PatentDe  


Dokumentenidentifikation EP0883234 01.09.2005
EP-Veröffentlichungsnummer 0000883234
Titel Steuerungschaltung für einen bürstenlosen Motor
Anmelder Mitsubishi Denki K.K., Tokio/Tokyo, JP
Erfinder Nagaoka, Hidetaka, 5-1-1, Kanagawa 247, JP;
Onoda, Atsuo, 5-1-1, Kanagawa 247, JP;
Izumi, Yukio, 5-1-1, Kanagawa 247, JP;
Nishikawa, Keichi, 5-1-1, Kanagawa 247, JP;
Oomura, Yuuji, 5-1-1, Kanagawa 247, JP;
Suzuki, Mitinaga, Koriyama-shi, Fukushima 963, JP;
Hoshi, Kiyotaka, Koriyama-shi, Fukushima 963, JP
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69534343
Vertragsstaaten DE, FR, GB, IT
Sprache des Dokument EN
EP-Anmeldetag 11.01.1995
EP-Aktenzeichen 982503310
EP-Offenlegungsdatum 09.12.1998
EP date of grant 27.07.2005
Veröffentlichungstag im Patentblatt 01.09.2005
IPC-Hauptklasse H02P 5/00

Beschreibung[en]
Fie1d of the Invention

The invention relates to drive circuit for the brushless motor.

Description of the Prior Art

The rotation driving control of a brushless motor can be classified roughly into two functions. One of which is a commutation control for controlling the timing of respective phase current which flows through respective armature winding. Another is a speed control which maintains the rotation speed constant.

In the commutation control, a rotor location signal is necessary which indicates the relative position of the armature winding and the rotor. On the other hand, in the speed control, a speed signal is necessary for indicating rotation speed of the rotor.

In a speed control of the brushless motor, it is generally used a system for maintaining the rotating speed constant by controlling the current quantity flowing in the armature winding.

FIG. 11 shows a block diagram of a speed control system of the driving circuit for conventional brushless motor. In FIG. 11, 530 is a speed detecting circuit which detects actual rotation speed of the rotor and outputs a speed signal, 531 is a speed difference detecting circuit which outputs a speed difference signal having a pulse width corresponding to the speed difference by counting the speed signal period using reference clock. A speed difference compensation filter 532 outputs a current indication value to a current supplying circuit 533 so that a speed difference becomes zero according to the speed difference signal. The current supplying circuit 533 regulates a current quantity supplied to the armature winding of the brushless motor 534 according to the current indication value. In the driving circuit of such conventional brushless motor, the speed difference compensation filter is constituted of an analog filter in which a PI filter 460 and a first order delay filter 464 are connected serially as shown in FIG. 12.

In the driving circuit of the conventional brushless motor, the speed signal period is counted by the reference clock an therefore the reference clock frequency inputted into the speed difference detecting circuit is switched in proportion to the indicated rotation speed when the indicated rotation speed to the motor is switched.

Regarding the system which detects the speed similar for controlling the rotation speed of the brushless motor, there are a system which is popularly called a FG system which exclusively use a frequency generator for speed detection and a system which detects speed according to a feature that a magnitude of the counter electromotive voltage signal induced in the armature winding is in proportion to the rotation speed.

In the detection system for detecting a speed by a private frequency generator, it is necessary to provide a frequency generator having a high machining accuracy. Therefore, it is necessary to provide a wide space for installing the private detecting apparatus and then there is a cost disadvantage.

In the detecting system for detecting a speed by an amplitude of the counter electromotive voltage, since the voltage generated by the current flowing in the armature winding is superpose to the counter electromotive voltage, it is difficult to detect only the amplitude of the counter electromotive voltage, and also the magnitude is followed by a change of environment.

US 4 605 885 discloses a method of controlling the rotation speed of a motor to maintain a desired value in which a deviation between the detected rotation speed and the desired value is obtained and the gain of the feedback loop is changed to a value lower than a predetermined one during a period in which the deviation is smaller than a preset maximum ripple value.

It is the object of the present invention to provide a driving circuit for the brushless motor for obtaining a speed signal without providing a private speed detecting circuit.

Further, it is the object of the present invention to provide a driving circuit for the brushless motor for providing a high accurate rotation mode with fully compressed disturbance even if the disturbance at low pass area is large.

SUMMARY OF THE INVENTION

The brushless motor driving circuit of the present invention comprises a speed detection means for detecting a rotor speed; a speed difference detecting means for outputting a difference between the detected actual rotation speed of the rotor and a target rotation speed as a speed difference signal; and a speed difference compensation filter comprised of a proportion - integration (P/I) filter connected in parallel with a first order delay filter, the input of parallel circuit is the speed difference signal, the outputs of the parallel circuit are added and further supplied in series to another first order delay filter, the output of the another first order delay filter is supplied to the armature windings as a current indication value.

Since the speed difference compensation filter is comprised of serial connection of a parallel connection of a PI filter and a first order delay filter, and a first order delay filter, a good low pass compression characteristics for disturbance can be obtained.

Further, the brushless motor driving circuit of the present invention comprises a speed detection means for detecting a rotor speed; a speed difference detection means for outputting a difference between the detected actual rotation speed of the rotor and a target rotation speed as a speed difference signal; and a speed difference compensation filter comprised of a serial circuit of a proportion - integration (P/I) filter and a first order delay filter, the input of circuit is the speed difference signal, the serial circuit is further supplied in parallel to another first order delay filter, the parallel output is added and supplied to the armature windings as a current indication value.

Since the speed difference compensation filter is comprised of parallel connection of a serial connection of a PI filter, a good low pass compression characteristics for disturbance can be obtained.

Since a target of the speed difference detector and a gain of the speed difference compensation filter are switched according to the indicated rotation speed, it is not necessary to change the reference clock inputted into the speed difference detector.

BRIEF DESCRIPTION OF THE DRAWINGS

  • FIG. 1 is a block diagram of an embodiment which shows a general construction a brushless motor driving device.
  • FIG. 2 is a block diagram of a speed difference compensation filter of an embodiment 1.
  • FIG. 3 shows frequency characteristic of a speed difference compensation filter of the embodiment 1.
  • FIG. 4 is a block diagram of a speed difference compensation filter for digital system of an embodiment 1.
  • FIG. 5 is a block diagram of a speed difference compensation filter of an embodiment 2.
  • FIG. 6 shows frequency characteristic of a speed difference compensation filter of the embodiment 2.
  • FIG. 7 is a block diagram of a speed difference compensation filter of the embodiment 2.
  • FIG. 8 is a block diagram of a third embodiment of the present invention which shows a general construction a brushless motor driving device.
  • FIG. 9 shows a construction of a speed difference detecting circuit of an embodiment 3.
  • FIG. 10 is a block diagram of a PI filter of an embodiment 4.
  • FIG. 11 Is a block diagram which shows a speed control system of a conventional brushless motor driving device.
  • FIG. 12 is a block diagram which shows a speed difference compensation filter of a conventional brushless motor driving device.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1

FIG. 1 is a block diagram of a general construction of a brushless motor driving device. In FIG. 1, the numeral 406 denotes a starting circuit, the numeral 409 denotes a speed difference detecting circuit for counting a period of the speed signal 3d by the counter and for outputting a period difference between the indicated value and the measured value as a speed difference detection signal 409a. The numeral 410 denotes a speed difference compensation filter for supplying a current indication value 410a to a current supplying circuit 411 so that the speed difference detection signal 409a become zero. A current supplying circuit 411 comprises a resistor 10, a bridge circuit 11, a buffer amplifier 212, a resistor 213 and a driving transistor 214, and supplies a predetermined driving current to the armature windings 12, 13 and 14 according to the driving signals 9a ~ 9f.

A terminal voltage compensation circuit, a comparator 2 and a waveform shaping circuit 3 constitute the rotor location signal generating circuit 4.

In this embodiment, a brushless motor having a speed difference compensation filter in which a low pass gain characteristics is improved in comparison with the conventional speed difference compensation filter is explained below. A construction of the speed difference compensation filter which is important for realising the invention is explained below.

FIG. 2 is transfer block diagram in which the speed difference compensation filter is comprised of analog filter. In FIG. 2, the numeral 460 denotes a proportion - integration (PI) filter, the numeral 461 denotes a first order delay filter, the numeral 462 denotes a gain element or coefficient multiplier, the numeral 463 denotes an adder, the numeral 464 denotes a first order delay filter. A speed difference detection signal 409a which is outputted from the speed difference detecting circuit 409 is inputted on an input terminal X of the speed difference compensation filter. An output signal outputted from the terminal Y is supplied to the current supplying circuit 411 as a current indication value 410a for the armature winding. This speed difference compensation filter 410 is different from the conventional speed difference compensation filter shown FIG. 12 in that the present filter adds the speed difference detection signal 409a to the output of the PI filter 460 through the first order delay filter 461.

In this configuration, the transfer function GC(s)of the speed difference compensation filter is given by an equation 1. GC(s) = {Kp (1+1/T1s) + KW/(1+TAs)} x 1/ (1+TLs)

FIG. 3 shows a simulation result of open loop characteristics of the speed difference compensation filter when Kp=1, TI=1/(2πx10), KW=1, TA = 1/(2πx5), TL=1/(2πx60).

The broken line in FIG. 3 shows a simulation result of the conventional speed difference compensation filter when Kp = 1, TI = 1/(2πx10), TL = 1/(2πx60).

This FIG 3 shows that the filter of the present invention provides a improved low pass gain characteristic.

FIG 2 shows an example comprised of an analog filter, but it is possible to be comprised of digital filter.

FIG. 4 shows a transfer block diagram in which the speed difference compensation filter is comprised of the digital filter: In FIG. 4, the numerals 470 ~ 472 denote delay elements which causes the signal to delay by one sampling period, the numerals 473 ~ 479 denote gain elements, the numerals 480 ~ 483 denote adder.

The delay element 471, the gain elements 476, 477 and the adders 481, 482 constitute a PI filter 484. The delay element 470, the gain elements 473 ~ 475, the adder 480 constitutes a first order delay filter 485. The delay element 472, the gain elements 478, 479, the adder 483 constitutes a first order delay filter 486.

In this configuration, the transfer function Gc(z) of the speed difference compensation filter is given by an equation (2). Gc(z) = {Kp+KI/(1-z-1) + KW(1-KA)/(1- KAz -1)} x (1-KL)/ (1-KLz-1)

Embodiment 2

In the embodiment, another speed difference compensation filter which has a improved low pass gain characteristics in comparison with the conventional speed difference compensation filter is explained.

FIG. 5 is a transfer block diagram where a speed difference compensation filter is comprised of analog filter. In FIG. 5, the same elements as those in FIG. 2 are indicated by the same numerals. This speed difference compensation filter is different from the conventional speed difference compensation filter in that the output of the first order delay filter 461 which is supplied by the speed difference detection signals 405a is applied to an output of serial circuit of the PI filter 460 and the first order delay filter 464. In this configuration, the transfer function GC(s) of the speed difference compensation filter is given by an equation (3) . GC(s) = Kp(1+1/T1s)x1/(1+TLs)+KW/(1+TAs)

FIG. 6 shows a simulation result of open loop characteristics of the speed difference compensation filter when Kp=1, TI=1(2πx10), KW=1, TA=1/(2πx5), TL=1/(2πx60).

The broken line in FIG. 6 shows a simulation result of the conventional speed difference compensation filter when Kp=1, TI=1/(2πx10), TL=1/(2πx60).

This FIG. 4 shows that the filter of the present invention provides a improved low pass gain characteristic.

FIG. 5 shows an example comprised of an analog filter, but it is possible to be comprised of digital filter.

FIG. 7 shows a transfer block diagram in which the speed difference compensation filter is comprised of the digital filter. In FIG. 7, the same elements as those in FIG. 1 are indicated by the same numerals. The numerals 487, 488 denote adders. In this configuration, the transfer function GC(z) of the speed difference compensation filter is given by an equation (4). GC(z) = {Kp+KI/(1-z-1)}x(1-KL)/(1-KLz-1) + KW(1-KA)/(1- KAz -1) (2)

Embodiment 3

In this embodiment, a brushless motor driving circuit which switches a target rotation speed of the speed difference detecting circuit and a gain of the gain element in the speed difference compensation filter when the indicated rotation speed has changed is explained.

FIG. 8 is a block diagram which shows a general construction of a brushless motor driving circuit of the embodiment 3. In FIG. 8, the same elements as those in FIG. 1 are indicated by the same numerals. The numeral 490 denotes an input terminal where a mode switching signal 490a is inputted. A. mode switching signal 490a is inputted from outside of the brushless motor driving circuit and is comprised of binary signal for switching the motor rotation speed.

In the above mentioned waveform shaping circuit 3, the logic pulse signal 3d outputted from OR circuit is supplied for a predetermined period at a normal rotation. Accordingly, this logic pulse signal 3d can be used as a speed signal for controlling the rotation speed.

FIG. 9 is concrete construction example of the speed difference detecting circuit 409. In FIG. 9, the numerals 491, 492 denote initial value registers, the numeral 493 denotes a selector, the numeral 494 denotes a counter. The initial value registers 491, 492 provide initial values of target rotation speeds. In this embodiment, there are two initial value registers in order to respond to two kinds of indicated rotation speed. The selector 493 switches the two kinds of initial registers 491, 492 according to the logic level of the mode switching signal 490a. The counter 494 loads an initial value selected by these selector 493 at the timing of rising edge of the logic pulse signal 3d, and counts up in synchronism with the clock.

For example, a period of the logic pulse signal 3d which is 1 (m sec) or 0,5 (m sec) at normal rotation is explained in correspondence with the two indicated rotation speed (the indicated rotation speeds are expressed A and B, respectively).

Here, assume that the clock frequency is 1 (MHz), and the indicated rotation speed A corresponds to H level of the mode switching signal 490a and the indicated rotation speed B corresponds to L level of the mode switching signal 490a. -1000 is set to the initial value register 491, and -500 is set to the initial value register 492.

In such construction, when the mode switching signal 490a is at H level, the selector 493 selects the initial value register 491 and the counter 494 loads -1000 for a initial value at a timing of rising edge of logic pulse signal 3d. Then, the counter 494 counts up in synchronism with to the clock and outputs a negative value when the period of logic pulse signal 3d is less than 1 (m sec) and positive value when the period of logic pulse signal 3d is larger than 1 (m sec) as a speed difference detection signal 409a.

On the other hand, the mode switching signals 490a is at L level, the selector 493 selects the initial value register 492 and the counter 494 loads -500 for a initial value at a timing of rising edge of logic pulse signal 3d. Then, the counter 494 counts up in synchronism with to the clock and outputs a negative value when the period of logic pulse signal 3d is less than 0.5 (m sec) and positive value when the period of logic pulse signal 3d is larger than 0,5 (m sec) as a speed difference detection signal 409a).

Embodiment 4

In the above embodiments, an operation of the speed difference detecting circuit 409 in case of the indicated rotation speed is changed is explained. But, since the target rotation speed is switched, there is a problem that the detection sensitivity varies by the difference of indicated rotation speed. In this embodiment, in order to solve the above problem, the gain element of the speed difference compensation filter is also switched.

FIG. 10 is a block diagram of PI filter 484A when the speed difference compensation filter is switched. In FIG. 10, the same elements as those in Fig. 4 of the embodiment 1 are indicated by the same numerals. The numerals 495, 496 denote new gain elements which respond to the other indicated rotation speed, the numerals 497, 498 denote selectors. The selectors 497, 498 select gain element 476 or 495 and gain element 477 or 496, respectively, according to the logic level of the mode switching signal 490a. In the same way, the gain elements of the first order delay filters 485, 486 are also switched by the mode switching signal 490a. Of course, other general methods for switching the gain may be used.

Further, in this embodiment, an example for switching the indicated rotation speed by binary signal of one bit, but it is possible to switch the indicated rotation speed by the binary signal of N bit when a plurality of indicated rotation speeds are used.


Anspruch[de]
  1. Treiberschaltung für einen bürstenlosen Motor, welche aufweist:
    • eine Geschwindigkeitserfassungsvorrichtung zum Erfassen einer Rotorgeschwindigkeit;
    • eine Geschwindigkeitsdifferenz-Erfassungsvorrichtung (409) zum Ausgeben einer Differenz zwischen der erfassten tatsächlichen Drehgeschwindigkeit des Rotors und einer Zieldrehgeschwindigkeit als ein Geschwindigkeitsdifferenzsignal;
    gekennzeichnet durch

    ein Geschwindigkeitsdifferenz-Kompensationsfilter (410) bestehend aus einem Proportional-Integral (P/I)-Filter (460), das parallel zu einem Verzögerungsfilter (461) erster Ordnung geschaltet ist, wobei das Eingangssignal der Parallelschaltung das Geschwindigkeitsdifferenzsignal (409a) ist, die Ausgangssignale der Parallelschaltung addiert und weiterhin in Reihe zu einem anderen Verzögerungsfilter (464) erster Ordnung geliefert werden, und das Ausgangssignal des anderen Verzögerungsfilters (464) erster Ordnung zu den Ankerwicklungen als ein Stromanzeigewert geliefert wird.
  2. Treiberschaltung für einen bürstenlosen Motor, welche aufweist:
    • eine Geschwindigkeitserfassungsvorrichtung zum Erfassen einer Rotorgeschwindigkeit;
    • eine Geschwindigkeitsdifferenz-Erfassungsvorrichtung zum Ausgeben einer Differenz zwischen der erfassten tatsächlichen Drehgeschwindigkeit des Rotors und einer Zieldrehgeschwindigkeit als ein Geschwindigkeitsdifferenzsignal;
    gekennzeichnet durch

    ein Geschwindigkeitsdifferenz-Kompensationsfilter (410), bestehend aus einer Serienschaltung eines Proportional-Integral (P/I)-Filters (460) und eines Verzögerungsfilters (464) erster Ordnung, wobei das Eingangssignal (409a) der Schaltung das Geschwindigkeitsdifferenzsignal ist, die Serienschaltung weiterhin parallel zu einem anderen Verzögerungsfilter (461) erster Ordnung geschaltet ist und die parallelen Ausgangssignale addiert und zu den Ankerwicklungen als ein Stromanzeigewert geliefert werden.
  3. Treiberschaltung für einen bürstenlosen Motor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Zieldrehgeschwindigkeit der Geschwindigkeitsdifferenz-Erfassungsvorrichtung und eine Verstärkung des Geschwindigkeitsdifferenz-Kompensationsfilters geändert werden entsprechend der angezeigten Drehgeschwindigkeit, die zu der Treiberschaltung des bürstenlosen Motors geliefert wird.
Anspruch[en]
  1. A brushless motor driving circuit comprising:
    • a speed detection means for detecting a rotor speed;
    • a speed difference detecting means (409) for outputting a difference between the detected actual rotation speed of the rotor and a target rotation speed as a speed difference signals;
    characterized by

    a speed difference compensation filter (410) comprised of a proportion - integration (P/I) filter (460) connected in parallel with a first order delay filter (461), the input of parallel circuit is the speed difference signal (409a), the outputs of the parallel circuit are added and further supplied in series to another first order delay filter (464), the output of the another first order delay filter (464) is supplied to the armature windings as a current indication value.
  2. A brushless motor driving circuit comprising:
    • a speed detection means for detecting a rotor speed, a speed difference detecting means for outputting a difference between the detected actual rotation speed of the rotor and a target rotation speed as a speed difference signal;
    characterized by

    a speed difference compensation filter (410) comprised of the a serial circuit of a proportion - integration (P/I) filter (460) and a first order delay filter (464), the input (409a) of circuit is the speed difference signal, the serial circuit is further supplied in parallel to another first order delay filter (461), the parallel output is added and supplied to the armature windings as a current indication value.
  3. A brushless motor driving circuit according to claim 1 or 2, characterized in that

    said target rotation speed of the speed difference detecting means and a gain of the speed difference compensation filter are changed according to the indicated rotation speed which is supplied to the driving circuit of the brushless motor.
Anspruch[fr]
  1. Circuit de commande de moteur sans balai comprenant:
    • des moyens de détection de vitesse pour détecter une vitesse du rotor;
    • des moyens (409) de détection d'une différence de vitesse pour délivrer une différence entre la vitesse de rotation actuelle détectée du rotor et une vitesse de rotation de consigne en tant que signaux de différence de vitesse;
    caractérisé par

    un filtre (410) de compensation de différence de vitesse constitué par un filtre (460) à action proportionnelle et intégrale (P/I), connecté en parallèle avec un filtre de retardement du premier ordre (461), le signal d'entrée du circuit parallèle étant le signal de différence de vitesse (409a), les signaux de sortie du circuit parallèle étant additionnés et étant en outre envoyés en série à un autre filtre de retardement du premier ordre (464), le signal de sortie de l'autre filtre de retardement du premier ordre (464) étant envoyé aux enroulements d'induit en tant que valeur d'indication de courant.
  2. Circuit de commande de moteur sans balai comprenant:
    • des moyens de détection de vitesse pour détecter une vitesse du rotor, des moyens de détection de différence de vitesse pour délivrer une différence entre la vitesse de rotation actuelle détectée du rotor et une vitesse de rotation de consigne en tant que signal de différence de vitesse;
    caractérisé par

    un filtre (410) de compensation de différence de vitesse formé par le circuit série formé d'un filtre (460) à action proportionnelle et intégrale (P/I) et un filtre de retardement du premier ordre (464), le signal d'entrée (409a) du circuit étant le signal de différence de vitesse, le circuit série étant en outre alimenté en parallèle avec un autre filtre de retardement du premier ordre (461), le signal de sortie parallèle est ajouté et est envoyé aux enroulements d'induit en tant que valeur d'indication de courant.
  3. Circuit de commande de moteur sans balai selon la revendication 1 ou 2, caractérisé en ce que ladite vitesse de rotation de consigne des moyens de détection de la différence de vitesse et un gain du filtre de compensation de différence de vitesse sont modifiés conformément à la vitesse de rotation indiquée, qui est envoyé au circuit de commande du moteur sans balai.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com