeit der zweiten Funkenstrecke nach DE 195 10 181 C1 eingeschränkt.

Gemäß der Stapelfunkenstrecke für Mittel- und Hochspannungsanwendungen nach US 3,223,874 weisen einzelne Funkenstrecken eine Zündhilfe zur Vorionisation auf. Diese Anordnung kann zumindest teilgekapselt ausgeführt werden. Eine derartige Art der Funkenstrecken ist jedoch nur für geringe Stoßstrombelastungen 8/20 &mgr;s ausgelegt und kann den Drücken und den Krafteinwirkungen von nennenwerten Blitzstoßströmen nicht standhalten. Das bei einer solchen Anordnung teilweise vorhandene Löschvermögen für Folgeströme resultiert zum größten Teil aus der Reihenschaltung einer Vielzahl von Teilfunkenstrecken mit jeweils einer Zündhilfe. Ein solcher Aufwand ist für Niederspannungsanordnungen jedoch nicht gerechtfertigt.

Die Zündhilfe ist direkt mit den jeweiligen Hauptelektroden der Funkenstrecke verbunden. Sie besitzt keine dritte Hilfselektrode und es erfolgt keine direkte Entladung unmittelbar zwischen den Hauptelektroden. Die Art der Vorionisation beruht dort auf Teilentladungen, welche sich über beide Seite der Oberfläche eines vorhandenen Isolationsteils ausbreiten. Eine Möglichkeit zu einer Funkenentladung, wie sie üblicherweise bei modernen Niederspannungs-Ableitern genutzt wird, besteht nicht, da sich die Hilfselektroden der Zündhilfe auf entgegengesetzten Seiten des Isolators befinden. Diese Form der Zündhilfe ist bei hohen Potentialdifferenzen von mehreren kV für eine rasche Zündung ausreichend. Soll jedoch die Ansprechspannung < 1 kV betragen, ist eine derartige Ausführungsform einer Zündhilfe nicht effizient. Im Übrigen ist die gesamte Zündhilfe schutzlos der Wirkung des Lichtbogens ausgesetzt, was sowohl zu Störungen bei deren Funktion als auch zur gänzlichen Zerstörung führen kann.

Es sind Ausführungen mit Hilfsfunkenstrecken bekannt geworden, bei denen eine Funkenentladung möglich ist. Bei derartigen Anordnungen wird die Entladung von der Hilfsfunkenstrecke, bei welcher der Stromfluß durch verschiedene Maßnahmen begrenzt wird, auf die Hauptelektroden übergeben. Bei derartigen Lösungen müsste unabhängig von der Verzugszeit bis zum Zünden der Hauptfunkenstrecke jedoch bereits die Hilfsfunkenstrecke mit einer geeigneten Zündhilfe ausgestattet sein, um selbst eine Ansprechspannung von z.B. < 1 kV zuverlässig zu halten.

Die WO 03/021735 A1 zeigt eine vereinfachte Zündhilfe für Überspannungsableiter, welche sich zumindest partiell im Inneren der Funkenstrecke befinden kann. Diese Zündhilfe beruht auf einer Reihenschaltung eines Spannungsschaltelements und eines sogenannten Zündelements. Die Ansprechspannung des Ableiters wird hierbei vorteilhafterweise durch das spannungsschaltende Element bestimmt. Die Hauptfunkenstrecke wird dadurch gezündet, dass nach dem Zünden des spannungsschaltenden Elements ein Strom über das Zündelement fließt, wodurch über der Hauptfunkenstrecke eine Spannung aufgebaut wird. Infolge eines schlechten elektrischen Kontaktes zwischen dem Zündelement und einer Hauptelektrode soll es dann zur Funkenbildung kommen. Der Funke wandert entlang des Zündelements und verlängert sich, bis die Hauptfunkenstrecke überschlägt. Diese Lösung besitzt funktionsbedingt wesentliche Nachteile. Das entscheidende Bauelement für eine sichere Funktionsweise ist das sogenannte Zündelement. Dieses befindet sich entsprechend der Funktionsweise unmittelbar im Brennraum des Lichtbogens. Es wird somit nicht nur bei der Zündung einer elektrischen Belastung ausgesetzt, sondern während des gesamten Ableitvorgangs. Ebenso erfolgt eine Belastung bei möglichen Folgeströmen. Dies führt bei allen bekannten Materialien zu beträchtlichen Abschmelzungen. Hiervon sind insbesondere Metalle, aber auch Polymere betroffen. Keramiken neigen aufgrund der starken dynamischen Belastungen schnell zur Bruchbildung bzw. verändern infolgende metallischer oder anderer leitender Ablagerungen ihren Oberflächen- oder Gesamtwiderstand. Hierdurch wird jedoch in starkem Maße der Beginn der Funkenbildung, die elektrische Belastung des Zündelements und der Beginn, aber auch die Geschwindigkeit der Lichtbogenwanderung entlang des Zündelements bestimmt.

Zusätzlich wird das Zündelement bei dieser Lösung während der gesamten Lichtbogendauer, bestehend aus Impuls- und Folgestrom, infolge der direkt parallelen Anordnung zu den Hauptelektroden und somit zur gesamten Lichtbogenspannung mit einem Stromfluss belastet, wodurch der elektrische und thermische Stress des Zündelements und u.U. auch des spannungsschaltenden Elements groß ist. Eine weitere Voraussetzung für die Grundfunktion gemäß WO 03/021735 A1 ist die notwendige Funkenbildung zwischen in elektrisch leitendem Kontakt stehenden Teilen, nämlich der dortigen Elektrode und dem Zündelement. Es dürfte einleuchtend sein, dass bei der dort beschriebenen Ausführungsform die Kontaktstelle von Belastung zu Belastung selbst bei einem Federkontakt sich stets aufgrund von Schmelzerscheinungen bzw. von nicht vermeidbaren Verschmutzungen verändert. Ein reproduzierbares Funken an einer solchen Kontaktstelle ist somit nur sehr schwer einstellbar. Die vorerwähnten Einschränkungen führen insgesamt zu einer sehr komplizierten Geometrie und Materialauswahl. Des weiteren können die dynamischen und thermischen Belastungen durch den Lichtbogen und den Folgestrom recht schnell zur Funktionsstörung bzw. zum Defekt führen.

Die eingesetzte Feder zur Kontaktherstellung und Nachführung des Zündelements kann eventuell bei Abbrand bzw. Abbruch der Spitze des Zündelements dieses nachführen. Jedoch kann die Feder weder einen Komplettbruch des Zündelements nach Veränderungen der Kontaktstelle infolge der Bildung von Schmelze an der Elektrode bzw. an dem Zündelement oder die Ablagerungen von Verunreinigungen im Kontaktbereich vermeiden. Selbstverständlich muss auch die Feder vor Abbrandprodukten und den thermischen und dynamischen Belastungen durch den Lichtbogen geschützt werden.

Bei einer geringen oder auch nur zeitlich verzögerten Funkenbildung erhöht sich jedoch die Zündverzugszeit der Hauptfunkenstrecke. Einerseits kann sich dadurch die elektrische Belastung des spannungsschaltenden Elements und auch des Zündelements deutlich erhöhen, andererseits steigt die Spannung über dem Zündelement und somit über der gesamten Funkenstrecke stark an. Dies gefährdet auch die zu schützenden Elemente und die gewünschten niedrigen Restspannungswerte des Blitzstromableiters.

Ein weiterer Nachteil der zitierten Lösung besteht darin, dass der Abstand der Hauptelektroden unmittelbar mit der Länge des Zündelements verbunden ist. Insbesondere für Netzfunkenstrecken ist jedoch häufig ein relativ großer Hauptelektroden-Abstand vorteilhaft. Mit zunehmendem Abstand der Hauptelektroden steigt jedoch auch die Ansprechspannung zwischen den Elektroden. Das heißt, bei höheren Abständen muss eine stärkere Vorionisation zwischen den Hauptelektroden erfolgen, damit es zum Überschlag bei den angestrebten niedrigen Spannungen kommen kann. Ebenso verlängert sich die Strecke, an welcher der Funke von der schlechten Kontaktstelle entlang wandern muss, bis er die andere Hauptelektrode erreicht. Dies schränkt zudem auch, wie bereits erwähnt, die Wahl der üblichen Mittel zur Folgestromlöschung bzw. -begrenzung ein.

Die Funkenstreckenanordnung nach DE 199 52 004 A1 kann sowohl mit einer aktiven als auch mit einer stark vereinfachten passiven Zündhilfe betrieben werden. Diese Zündhilfen befinden sich alle außerhalb der Funkenstrecke.

Im übrigen bestehen die Zündhilfen aus einer Vielzahl von Bauelementen, welche die Aufgabe des Feinschutzes übernehmen sollen. Dies bedingt jedoch verhältnismäßig große und leistungsfähige Bauelemente, wodurch eine Integration in die Funkenstrecke erschwert wird. Die Aufgabe des Feinschutzes bedingt jedoch auch einen verhältnismäßig hohen Leistungsumsatz und eine zusätzliche thermische Belastung.

Bei der passiven Zündhilfe, welche vorteilhafterweise nur aus wenigen Bauelementen besteht, würde sich zwar der Platzbedarf reduzieren, jedoch bleibt das Problem des Leistungsumsatzes bei der Realisierung des Feinschutzes bestehen. Nachteilig ist bei der DE 199 52 004 A1 weiterhin, dass das Ansprechverhalten der Gesamtanordnung durch die geometrische Ausführung der Funkenstrecke bestimmt wird. In diesem Falle definiert somit die Ansprechspannung der kürzeren Trennstrecke die Ansprechspannung des gesamten Ableiters. Die auf diese Weise erzielbaren Ansprechspannungen sind erfahrungsgemäß jedoch nicht alterungsstabil und stark vom Belastungszustand der Funkenstrecke abhängig.

Auch die Integration eines PTC-Elements in die Funkenstrecke ist problematisch. Derartige PTC-Elemente erwärmen sich aufgrund ihrer Funktionsweise um bis zu mehreren 100 K. Eine derartige Erwärmung stellt jedoch sehr hohe Anforderungen an die Belastbarkeit der Isolationselemente. Zusätzlich ist eine derartige Anwendung eines PTC-Elements dadurch erschwert, dass dieses, um die Funktionsweise der Funkenstrecke wieder sicherzustellen, relativ schnell nach Belastung abzukühlen ist. Eine solche Abkühlung würde jedoch durch eine Kapselung erschwert werden.

Aus dem Vorgenannten ist es daher Aufgabe der Erfindung, eine Überspannungsschutzeinrichtung auf Funkenstreckenbasis, insbesondere für Niederspannungs-Anwendungen, umfassend mindestens zwei in einem druckdichten Gehäuse befindliche Hauptelektroden sowie mit mindestens einer Zündhilfselektrode anzugeben, welche mögliche Störquellen zwischen Zündhilfe und Funkenstrecke vermeidet und die prinzipiell bei allen bekannten Verfahren zur Folgestromlöschung, Folgestrombegrenzung oder aber auch der Vermeidung von Folgeströmen bei Funkenstrecken einsetzbar ist. Die anzugebende Lösung soll also universelle Applikationen, und zwar unabhängig von der konkreten Elektrodengeometrie gestatten.

Die Lösung der Aufgabe der Erfindung erfolgt mit einer Überspannungsschutzeinrichtung auf Funkenstreckenbasis gemäß der Merkmalskombination nach Patentanspruch 1, wobei die Unteransprüche mindestens zweckmäßige Ausgestaltungen und Weiterbildungen darstellen.

Gemäß dem Grundgedanken der Erfindung wird von einer vereinfachten Zündhilfe ausgegangen, welche zumindest aus einem spannungsschaltenden Element, einer Impedanz und einer Trennstrecke besteht. Die vereinfachte Zündhilfe ist bevorzugt zwischen zwei Hauptelektroden sowie vollständig im druckfesten Gehäuse der Überspannungsschutzeinrichtung, d.h. in die Funkenstrecke selbst integriert und wird Bestandteil dieser. Tritt an einer solchen Anordnung eine Überspannung auf, die die Summe der Ansprechspannungen des Schaltelements und der Trennstrecke der Reihenschaltung übersteigt, so spricht die Zündhilfe an, wodurch ein Strom über das spannungsschaltende Element, die Impedanz und die zugehörige Trennstrecke von der ersten Hauptelektrode zur zweiten Hauptelektrode fließt. Durch den Lichtbogen, welcher diese vorerwähnte Trennstrecke überbrückt, werden sofort beim Ansprechen der Zündhilfe Ladungsträger in die Funkenstrecke eingebracht, welche eine sofortige Ionisation der Trennstrecke zwischen den beiden Hauptelektroden bewirkt, wodurch die Spannungsfestigkeit dieser Trennstrecke reduziert wird und es infolge des mit der Stromstärke ansteigenden Spannungsabfalls über der Impedanz es schließlich zum Überschreiten der nun reduzierten Spannungsfestigkeit der Trennstrecke zwischen den beiden Hauptelektroden und somit zur Zündung der Funkenstrecke kommt.

Durch die Integration in das druckfeste Gehäuse der Funkenstrecke, jedoch außerhalb des Brennraums des Lichtbogens, werden alle externen Anschlussprobleme der Zündeinrichtung an die Funkenstrecke beseitigt.

Die druckfeste Kapselung ist für das Beherrschen von Drücken bis zu mehreren 10 bar infolge der Belastungen der Funkenstrecke bei Blitzen und Netzfolgeströmen ausgelegt.

Bei einer möglichen Überlastung der Zündhilfe wird das Schadenspotential somit wesentlich durch die druckfeste Kapselung der Funkenstrecke eingegrenzt. Hierdurch entfallen auch zusätzliche Schutzmaßnahmen der Zündhilfe selbst, wie z.B. Sicherungen oder Ähnliches. Eine eventuell gewünschte Bewertung des Zustands des Ableiters ist ebenfalls stark erleichtert, da nur die Gesamtfunktion, meßbar an den äußeren Klemmen der Funkenstrecke, und nicht einzelne Bauelemente, Verbindungen und Komponenten überwacht werden müssen.

Erfindungsgemäß ist also die Zündhilfs-Funktionsbaugruppe zum gezielten Reduzieren der Ansprechspannung der Funkenstrecke aus einer vollständig in das druckdichte Gehäuse integrierten, außerhalb des Lichtbogen-Brennraums befindlichen Reihenschaltung eines spannungsschaltenden Elements, einer Impedanz und einer Trennstrecke gebildet, wobei die Trennstrecke durch den Abstand der Zündhilfselektrode zur nächstliegenden Hauptelektrode definiert ist.

Das spannungsschaltende Element kann beispielsweise ein Gasableiter sein. Ebenso besteht die Möglichkeit, das spannungsschaltende Element als Suppressordiode, Thyristor, Varistor und/oder als definiert abbrandfeste Luft- oder Gleitfunkenstrecke auszubilden.

Die Zündhilfselektrode kann selbst impedanzbehaftet ausgeführt sein und einen komplexen Widerstand besitzen.

Bevorzugt reicht die Zündhilfselektrode partiell in den Lichtbogen-Brennraum hinein oder befindet sich in diesem.

Die Zündhilfselektrode kann aus einem leitfähigen Kunststoff oder einem Kunststoff mit leitfähigen Zusätzen, wie z.B. leitfähigen Fasern bestehen.

Die Impedanz wiederum besteht aus einem Material mit nichtlinearem oder linearem Widerstandsverlauf.

Ebenso kann die Impedanz aber auch aus einem leitfähigen Kunststoff oder einer leitfähigen Keramik bestehen.

Auch ist eine Ausführungsform der Impedanz als diskretes Bauelement, z.B. Widerstand, Varistor oder Kapazität im Sinne der Erfindung liegend.

Die Zündhilfselektrode ist gegenüber der Hauptelektrode isoliert, wobei die Ansprechspannungen der sich zu den Hauptelektroden jeweils ergebenden Teilstrecken unterschiedlich gewählt werden.

Die Ansprechspannung e1 der ersten Hauptelektrode zur Zündhilfselektrode ist viel größer als die Ansprechspannung der weiteren Trennstrecke e2 gewählt.

Zur Reduzierung der Ansprechspannung der Trennstrecke e2 ist diese als dünne, abbrandfeste Isolierfolie, als abbrandfeste Lackbeschichtung oder sonstige dünne Isolierschicht ausgebildet.

Bei einer weiteren bevorzugten Ausführungsform weist die Überspannungsschutzeinrichtung Mittel zum Beströmen des Lichtbogens mit Hartgas auf.

Zum Erzeugen des Hartgases umgibt hartgasabgebendes Material mindestens Abschnitte des Lichtbogen-Brennraums, wobei das hartgasabgebende Material zusätzlich leitfähige Eigenschaften aufweist, um das Potential einer der Hauptelektroden bis an die Trennstrecke der Zündhilfselektrode heranzuführen.

Bei der Hartgas-Ausführungsvariante verhindert eine Druckausgleichsöffnung, dass sich über die Zeit ein unerwünschter Druckanstieg akkumuliert.

Die Druckausgleichsöffnung kann durch das Gehäuse oder durch Elektrodenmaterialien gebildet werden, welche mindestens teilweise gasdurchlässig sind. Hierfür können Abschnitte des Gehäuses aus einem porösen Polymermaterial, poröser Keramik oder entsprechend porösem Metall bestehen.

Die Überspannungsschutzeinrichtung kann bei einer weiteren Ausführungsform Mittel zur Restspannungsbegrenzung aufweisen.

Hier besteht insbesondere die Möglichkeit, das leitfähige, hartgasabgebende Material, welches elektrisch mit einer der Hauptelektroden in Verbindung steht, in einer definierten Geometrie sowie mit definierten elektrischen Eigenschaften auszuführen, so dass die zielgerichtete Beeinflussung des Verlaufs und der Höhe der Restspannung realisierbar ist.

Bevorzugt ist der Widerstand des hartgasabgebenden Materials gegenüber der Impedanz der Reihenschaltung des Funktionselements niedriger.

Das leitfähige, hartgasabgebende Material trägt während der Belastung mit Stoßstrom als auch mit Folgeströmen einen Teil des jeweils fließenden Gesamtstroms, so dass sich die Zuverlässigkeit der erfindungsgemäßen Einrichtung und deren Langzeitstabilität erhöht.

Der Stromanteil, welcher vom leitfähigen, hartgasabgebenden Material übernommen wird, ist über das Verhältnis des Widerstands dieses Materials zum Widerstandswert des Lichtbogens quasi einstellbar.

Bevorzugt ist der mittlere Wert des Widerstands des leitfähigen, hartgasabgebenden Materials größer gewählt, als der durchschnittliche, mittlere Widerstandswert des Lichtbogens ist.

Zum Schutz vor thermischen und/oder mechanischen Belastungen kann bei einer Ausgestaltung der Erfindung das spannungsschaltende Element und/oder die diskrete Impedanz in eine der Hauptelektroden integriert werden.

Hierfür kann eine der Hauptelektroden einen von außen zugänglichen Hohlraum aufweisen, wodurch auch, wenn nötig, eine Austauschbarkeit des spannungsschaltenden Elements gewährleistet ist.

Das spannungsschaltende Element ist in den Hohlraum einpolig isoliert eingesetzt, wobei der Hohlraum ein Innengewinde zur Aufnahme einer, das eingesetzte spannungsschaltende Element kontaktierenden leitfähigen Schraube aufweist.

In einer weiteren Ausführungsform der Erfindung liegt das zum Lichtbogen-Brennraum reichende Ende der Zündhilfselektrode im wesentlichen auf gleicher Höhe des in den Brennraum hineinreichenden Endes derjenigen Hauptelektrode, welche der ersten Trennstrecke zugehörig ist.

Auch kann die Zündhilfselektrode seitlich versetzt und/oder bezogen auf den Lichtbogen-Hauptbrennraum zurückgesetzt zum Schutz dieser angeordnet werden.

Über ein ergänzendes spannungsschaltendes Element, welches außerhalb der druckdichten Kapselung befindlich ist, kann eine Einstellung oder Anpassung der Ansprechspannung der Überspannungsschutzeinrichtung erfolgen.

Grundsätzlich ist die vorgestellte Überspannungsschutzeinrichtung auch als Kombination aus einer triggerbaren Teilfunkenstrecke hoher Ansprechspannung und mindestens einer nachgeordneten Teilfunkenstrecke niedriger Ansprechspannung realisierbar.

Bei dieser Ausführungsform können die Teilfunkenstrecken Mittel zur internen Potentialsteuerung aufweisen.

Die Teilfunkenstrecken sind über Distanzhalter mechanisch fixiert und verbunden.

Die Distanzhalter können aus einem leitfähigen, feldsteuernden Material bestehen.

Die Distanzhalter und die Elektroden der Teilfunkenstrecken können bei einer Ausführungsform der Erfindung eine Ummantelung besitzen, wobei die Ummantelung eine einseitig elektrisch angeschlossene Schirmung zur gezielten Potentialverzerrung umfasst oder als solche selbst ausgebildet ist.

Der Abstand der Elektroden, welche die Teilfunkenstrecke mit Zündhilfselektrode bilden, ist bevorzugt größer gewählt als der Abstand der Elektroden, die die jeweils folgenden Teilfunkenstrecken definieren.

Der Distanzhalter kann für die nicht durch die Zündhilfselektrode triggerbare Teilfunkenstrecke als ein integrales Bauteil im Sinne der Fertigungsrationalisierung und leichteren Montage ausgeführt werden.

Zur Vermeidung eines elektrischen Überschlags außerhalb des Lichtbogen-Brennraums sind zusätzliche Isolierabschnitte oder Isoliermaterialien, bevorzugt im äußeren Bereich der Elektroden der Teilfunkenstrecke vorgesehen oder dort angeordnet.

Die Distanzhalter weisen auf ihrer vom Lichtbogen-Brennraum entfernten Seite eine Isolationsbeschichtung oder Isolationsumhüllung auf, was sich als ergänzende Maßnahme zur Vermeidung unerwünschter Überschläge darstellt.

Es besteht die Möglichkeit, die erste, triggerbare Teilfunkenstrecke durch einen Gasableiter zu ersetzen, welcher die Ansprechspannung der Gesamtanordnung bestimmt, ohne dass hierdurch der Grundgedanke der Erfindung verlassen wird.

Ganz grundsätzlich kann die erfindungsgemäße Funkenstrecke als Hörnerfunkenstrecke oder aber auch als Stapelfunkenstrecke ausgeführt werden.

Die Erfindung soll nachstehend anhand von Ausführungsbeispielen sowie unter Zuhilfenahme von Figuren näher erläutert werden.

Hierbei zeigen:

1 eine Prinzip-Schnittdarstellung durch eine in einer gekapselten Funkenstrecke befindlichen Zündhilfe;

2 eine Ausführungsform ähnlich 1, jedoch mit zusätzlichem hartgasabgebenden Material, welches den Lichtbogen-Brennraum umgibt;

3 eine weitere Ausführungsform der Überspannungsschutzeinrichtung ähnlich wie in 2 dargestellt, jedoch mit variierter Heranführung des Potentials der Hauptelektrode an die Zündhilfselektorde;

4 eine Darstellung einer Überspannungsschutzeinrichtung mit einem spannungsschaltenden Element, integriert in eine der Hauptelektroden;

5 eine Ausführungsform mit spezieller höhenmäßiger Zuordnung einer der Hauptelektroden zur Zündhilfselektrode;

6 eine weitere Ausführungsform der Zuordnung von Zündhilfselektode und benachbarter Hauptelektrode;

7 eine Darstellung mit einem spannungsschaltenden Element außerhalb der druckfesten Kapselung der Funkenstrecke;

8 eine Funkenstrecke, umfassend mehrere Teilfunkenstrecken;

9 eine Darstellung ähnlich 8, jedoch mit einem gemeinsamen Distanzhalter für die nicht triggerbaren Teilfunkenstrecken und

10 eine Darstellung einer Funkenstrecke ähnlich den 8 und 9, jedoch mit zusätzlichen Maßnahmen zur Isolation zum Zweck des Vermeidens von unerwünschten äußeren Durchschlägen.

Die passive Zündhilfe 100 entsprechend 1 ist in die druckfeste Kapselung 5 der Funkenstrecke integriert, welche zwei Hauptelektroden 1 und 2 aufweist. Diese Hauptelektroden 1 und 2 sind bei einer z.B. metallischen Kapselung 5 gegenüber dieser isoliert gehalten.

Die Zündhilfe 100 besteht aus einem spannungsschaltenden Element 4, bevorzugt einem Gasableiter, wobei jedoch auch Suppressordioden, Thyristoren, Varistoren, definiert abbrandfeste Trennstrecken oder eine Kombination dieser Elemente geeignet sind. Weiterhin weist die Zündhilfe 100 eine impedanzbehaftete Zündhilfselektrode 3 auf. Es besteht auch die Möglichkeit, dass eine diskrete Impedanz 3a als separates Element vorhanden ist.

Als Impedanz 3a sind Elemente bzw. Materialien wie Kunststoffe oder Keramiken mit linearen, aber auch mit nichtlinearen Widerständen bzw. Kennlinien geeignet. Beim Einsatz einer diskreten Impedanz 3a kann diese z.B. als Widerstand, als Varistor, als Kapazität oder aber auch aus Materialien mit entsprechender Charakteristik derartiger Bauelemente ausgeführt werden.

Die Zündhilfselektrode oder Zündelektrode 3 ist gegenüber den beiden Hauptelektroden 1 und 2 isoliert. Die Ansprechspannungen der sich ergebenden Teilfunkenstrecken e1 und e2 sind jedoch unterschiedlich ausgelegt.

Die Ansprechspannung der Strecke e1, d.h. der Hauptelektrode 1 zur Zündhilfselektrode 3 ist viel größer als die Ansprechspannung der Strecke e2, gebildet durch den Abstand der Hauptelektrode 2 zur Zündhilfselektrode 3.

Die Ansprechspannung der Strecke e1 ist mindestens gleich, aber im allgemeinen höher als die Ansprechspannung des spannungsschaltenden Elements 4 der Zündhilfe 100.

Die Ansprechspannung der Strecke e2 ist hingegen höchstens gleich, aber im Allgemeinen niedriger als die Ansprechspannung des spannungsschaltenden Elements 4 der Zündhilfe 100.

Auf diese Weise ist gewährleistet, dass die Ansprechspannung des gesamten Ableiters im wesentlichen durch die Ansprechspannung des spannungsschaltenden Elements 4 bestimmt wird und damit unabhängig von den üblichen geometrischen Bedingungen der Hauptfunkenstrecke gewählt werden kann. Vorteilhafterweise sind alle für das Ansprechverhalten funktionsrelevanten Teile nicht der direkten Lichtbogeneinwirkung ausgesetzt. Einzig ein Ende der Zündhilfselektrode 3, welche bevorzugt selbst impedanzbehaftet, z.B. als leitfähigem Kunststoff ausgeführt werden kann, befindet sich partiell im Lichtbogen-Brennraum und wird isoliert gegenüber den beiden Hauptelektroden 1, 2 ausgeführt.

Wenn die Zündhilfselektrode 3 nicht aus einem impedanzbehafteten Material, sondern aus einem niederohmigen Material, z.B. Kupfer oder Ähnlichem ausgeführt ist, wird, wie bereits erwähnt, eine separate Impedanz 3a eingesetzt, die dann vollständig außerhalb der direkten Lichtbogeneinwirkung befindlich ist.

Der im Lichtbogen-Brennraum unvermeidbare Abbrand aller Teile kann die Zündhilfselektrode 3 nur partiell schädigen. Da der Lichtbogenabbrand im gesamten Brennraum der Funkenstrecke allseitig erfolgt, werden alle den Brennraum begrenzenden Teile, also auch die Zündhilfselektrode 3, mit ihren angrenzenden Isolationsteilen nach und nach abgebrannt.

Hierdurch ist sichergestellt, das die geometrischen Proportionen aller Bauteile nach jeder Belastung weitestgehend gleich bleiben.

Infolge eines ungleichmäßigen Abbrands bzw. infolge von Verunreinigungen kann es aber auch bei dieser Geometrie zur Schädigung oder zum Überbrücken der kurzen Isolationsstrecke e2 kommen. Insbesondere bei nahezu allen aktiven externen Zündhilfen würde dies quasi zum Kurzschluss des Impulsübertragers und somit zum Versagen oder zur Überlastung der Zündhilfe führen. Bei der hier vorgeschlagenen Gestaltung gemäß Ausführungsbeispiel ist dies jedoch nicht der Fall. Die entstehenden Verunreinigungen als auch die in der Regel nur partiellen Kontaktbrücken, welche durch Schmelzerscheinungen gebildet werden und aufgrund der Auslegung der Bauteile nur geringfügig sind, besitzen einen vergleichsweise hohen Widerstand und werden durch einen geringen Stromfluss beseitigt.

Die elektrischen Parameter der in die Funkenstrecke integrierten Bauelemente sind einerseits durch die geometrischen Abmessungen vorgegeben. Andererseits wird aber der Leistungsumsatz auch zugunsten einer einfachen Konstruktion der Kontaktstellen und auch der thermischen Belastung der Isolationsstrecken begrenzt. Die Leistungsfähigkeit der Zündhilfe bei der vorliegenden Ausführungsform beschränkt sich auf kleine Impulsleistungen.

Bei der der allgemeinen Funktionsbeschreibung dienenden Darstellung nach 1 ist eine prinzipielle, vereinfachte Geometrie einer möglichen Funkenstreckenanordnung gezeigt. In dieser Anordnung, die lediglich den Zündbereich betrifft, sind zur Vereinfachung noch keine Maßnahmen zur Folgestrombegrenzung enthalten.

Die Hauptelektroden 1 und 2 werden in an sich bekannter Weise aus abbrandfesten, elektrisch leitenden Materialien wie Metallen, metallischen Legierungen, Sintermetallen, Grafit, Keramiken oder Verbundkeramiken gefertigt.

Bezüglich der Zündhilfselektrode 3 ist noch anzumerken, dass diese, wie dargelegt, entweder selbst aus einem Material mit erhöhter Impedanz, z.B. Widerstandsmaterial, elektrisch leitfähigem Kunststoff, Kunststoff mit Füllmaterial besteht oder mit einer separaten Impedanz 3a in Form eines Widerstands verbunden ist.

Im Kunststoffmaterial der Zündhilfselektrode können zum Einstellen gewünschter Impedanzeigenschaften nicht nur Ruß- oder Grafitelemente oder Metall bzw. Kohlefasern enthalten sein, sondern es besteht die Möglichkeit, Mikrovaristoren oder Nanotubes einzubringen.

Die Hauptelektrode 1 ist über das spannungsschaltende Element 4, welches ein Gasentladungsableiter, ein Gasentladungsableiter mit Microgap; eine Funkenstrecke, eine Trennstrecke, eine Suppressordiode, ein Varistor oder eine Kombination aus den vorgenannten Elementen sein kann, mit der Impedanz 3a bzw. der Zündhilfselektrode 3 innerhalb der äußeren druckfesten Kapselung 5 der Funkenstrecke verbunden.

Wie dargelegt, bilden die drei Elektroden zwei Teiltrennstrecken e1 und e2, wobei e2 eine deutlich niedrigere Ansprechspannung als die Trennstrecke e1 besitzt.

Die Ansprechspannung der Teilstrecke e2 ist gleich oder kleiner als die Ansprechspannung des spannungsschaltenden Elements 4. Da die Gleichansprechspannung des gesamten Ableiters gleich oder kleiner als 1 kV sein soll, ergeben sich besondere Anforderungen an die Ausführung der Trennstrecke e2. Diese Trennstrecke e2 kann z.B. durch dünne Folien aus abbrandfesten Materialien oder durch temperaturbeständige Beschichtungen, aber auch mittels spezieller abbrandfester Lacke realisiert werden.

Nach dem Ansprechen des spannungsschaltenden Elements 4 und der Trennstrecke e2 entsteht ein Funken zwischen der Zündhilfselektrode 3 sowie der Hauptelektrode 2. Der Strom fließt von der Hauptelektrode 1 über die Impedanz 3a, die Zündhilfselektrode 3 und den Funken zur Hauptelektrode 2. Dieser Funke bringt Ladungsträger in den Innenraum der Funkenstrecke ein, wodurch die Spannungsfestigkeit der Trennstrecke e1 sehr schnell reduziert wird. Zwischen der Hauptelektrode 1 und der Zündhilfselektrode 3 gemäß 1 besteht eine Spannungsdifferenz, welche im wesentlichen von der Höhe des Stromes im Zündkreis und der Impedanz 3a bestimmt wird. Übersteigt diese Spannungsdifferenz die durch den Ladungsträgereintrag reduzierte Spannungsfestigkeit der Trennstrecke e1, so zündet diese, übernimmt den Strom und entlastet den Zündkreis. Die Teillichtbögen über den Trennstrecken e1 und e2 verbinden sich und die Funkenstrecke zündet zwischen den Hauptelektroden 1 und 2.

2 zeigt eine Funkenstrecke für Netzanwendungen, insbesondere zwischen L und N. Diese Funkenstrecke ist in der Lage, höhere Lichtbogenspannungen zu erzeugen. Diese werden im vorliegenden Fall durch das Beströmen des Lichtbogens mit Hartgas realisiert.

Zur Hartgasbeströmung wird ein hartgasabgebender Stoff 10, z.B. POM, Polytetrafluoräthylen auf Polymerbasis bzw. mineralischer Basis, z.B. CaCO3 oder BaCO3, eingesetzt.

Auch kann der Effekt genutzt werden, durch elektrisch leitfähige Zusätze, wie Metallfasern, Ruß, Kohlefasern, Mikrovaristoren, Nanotubes, Metallpartikel, Halbleiterpartikel oder auch an sich leitfähige Polymere, das Potential der Hauptelektrode 2 bis an die Trennstrecke der Zündhilfselektrode 3 heranzuführen.

Durch diese Maßnahme wird die Ansprechspannung der Trennstrecken e1 und e2 nicht verändert; jedoch die wirksame Lichtbogenlänge zwischen den Hauptelektroden 1 und 2 erhöht.

Der Zündfunke entsteht zwischen der Zündhilfselektrode 3 und dem leitfähigen hartgasabgebenden Material 10 und kann sich dann bereits oder erst nach dem Überschlag der Trennstrecke e1 sehr schnell bis zur Hauptelektrode 2 verlängern.

Hierdurch wird einerseits die Lichtbogenlänge vergrößert und andererseits der Lichtbogen durch das Hartgas gekühlt und beströmt.

Beide Maßnahmen erhöhen die Lichtbogenspannung, wodurch bekanntermaßen eine Strombegrenzung bei Netzfolgeströmen erreicht werden kann. Durch die Erzeugung von Hartgas und die Beströmung des Lichtbogens entsteht ein Druckanstieg, der durch die Druckausgleichsöffnung 11 ableitbar ist. Hierdurch wird verhindert, dass in dem druckdicht abgeschlossenen Volumen über das erzeugte Gas ein allmählicher Druckanstieg auftritt, wodurch die Berstfestigkeit der Funkenstrecke nach mehrmaligen Belastungen womöglich überschritten werden könnte.

Zum Druckausgleich können konstruktiv verhandene Kanäle kleinen Querschnitts genutzt werden. Ebenso besteht die Möglichkeit, auch poröse, für Gase bzw. für bestimmte Gasarten durchlässige Gehäusematerialien, wie z.B. poröse Polymere, Metalle oder Keramiken, alternativ zu konstruktiven Kanälen einzusetzen.

Die Ansprechspannung der Funkenstrecke ist von einer Druckerhöhung z.B. beim Einsatz von Gasentladungsableitern als spannungsschaltendes Element 4 nicht betroffen.

Unter Hinweis auf die Darstellung nach 3 kann in analoger Weise auch das Potential der Hauptelektrode 1 an die Zündhilfselektrode 3 herangeführt werden.

Wie bereits erläutert, kann die Distanz der beiden Hauptelektroden ohne Beeinflussung der Ansprechspannung durch den Einsatz entsprechend leitfähiger Materialien 10 verlängert werden. Die Größe des leitfähigen, hartgasabgebenden Teiles 10 wird bevorzugt größer gewählt als die Abmessungen der Trennstrecke e1.

Bekanntermaßen belastet auch die Restspannung eines Ableiters, welche erst nach dem Ansprechen des Ableiters und somit bei Stromfluss über den Ableiter auftritt, nachgeschaltete Geräte. Dies ist insbesondere bei der neuen Generation von Überspannungsableitern von Bedeutung, da diese, wie bereits eingangs erläutert, ohne zusätzliche Entkopplung die nachgeordneten Geräte bei einem insgesamt niedrigen Schutzpegel schützen soll.

Die Höhe der Restspannung bei der Funkenstreckenanordnung entsprechend den 1 und 2 kann in drei Bereiche klassifiziert werden. Ein erster Zeitbereich beginnt quasi nach dem Ansprechen des spannungsschaltenden Elements und dem Überschlag der Trennstrecke e2. Es fließt ein Strom über das spannungsschaltende Element 4, die Impedanz 3 und das elektrisch leitende Teil 3 (2).

Die Impedanz all dieser Elemente bestimmt den Spannungsabfall über den Ableiter. Wird die, durch die Vorionisation herabgesetzte Festigkeit der Strecke e1 überschritten, erfolgt ein Überschlag zwischen der Hauptelektrode 1 und dem Teil 10. Hierdurch erfolgt eine Entlastung des Zündkreises und es reduziert sich die Restspannung um den Spannungsabfall über den Zündkreis. Nun wird die Restspannung im wesentlichen durch das Teil 10 bestimmt. Mit fortschreitender Ionisation zwischen den beiden Hauptelektroden 1 und 2 und dem Wandern des Lichtbogens am Teil 10 entlang, erfolgt der Überschlag zwischen den Hauptelektroden 1 und 2. Zu diesem Zeitpunkt wird die Restspannung durch den Lichtbogen zwischen den Hauptelektroden bestimmt.

Selbstverständlich kann auch der erste Lichtbogenüberschlag über das Teil 10 erfolgen und anschließend erst der Überschlag der Trennstrecke e1. Dies ist erfindungsgemäß durch eine entsprechende geometrische Gestaltung vermeidbar. Auf diesem Wege ist verhindert, dass die Belastung des Zündkreises steigt.

Da der Prozess bis zum Überschlag zwischen den beiden Hauptelektroden eine gewisse Zeitdauer erfordert, steigt die Restspannung während dieses Zeitraums in Abhängigkeit der aktuell wirksamen Impedanz und des Impulsstroms an. Bei hohen Spannungssteilheiten bzw. Stoßströmen kann die Restspannung daher unter Umständen zu hohe Werte annehmen, wodurch eine Gefährdung bzw. sogar eine Überlastung der nachgeschalteten Elemente auftreten kann.

Erfindungsgemäß wird dem leitfähigen, hartgasabgebenden Teil 10 zusätzlich die Aufgabe einer effektiven Restspannungsbegrenzung übertragen. Hierfür ist gemäß Ausführungsbeispiel eine bestimmte Bemessung des Widerstands des Teiles 10 erforderlich.

Eine zielgerichtete Beeinflussung des Verlaufs und der Höhe der Restspannung kann im Übrigen durch die geometrische neben der elektrischen Gestaltung des Teiles 10 erfolgen. Wird der Widerstand des Teiles 10 im Verhältnis zur Impedanz 3a relativ hochohmig gewählt, steigt die Restspannung auch nach dem Überschlag der Trennstrecke e1 weiter an. Es würde also insbesondere bei großen Abmessungen (Länge) des Teiles 10 (größere Zündverzugszeit) die Gefahr einer zu hohen Restspannung bei großen Impulsströmen bestehen. Wird der Widerstand des Teiles 10 hingegen gegenüber der Impedanz 3a niedrig gewählt, kann der Anstieg der Restspannung nach dem Überschlag der Trennstrecke e1 reduziert werden, wodurch die Gefahr einer zu hohen Restspannung deutlich reduzierbar ist.

Der effektive wirksame Widerstand des Teiles 10 kann durch das Material, die Geometrie des Teiles und die jeweilige Kontaktfläche des Teiles 10 an der Elektrode 2 beeinflusst werden. Ebenso wirksam ist jedoch auch die Gestaltung des Übergangsbereichs zwischen dem Teil 10 und der Zündhilfselektrode 10 sowie die Positionierung der Hauptelektrode 1. Wird die Zündhilfselektrode 3 z. B. mit einem größeren Innendurchmesser als das Teil 10 ausgeführt, ist sie gegenüber diem Teil als quasi zurückgesetzt, ergibt sich eine praktisch größere Kontaktfläche am Teil 10 für den Funken zwischen der Hauptelektrode 1 und dem Teil 10 selbst, wodurch sich ein geringerer wirksamer Widerstand des Teiles 10 einstellt.

Ist die Zündhilfselektrode praktisch einstehend in den Lichtbogen-Brennraum, erhöht sich der Widerstand. Es können auch in Richtung der Achsen analog wirkende Maßnahmen der geometrischen Gestaltung durchgeführt werden.

Zu beachten ist bei der Beeinflussung der Restspannung auch, dass das Material des Teiles 10 durch die Übernahme eines bedeutenden Stromanteils von bis zu mehreren kA bei Impulsstrombelastung eine entsprechende elektrische und thermische Belastung erfährt und dafür entsprechend auszulegen ist. Eine thermische Vorbelastung des Teiles 10 während der Zündphase ist allerdings auch positiv zu sehen, da insbesondere POM-Materialien bei höherer Temperatur das Hartgas beschleunigt freisetzen. Dies führt zu einem insgesamt besseren Löschverhalten bei möglichen Folgeströmen, welche selbstverständlich auch partiell über das Material des Teiles 10 fließen und dieses elektrisch und thermisch belasten.

Die Höhe des Widerstands des Teiles 10 z.B. als Hohlzylinder mit einem Außendurchmesser von 18 mm, einem Innendurchmesser von 4 mm bei einer Höhe von 5 mm kann praktisch zwischen mehreren hundert k&OHgr; und Werten bis ca. 1 &OHgr; variiert werden, ohne dass sich negative Auswirkungen hinsichtlich des Löschvermögens der Funkenstrecke und der Materialauswahl ergeben. Die maximale Begrenzung der Restspannung ergibt sich, wie erläutert, bei niedrigsten Widerstandswerten.

Ein beliebiges Reduzieren ist jedoch nicht möglich, da ab bestimmten Werten sich die Gesamteigenschaften der Funkenstrecke nicht vorteilhaft verändern. Prinzipiell können drei Dimensionierungsbereiche für den mittleren Wert des Widerstands des leitfähigen, gasabgebenden Teiles 10 festgehalten werden:

ZTeil 10 > Mittelwert des Widerstands des Lichtbogens bei Impuls- und Folgeströmen

Mittelwert des Widerstands des Lichtbogens bei Impulströmen < ZTeil 10 <

Mittelwert des Widerstands des Folgestrom-Lichtbogens

ZTeil 10 < Mittelwert des Widerstands des Lichtbogens bei Impuls- und Folgeströmen.

Der Widerstandswert des Teiles 10 einer Funkenstrecke gemäß den 2 oder 3 erlangt jedoch nicht nur bei der Restspannung eine besondere Bedeutung, sondern auch durch seine Wirkung bei der Folgestromlöschung.

Das Teil 10 befindet sich bei den beschriebenen Anordnungen grundsätzlich parallel zum Lichtbogen oder zumindest zu Abschnitten des Lichtbogens. Dies gilt für alle Belastungen, bei denen die Funkenstrecke zwischen den Hauptelektrode 1 und 2 gezündet wird. Das Teil 10 übernimmt sowohl während der Belastung mit Stoßströmen als auch bei der Belastung mit Folgeströmen immer einen Anteil des Gesamtstroms. Die Höhe dieses Anteils ist abhängig von der Höhe des Widerstandswerts des Teiles 10 und des Quasi-Widerstands des Lichtbogens.

Bekanntermaßen ist die Strom-Spannungs-Kennlinie eines Lichtbogens nicht linear, sondern von zahlreichen Faktoren, u.a. der Zusammensetzung des Gases, Druck, Temperatur und so weiter abhängig. Diese Größen werden in einer realen Funkenstrecke u.a. durch die Geometrie, die eingesetzten Materialien und die elektrische Belastung bestimmt. Dadurch, dass alle diese Größen selbst bei feststehender Funkenstrecken-Geometrie infolge von Alterungen stark variieren, lässt sich die exakte Lichtbogen-Kennlinie nur ungenügend voraussagen. Betrachtet man den Folgestrom-Lichtbogen bei Wechselspannung, ist jedoch ebenso bekannt, dass der Widerstand des Lichtbogens zum Zeitpunkt der Zündung und zum Zeitpunkt des Verlöschens zum Teil deutlich erhöht ist. In diesem Zeitbereich übernimmt somit der parallele Widerstand des Teiles 10 einen entsprechend höheren Stromanteil bzw. sogar den Gesamtstrom bei niedrigen Werten < 10 &OHgr;. Dem Lichtbogen werden hierdurch selbstverständlich Ladungsträger entzogen, wodurch die Ionisation stark zurückgeht. Dies führt zu einem vorzeitigen Verlöschen des Lichtbogens. Teil 10 führt hier den Folgestrom bis zum Stromnulldurchgang.

Es kann der niedrige Widerstandswert des Teiles 10 auch zur Vermeidung eines Netzfolgestrom-Lichtbogens dienen. Die Netzspannung ist im Verhältnis zur treibenden Spannung des Impulstroms vergleichsweise niedrig und zudem von der Phasenlage abhängig. Unter anderem führt dies in der Praxis dazu, dass der Impulsstrom-Lichtbogen häufig nicht unmittelbar in den Netzfolgestrom-Lichtbogen übergeht, sondern dieser erst infolge der reduzierten Spannungsfestigkeit der Schaltstrecke infolge der Impulsbelastung zünden kann. Der Parallelwiderstand des Teiles 10 reduziert jedoch aufgrund seiner elektrischen Leitfähigkeit quasi die Spannungsbelastung der Schaltstrecke, wodurch die Zündung des Netzfolgestrom-Lichtbogens verhinderbar ist. In einem solchen Fall kann der Netzfolgestrom zum einen komplett verhindert werden oder es fließt zum anderen nur ein begrenzter Folgestrom über das Teil 10 bis zum Stromnulldurchgang. Bei dieser Wirkungsweise wird die Lösch- und die Zündspitze des Lichtbogens vermieden. Diese Wirkung ist ein positiver Nebeneffekt, wobei im Übrigen noch keine Gefahr einer Schädigung des Teiles 10 unabhängig vom gewählten leitfähigen Material gegeben ist.

Entspricht der Widerstand des Teiles 10 jedoch in etwa dem Widerstand des Folgestrom-Lichtbogens, ist mit einer starken Strombelastung des Teiles 10 über die gesamte Lichtbogenphase zu rechnen. Es werden daher nur solche Materialien verwendet, die durch eine anhaltende Strom- und Temperatureinwirkung nicht geschädigt werden können. Bei Funkenstrecken, bei denen eine sehr effektive Folgestrombegrenzung erreicht werden soll, d.h. bei denen die Höhe der Lichtbogenspannung, die die Netzspannung nach spätestens einer Millisekunde erreicht, besitzt der Lichtbogenwiderstand bei Folgestrom einen Wert im wesentlichen zwischen 0,5 und 1 &OHgr;. Wird dieser Wert vom Teil 10 unterschritten, führt dies einerseits zu einer starken Belastung des Teiles 10, jedoch kann andererseits der Lichtbogen schneller gelöscht werden oder es ist eine Zündung verhinderbar.

Bei der Wahl eines sehr niedrigen Widerstandswerts des Teiles 10 ist zu berücksichtigen, dass die Folgestrombegrenzung sinkt, und dass sowohl die Trennstrecke e1 und auch das spannungsschaltende Element 4 die auftretenden Folgeströme und auch den Abbrand mehrfach beherrschen müssen. Eine Absenkung des Widerstands des Teiles 10 bei Funkenstrecken gemäß z.B. 2 unter den im Allgemeinen deutlich geringeren Widerstand des Lichtbogens (ca. < 1/10) bei Impulsströmen, behindert eine gewünschte starke Folgestrombegrenzung unverhältnismäßig stark. Die starke Differenz zwischen dem Widerstand des Lichtbogens bei Impulsströmen und bei Folgeströmen ergibt sich bei Anordnungen entsprechend gemäß 2 u.a. aus der verzögerten Abgabe von Hartgas aus dem hierfür eingesetzten Teil 10.

Eine sichere Arbeitsweise und eine kaum eingeschränkte Materialauswahl für das Teil 10 ist insbesondere dann gegeben, wenn der mittlere Widerstand des Teiles 10 grundsätzlich höher als der mittlere Widerstand des Lichtbogens ist. Für spezielle Funkenstreckenanordnungen können jedoch auch Auslegungen sinnvoll sein, bei denen durch Absenkung des Mittelwerts des Widerstands des Teiles 10 unter den Mittelwert des Widerstands des Folgestrom-Lichtbogens ein Lichtbogen bei Folgestrom weitestgehend vermieden werden soll. Eine derartige Anordnung bedarf jedoch aufgrund der hohen elektrischen und thermischen Belastungen einer besonderer Materialauswahl und Auslegung des Teiles 10. Denkbar sind hier leitfähige Keramiken, Verbundmaterialien, Varistormaterial oder die Verwendung von PTC-Material.

Die 4 bis 7 zeigen weitere Ausgestaltungsvarianten der integrierten Zündhilfe in Kombination mit einer Funkenstrecke mit Folgestromlöschung nach dem Hartgasprinzip.

Gemäß 4 wird das spannungsschaltende Element 4 zum Schutz vor insbesondere thermischen und mechanischen Belastungen direkt in eine Ausnehmung der Hauptelektrode 1 integriert. Diese Ausnehmung kann z.B. in Form einer Bohrung in der Stromzuführung der Hauptelektrode ausgeführt sein. Diese Bohrung kann ein Innengewinde aufweisen. Mit Eindrehen einer leitfähigen Schraube kann dann das im Hohlraum befindliche spannungsschaltende Element 4 sicher mechanisch befestigt und kontaktiert werden.

Obwohl zeichnerisch nicht dargestellt, besteht auch die Möglichkeit, eine separate Impedanz 3a in eine entsprechende Ausnehmung in der Hauptelektrode 1 aufzunehmen, so dass auch dieses Element besser vor statischen und dynamischen mechanischen Belastungen bei der Fertigung und während des Betriebs geschützt ist.

Es sei noch darauf hingewiesen, dass eine Seite des spannungsschaltenden Elements 4 gegenüber der Hauptelektrode 1 isoliert wird und ein isolierter leitfähiger Anschluss- bzw. eine solche Verbindung zur Zündhilfselektrode 3 besteht.

Gemäß 5 wird die Zündhilfselektrode 3 quasi auf gleicher Höhe mit dem zum Lichtbogen-Brennraum reichenden Ende der Hauptelektrode 1 in den Lichtbogen-Brennraum eingebracht.

Dies bewirkt nach der Zündung der Hauptfunkenstrecke sehr schnell das Verlöschen des Stromes im Zündkreis, da dieser praktisch nicht mehr einer Potentialdifferenz ausgesetzt wird. Die Zündhilfselektrode 3 wird somit vor einem direkten Lichtbogen-Fußabbrand geschützt.

6 zeigt eine Darstellung, bei der die Zündhilfselektrode 3 seitlich versetzt vom Lichtbogen-Brennraum angeordnet ist, wodurch sich ebenfalls eine besondere geschützte Ausführungsform der Elektrode 3 einstellt.

Nach der Darstellung gemäß 7 besteht die Möglichkeit, ein, auch ergänzendes, spannungsschaltendes Element 4 außerhalb der druckfesten Kapselung 5 der Funkenstrecke anzuordnen.

Dies erlaubt es, die Ansprechspannung des Ableiters unabhängig von der Funkenstrecke auch noch nach dem Einbau in die Anwendungsumgebung frei zu wählen oder an das Anwendungsumfeld und die Einsatzbedingungen anzupassen.

Grundsätzlich kann die erläuterte und im Ausführungsbeispiel beschriebene Zündhilfe auch bei anderen Löschprinzipien bzw. Elektrodenanordungen angewendet werden. Bekannte Folgestrom-Löschverfahren für Niederspannungs-Ableiter neben den erläuterten Varianten ist z.B. die Nutzung von hörnerförmigen Elektroden zur Lichtbogenverlängerung, häufig in Kombination mit Löschblechanordnungen, bzw. auch die Erzeugung von hohen Drücken zur Erhöhung der Lichtbogen-Feldstärke. Ebenso ist eine Reihenschaltung von mehreren Funkenstrecken zur Vervielfachung der Elektroden-Fallspannung denkbar.

Der Einsatz für Anordnungen mit hörnerförmigen Elektroden bedarf keiner näheren Erläuterung, da sowohl eine prinzipielle Lösung entsprechend 1, aber auch Anordnungen mit einem durch elektrisch leitfähige Stoffe verlängerten Elektrodenabstand, z.B. entsprechend 2, in einer symmetrischen oder auch unsymmetrischen Anordnung in bekannter Weise mit hörnerartigen Funkenstrecken versehen werden können. Die sich ausbildenden Folgestrom-Lichtbögen können bekanntermaßen nach der Verlängerung an den Hörnern den unterschiedlichsten Löschsystemen zugeführt werden.

Die Realisierung einer effektiven Folgestrombegrenzung ist jedoch auch durch einen starken Druckaufbau im Inneren der Funkenstrecke möglich. Hier sei beispielsweise auf die DE 196 04 947 C1 verwiesen. Dies wird zwar auch bei der Erzeugung von Hartgas mit realisiert, kann jedoch auch als Einzelmaßnahme Anwendung finden. Selbiges ist z.B. bei Funkenstrecken von Vorteil, bei denen der Aufwand, der hinsichtlich der Strömung und der Kühlung des frei werdenden Gases notwendig ist, begrenzt werden soll, bzw. auch bei Funkenstrecken, bei denen eine möglichst geringe Alterung von Interesse ist.

Anordnungen entsprechend der DE 196 04 947 C1 sind grundsätzlich mit einer erfindungsgemäßen Zündhilfe realisierbar. Hartgasabgebende Stoffe können teilweise bzw. vollständig durch elektrisch leitfähige Stoffe mit linearer, aber auch mit nichtlinearer Charakteristik ersetzt werden. Dies können z.B. druckfeste leitfähige Keramiken, Faserkeramiken bzw. Verbundmaterialien mit leitfähigen Bestandteilen oder aber auch z.B. Materialien mit Varistorkennlinie oder einer PTC-Kennlinie sein. Der Druckaufbau wird durch das begrenzte Innenvolumen z.B. in einem Zylinder realisiert. Bei einem partiellen Einsatz von Hartgas kann z.B. eine Sandwichlösung eingesetzt werden.

Es ist jedoch auch möglich, eine poröse Grundstruktur, z.B. aus leitfähiger Keramik mit gasabgebenden Stoffen, z.B. POM zu füllen.

Ausführungsvarianten mit aktiver Triggerung zur Einbringung von Ladungsträgern in eine oder mehrere Teilfunkenstrecken für die Anwendung in Anlagen der Niederspannung zeigen die 8 bis 10.

Gemäß 8 ist die vorstehend erläuterte Zündhilfe auch bei einer Ausführungsform mit mehreren Teilfunkenstrecken einsetzbar und schränkt den Einsatz der allgemein bekannten Methoden zur Potentialsteuerung der Teilfunkenstrecken nicht ein.

Es ist jedoch zu beachten, dass Ableiter mit einer Reihenschaltung aus Teilfunkenstrecken üblicherweise auch extern angeschlossene Mittel zur Potentialsteuerung aufweisen. Dies können Impedanzen, Kapazitäten, lineare und nichtlineare Widerstände, deren Kombinationen bzw. auch zusätzliche externe Funkenstrecken, welche ebenfalls zur Potentialsteuerung eingesetzt werden, sein.

Unabhängig, welche Art von diskreten Elementen auch zur Potentialsteuerung eingesetzt wird, stellen diese Elemente und deren Kontaktstellen zu den einzelnen Teilfunkenstrecken einen Risikofaktor dar, da infolge sehr hoher Impulssteilheiten oder auch einer schlechten bzw. gealterten Kontaktgabe es zu partiellen oder auch vollständigen Außenüberschlägen und somit zur Zerstörung des Ableiters kommen kann. Gilt es also einen Ableiter der genannten Art sicher mit einer Zündhilfe und einem Ansprechwert < 1 kV zu zünden, so muss nicht nur die eigentliche Zündhilfe, sondern auch die Potentialsteuerung sicherer als üblich ausgeführt werden.

Dies kann gemäß Ausführungsbeispiel dadurch realisiert werden, dass anstelle einer Potentialsteuerung mit externen und diskreten Elementen ohnehin notwendige Bauteile so modifiziert werden, dass eine hinreichende, interne Potentialsteuerung möglich ist.

Hierfür werden einzelne Elektrode der Teilfunkenstrecken 20 durch Distanzhalter 21 getrennt. Das Material dieser Distanzhalter 21 kann bis auf die Strecke oder Strecken, welche mit einer Zündhilfe versehen ist, aus leitfähigem bzw. feldsteuerndem Material gefertigt werden.

Alternativ oder zusätzlich kann eine äußere Ummantelung der eigentlichen Funkenstrecken mit einem isolierten, einseitig angeschlossenen Schirm zur Potentialverzerrung 22 verbunden werden.

Die Teilfunkenstrecke mit der Zündhilfe aus den Teilen 3, 3a und 4 wird so gestaltet, dass sie trotz eventuell auftretender Verschmutzungen, insbesondere durch den Abbrand der Zündelektrode, in der Lage ist, allein nach dem Ansprechen der Funkenstrecke die Belastung durch die wiederkehrende Netzspannung zu beherrschen.

Hierzu wird der Abstand der Elektroden 22 und 23 der über die Zündhilfe triggerbaren Teilfunkenstrecke gegenüber dem Abstand der anderen Teilfunkenstrecken erhöht. Zusätzlich kann zur besseren Beherrschung der wiederkehrenden Spannung für das Material der Hauptelektroden der triggerbaren Teilfunkenstrecken ein Material mit hoher Sofortverfestigung gewählt werden. Das Material der übrigen Teilstrecken hingegen sollte über einen geringen Abbrand und eine hohe Elektrodenfallspannung verfügen.

Die Distanzhalter 21 können aus elektrisch leitfähigen Polymeren bzw. Keramiken bestehen. Deren Widerstandscharakteristik kann linear, aber auch nichtlinear sein.

Bei einer potentialsteuernden Ausführung kann das Material der Distanzhalter 21 neben bestimmten dielektrischen Eigenschaften, wodurch eine kapazitätsbehaftete Steuerung möglich ist, zusätzlich auch mit Mikrovaristoren versehen sein, wodurch sich insbesondere bei hohen Steilheiten eine bessere potentialsteuernde Wirkung ergibt. Alternativ können die einzelnen elektrisch leitfähigen Kontakthalter auch einseitig oder beidseitig mit einer dünnen Isolationsschicht bzw. einer definiert schlechten Kontaktgabe versehen oder ausgeführt sein. Dies bedingt zwar eine minimale Ansprechspannung von z.B. einigen 10 V, fördert aber durch das raschere Austreten des Lichtbogens aus dem Material und die Funkenbildung die Ionisation der Teilfunkenstrecke und somit das Zünden der gesamten Funkenstrecke.

Selbstverständlich können die beschriebenen Maßnahmen zur Potentialsteuerung auch zur Reduzierung der Ansprechspannung der Teilfunkenstrecken 20 durch aus dem Bereich der Gasentladungsableiter bekannte Maßnahmen, z.B. dem Einsatz spezieller Gase oder Aktivierungsmaßnahmen unterstützt werden.

Gemäß 9 können die einzelnen Distanzhalter 21 der nicht triggerbaren Teilfunkenstrecken durch einen gemeinsamen Distanzhalter ersetzt werden. Bei einer elektrisch leitfähigen Ausführung der Distanzhalter 21 ist darauf zu achten, dass das leitfähige Material durch den fließenden Teilstrom nicht überlastet wird. Dies kann zum einen durch die Materialauswahl und zum anderen aber auch durch die geometrische Gestaltung im Sinne der Dicke und der Kontaktfläche beeinflusst werden.

10 zeigt eine Gestaltungsvariante, bei der gemeinsam oder auch alternativ anwendbare Maßnahmen eingesetzt werden, um die Wahrscheinlichkeit eines unerwünschten äußeren Überschlags weiter zu verringern.

Hierzu werden im äußeren Bereich der Elektroden zusätzliche Isolationsmaßnahmen durchgeführt. Die Elektroden der Teilfunkenstrecken können im äußeren Bereich mit Isolationsmaterial 25 versehen sein. Der Innendurchmesser des isolierten Bereichs ist größer zu wählen, als der Innendurchmesser der Distanzhalter 21. Die Distanzhalter 21 können des weiteren ebenfalls am äußeren Umfang mit einem Ring aus Isolationsmaterial 26 umgeben sein.

Wird mit einer Anordnung entsprechend der 8 bis 10 eine Begrenzung der Folgeströme auf Werte von wenigen hundert Ampere oder kleiner realisiert, ist anstelle der triggerbaren Teilfunkenstrecken auch der Einsatz eines leistungsfähigen Gasableiters möglich, welcher dann die Ansprechspannung der Gesamtanordnung bestimmt.


Anspruch[de]
  1. Überspannungsschutzeinrichtung auf Funkenstreckenbasis, insbesondere für Niederspannungs-Anwendungen, umfassend mindestens zwei in einem druckdichten Gehäuse befindliche Hauptelektroden sowie mindestens eine Zündhilfselektrode, wobei im Gehäusevolumen eine Funktionsbaugruppe zum Reduzieren der Ansprechspannung der Funkenstrecke untergebracht ist, welche mit einer der Hauptelektroden und der Zündhilfselektrode in Verbindung steht, dadurch gekennzeichnet, dass die Funktionsbaugruppe zum Reduzieren der Ansprechspannung der Funkenstrecke aus einer vollständig in das druckdichte Gehäuse integrierten, außerhalb des Lichtbogen-Brennraums befindlichen Reihenschaltung eines spannungsschaltenden Elements (4), einer Impedanz (3a) und einer Trennstrecke (e2) besteht, wobei die Trennstrecke (e2) durch den Abstand der Zündhilfselektrode (3) zur nächstliegenden Hauptelektrode (2) gebildet ist, so dass beim Auftreten einer Überspannung, welche die Summe der Ansprechspannungen des Schaltelements (4) und der Trennstrecke (e2) übersteigt, ein Strom von der ersten der Hauptelektroden (1) zur zweiten Hauptelektrode (2) fließt, mit der Folge, dass der die Trennstrecke (e2) überbrückende Lichtbogen Ladungsträger zur sofortigen Ionisation der Trennstrecken zwischen den Hauptelektroden (1, 2) bereitstellt, wodurch die Spannungsfestigkeit dieser Trennstrecke veringert ist und aufgrund des mit der Stromstärke steigenden Spannungsabfalls an der Impedanz (3a) ein Überschreiten der reduzierten Spannungsfestigkeit der Trennstrecke zwischen den Hauptelektroden eintritt, wodurch das gewünschte Zünden der Funkenstrecke erfolgt.
  2. Überspannungsschutzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das spannungsschaltende Element ein Gasableiter ist.
  3. Überspannungsschutzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das spannungsschaltende Element eine Suppressordiode, ein Thyristor, ein Varistor und/oder eine definiert abbrandfeste Luft- oder Gleitfunkenstrecke ist.
  4. Überspannungsschutzeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Zündhilfselektrode selbst impedanzbehaftet ausgeführt ist und einen komplexen Widerstand aufweist.
  5. Überspannungsschutzeinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass sich die Zündhilfselektrode partiell im Lichtbogen-Brennraum befindet oder in diesen hineinreicht.
  6. Überspannungsschutzeinrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Zündhilfselektrode aus einem leitfähigen Kunststoff oder leitfähiger Keramik besteht.
  7. Überspannungsschutzeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Impedanz aus einem Material mit nichtlinearem oder linearem Widerstandsverlauf besteht.
  8. Überspannungsschutzeinrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Impedanz aus einem leitfähigen Kunststoff oder einer leitfähigen Keramik besteht.
  9. Überspannungsschutzeinrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Impedanz diskret als Widerstand, Varistor oder Kapazität ausgeführt ist.
  10. Überspannungsschutzeinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Zündhilfselektrode gegenüber den Hauptelektroden isoliert ist, wobei die Ansprechspannungen der sich zu den Hauptelektroden jeweils ergebenden Teilstrecken unterschiedlich gewählt sind.
  11. Überspannungsschutzeinrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Ansprechspannung der ersten Hauptelektrode zur Zündhilfselektrode viel größer als die Ansprechspannung der Trennstrecke (e2) ist.
  12. Überspannungsschutzeinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass zur Reduzierung der Ansprechspannung der Trennstrecke (e2) diese als dünne, abbrandfeste Isolierfolie, abbrandfeste Lackbeschichtung oder sonstige dünne Isolierschicht ausgebildet ist.
  13. Überspannungsschutzeinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass diese Mittel zum Beströmen des Lichtbogens mit Hartgas aufweist.
  14. Überspannungsschutzeinrichtung nach Anspruch 13, dadurch gekennzeichnet, dass zum Erzeugen des Hartgases ein hartgasabgebendes Material mindestens Abschnitte des Lichtbogen-Brennraums umgibt, wobei das hartgasabgebende Material zusätzlich leitfähige Eigenschaften aufweist, um das Potential einer der Hauptelektroden bis an die Trennstrecke der Zündhilfselektrode heranzuführen.
  15. Überspannungsschutzeinrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass mindestens eine Druckausgleichsöffnung zur Verhinderung eines sich über die Zeit akkumulierenden Druckanstiegs vorgesehen ist.
  16. Überspannungsschutzeinrichtung nach Anspruch 15, dadurch gekennzeichnet, dass die Druckausgleichsöffnung durch Gehäuse- oder Elektrodenmaterialien gebildet ist, welche gasdurchlässig sind.
  17. Überspannungsschutzeinrichtung nach Anspruch 16, dadurch gekennzeichnet, dass mindestens Abschnitte des Gehäuses aus porösem Polymermaterial, Keramik und/oder Metall bestehen.
  18. Überspannungsschutzeinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass diese Mittel zur Restspannungsbegrenzung aufweist.
  19. Überspannungsschutzeinrichtung nach Anspruch 18 und Anspruch 14, dadurch gekennzeichnet, dass das leitfähige, hartgasabgebende Material, welches elektrisch mit einer der Hauptelektroden in Verbindung steht, eine definierte Geometrie sowie definierte elektrische Eigenschaften zum Zweck der Beeinflussung des Verlaufs und der Höhe der Restspannung besitzt.
  20. Überspannungsschutzeinrichtung nach Anspruch 19, dadurch gekennzeichnet, dass der Widerstand des hartgasabgebenden Materials gegenüber der Impedanz der Reihenschaltung niedrig ist.
  21. Überspannungsschutzeinrichtung nach einem der Ansprüche 15 bis 20, dadurch gekennzeichnet, dass das leitfähige, hartgasabgebende Material während der Belastung mit Stoß- als auch mit Folgeströmen einen Teil des jeweils fließenden Gesamtstroms trägt.
  22. Überspannungsschutzeinrichtung nach Anspruch 21, dadurch gekennzeichnet, dass der Stromanteil, welcher vom leitfähigen, hartgasabgebenden Material geführt wird, über das Verhältnis des Widerstands dieses Materials zum Widerstandswert des Lichtbogens einstellbar ist.
  23. Überspannungsschutzeinrichtung nach Anspruch 22, dadurch gekennzeichnet, dass der mittlere Wert des Widerstands des leitfähigen, hartgasabgebenden Materials größer als der durchschnittliche, mittlere Widerstandswert des Lichtbogens ist.
  24. Überspannungsschutzeinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das spannungsschaltende Element und/oder die Impedanz zum Schutz vor thermischen oder mechanischen Belastungen in eine der Hauptelektroden integriert ist.
  25. Überspannungsschutzeinrichtung nach Anspruch 24, dadurch gekennzeichnet, dass eine der Hauptelektroden einen Hohlraum aufweist.
  26. Überspannungsschutzeinrichtung nach Anspruch 25, dadurch gekennzeichnet, dass das spannungsschaltende Element in den Hohlraum, insbesondere einpolig isoliert, eingesetzt ist.
  27. Überspannungsschutzeinrichtung nach Anspruch 26, dadurch gekennzeichnet, dass der Hohlraum ein Innengewinde zur Aufnahme einer, das eingesetzte spannungsschaltende Element kontaktierenden Schraube aufweist.
  28. Überspannungsschutzeinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das zum Lichtbogen-Brennraum reichende Ende der Zündhilfselektrode im wesentlichen auf gleicher Höhe des in den Brennraum hineinreichenden Endes derjenigen Hauptelektrode liegt, welche der ersten Trennstrecke (e1) zugehörig ist.
  29. Überspannungsschutzeinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Zündhilfselektrode seitlich versetzt und/oder bezogen auf den Lichtbogen-Hauptbrennraum zurückgesetzt angeordnet ist.
  30. Überspannungsschutzeinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass ein ergänzendes spannungsschaltendes Element zur nachträglichen Einstellung und/oder Anpassung der Ansprechspannung außerhalb der druckdichten Kapselung befindlich ist.
  31. Überspannungsschutzeinrichtung nach einem der vorangegangenen Ansprüche, gekennzeichnet durch eine Kombination aus einer triggerbaren Teilfunkenstrecke hoher Ansprechspannung und mindestens einer, nachgeordneten Teilfunkenstrecke niedriger Ansprechspannung.
  32. Überspannungsschutzeinrichtung nach Anspruch 31, dadurch gekennzeichnet, dass mehrere, nicht triggerbare Teilfunkenstrecken Mittel zur internen Potentialsteuerung aufweisen.
  33. Überspannungsschutzeinrichtung nach Anspruch 32, dadurch gekennzeichnet, dass die Teilfunkenstrecken über Distanzhalter mechanisch fixiert sind.
  34. Überspannungsschutzeinrichtung nach Anspruch 33, dadurch gekennzeichnet, dass die Distanzhalter aus einem leitfähigen, feldsteuernden Material bestehen.
  35. Überspannungsschutzeinrichtung nach Anspruch 33 oder 34, dadurch gekennzeichnet, dass die Distanzhalter und die Elektroden der Teilfunkenstrecken eine Ummantelung aufweisen.
  36. Überspannungsschutzeinrichtung nach Anspruch 35, dadurch gekennzeichnet, dass die Ummantelung eine einseitig elektrisch angeschlossene Schirmung zur gezielten Potentialverzerrung umfasst oder als solche ausgebildet ist.
  37. Überspannungsschutzeinrichtung nach einem der Ansprüche 31 bis 36, dadurch gekennzeichnet, dass der Abstand der Elektroden, welche die Teilfunkenstrecke mit Zündhilfselektrode bilden, größer als der Abstand der Elektroden der jeweils folgenden Teilfunkenstrecken gewählt ist.
  38. Überspannungsschutzeinrichtung nach einem der Ansprüche 31 bis 37, dadurch gekennzeichnet, dass der Distanzhalter für nicht durch die Zündhilfselektrode triggerbare Teilfunkenstrecken als integrales Bauelement ausgeführt ist.
  39. Überspannungsschutzeinrichtung nach einem der Ansprüche 31 bis 38, dadurch gekennzeichnet, dass zur Vermeidung eines elektrischen Überschlags außerhalb des Lichtbogen-Brennraums zusätzliche Isolationsabschnitte oder Isoliermaterialien, bevorzugt im äußeren Bereich der Elektroden der Teilfunkenstrecken vorgesehen oder angeordnet sind.
  40. Überspannungsschutzeinrichtung nach einem der Ansprüche 31 bis 39, dadurch gekennzeichnet, dass die Distanzhalter auf ihrer vom Lichtbogen-Brennraum entfernten Seite eine Isolationsbeschichtung oder -umhüllung aufweisen.
  41. Überspannungsschutzeinrichtung nach einem der Ansprüche 31 bis 40, dadurch gekennzeichnet, dass die erste, triggerbare Teilfunkenstrecke durch einen Gasableiter ersetzt ist, welcher die Ansprechspannung der Gesamtanordnung bestimmt.
  42. Überspannungsschutzeinrichtung nach Anspruch 1, gekennzeichnet durch eine Hörnerfunkenstrecke.
  43. Überspannungsschutzeinrichtung nach Anspruch 1, gekennzeichnet durch eine Stapelfunkenstrecke.
Es folgen 10 Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

  Patente PDF

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com