PatentDe  


Dokumentenidentifikation DE102004019392A1 08.12.2005
Titel Digitaler Messumformer mit Stromsignal
Anmelder Endress + Hauser GmbH + Co. KG, 79689 Maulburg, DE
Erfinder Trunzer, Wolfgang, 79540 Lörrach, DE
Vertreter Andres, A., Pat.-Anw., 79576 Weil am Rhein
DE-Anmeldedatum 19.04.2004
DE-Aktenzeichen 102004019392
Offenlegungstag 08.12.2005
Veröffentlichungstag im Patentblatt 08.12.2005
IPC-Hauptklasse G05F 1/10
Zusammenfassung Ein Messumformer umfasst einen Mikroprozessor (1) mit einem Reset-Eingang und einem Taktausgang zum Bereitstellen eines periodischen Taktsignals; eine Überwachungsschaltung (3) mit einem Takt-Eingang und einem Reset-Ausgang und einen Stromregler (2) zur Ausgabe eines Messsignalstroms, welcher Messsignalstrom im Messbetrieb in einem Bandbereich einen Messwert repräsentiert; wobei der Takt-Eingang mit dem Taktausgang verbunden ist, der Reset-Eingang mit dem Reset-Ausgang verbunden ist, bei Ausfall des Taktsignals der Reset-Ausgang ein Reset-Signal periodisch ausgibt, weiterhin umfassend eine Komparatorschaltung (4) mit einem ersten Eingang, der über einen Tiefpass (5) mit dem Reset-Ausgang der Überwachungsschaltung (3) verbunden ist, mit einem zweiten Eingang, an dem eine Referenzspannung anliegt, und mit einem Ausgang, der mit dem Stromregler verbunden ist, wobei nach wiederholter Ausgabe des Reset-Signals die Spannung am ersten Eingang der Komparatorschaltung die Referenzspannung übersteigt, so dass am Ausgang des Komparators ein Stellsignal anliegt, welches den Stromregler veranlasst, einen Fehlersignalstrom außerhalb des Bandbereichs auszugeben.

Beschreibung[de]

Die vorliegende Erfindung betrifft digitale Messumformer, insbesondere einen Messumformer mit Stromsignal, bei dem also der Messwert durch eine Regelung eines Signalstroms bzw. eines Speisestroms ausgegeben wird. Digitale Messumformer sind solche, die mindestens einen Mikroprozessor zur Aufbereitung der Messsignale bzw. zur Steuerung interner Funktionen umfassen. Insbesondere in sicherheitsrelevanten Anwendungen ist es erforderlich den Ausfall eines Messumformers bzw. seiner Komponenten mit ausreichend hoher Wahrscheinlichkeit erkennen zu können. In der NAMUR-Empfehlung NE43 wird beispielsweise vorgeschlagen, dass bei Messgeräten mit einem Messsignalstrom in einem Bandbereich zwischen 4 und 20 mA, ein Geräteausfall mit einem Fehlersignalstrom außerhalb dieses Bandbereichs, z.B. nicht mehr als 3,6 mA bzw. mindestens 21 mA signalisiert wird.

Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde einen digitalen Messumformer bereitzustellen, der den Ausfall seines Mikroprozessors sicher signalisiert. Die Aufgabe wird erfindungsgemäß gelöst durch den Messumformer gemäß des unabhängigen Patentanspruchs 1.

Der erfindungsgemäße Messumformer umfasst einen Mikroprozessor mit einem Reset-Eingang und einem Taktausgang zum Bereitstellen eines periodischen Taktsignals; eine Überwachungsschaltung mit einem Takt-Eingang und einem Reset-Ausgang; und einen Stromregler zur Ausgabe eines Messsignalstroms, welcher Messsignalstrom im Messbetrieb in einem ersten Bandbereich einen Messwert repräsentiert; und außerhalb des ersten Bandbereichs einen Fehler signalisiert; wobei

der Takt-Eingang der Überwachungsschaltung mit dem Taktausgang des Mikroprozessors verbunden ist, der Reset-Eingang des Mikroprozessors mit dem Reset-Ausgang der Überwachungsschaltung verbunden ist, bei Ausfall des Taktsignals am dem Reset-Ausgang der Überwachungsschaltung ein Reset-Signal periodisch ausgegeben wird, wobei ferner

der Messumformer eine Komparatorschaltung aufweist mit einem ersten Eingang, der über einen Tiefpass mit dem Reset-Ausgang der Überwachungsschaltung verbunden ist, mit einem zweiten Eingang, an dem eine Referenzspannung anliegt, und mit einen Ausgang, der mit einem Eingang des Stromreglers verbunden ist, wobei nach wiederholter Ausgabe des Reset-Signals die Spannung am ersten Eingang der Komparatorschaltung die Referenzspannung übersteigt, so dass am Ausgang des Komparators ein Stellsignal anliegt, welches den Stromregler veranlasst ein Fehlersignalstrom außerhalb des ersten Bandbereichs auszugeben.

Wie eingangs angedeutet, beträgt der erste Bandbereich für den Messsignalstrom beispielsweise 4 bis 20 mA. In diesem Falle sollte der Fehlersignalstrom mindestens 21 mA oder höchstens 3,6 mA betragen. In einer derzeit bevorzugten Ausführungsform wird der Fehlersignalstrom auf 22 mA geregelt.

Die Überwachungsschaltung kann beispielsweise einen digitalen Zähler umfassen, welcher von einem Startwert aus zählt und bei Über- oder Unterschreiten eines Grenzwertes die Ausgabe eines Reset-Signals am Reset-Ausgang veranlasst. Der Zähler sowohl durch jeden Puls des Taktsignals des Mikroprozessors als auch durch das Reset-Signal der Überwachungsschaltung auf seinen Startwert zurückgesetzt wird. Der Grenzwert ist dabei so auf die Zählgeschwindigkeit des Zählers und die Taktfrequenz des Mikroprozessors gewählt, dass der Grenzwert bei funktionierendem Taktsignals nie unter bzw. überschritten wird. Weiterhin ist der Grenzwert so gewählt, dass nach Aussenden eines Reset-Signals hinreichend Zeit bleibt, um den Mikroprozessor nach einer einfachen Taktstörung erneut zu starten, so dass am Ausgang des Mikroprozessor wieder das Taktsignal ausgegeben wird bevor der Grenzwert erreicht wird. Daher wird erst dann, wenn in der zu erwartenden Zeit ein Reset-Signal nicht zu einem erfolgreichen Reset geführt hat, ein erneutes Reset-Signal ausgegeben.

Es ist derzeit bevorzugt, dass der Tiefpass, über den das Ausgangssignal der Überwachungsschaltung der Komparatorschaltung zugeführt wird, ein RC-Glied umfasst. Die Komparatorschaltung umfasst vorzugsweise einen ersten Operationsverstärker.

In einer derzeit bevorzugten Ausgestaltung der Erfindung umfasst der Stromregler zwei parallele Stromreglerschaltungen, von denen die erste Stromreglerschaltung einen den Messsignalstrom in dem ersten Bandbereich regelt und die zweite Stromreglerschaltung den Fehlersignalstrom auf einen Wert außerhalb des ersten Bandbereiches regelt.

Die zweite Stromreglerschaltung kann hierzu einen zweiten Operationsverstärker umfassen, von dem ein Eingang mit dem Ausgang der Komparatorschaltung verbunden ist, und dessen Ausgang mit der Basis eines Transistors verbunden ist, über den der Fehlersignalstrom eingestellt wird. Es ist derzeit bevorzugt, dass die interne Spannungsversorgung des zweiten Operationsverstärkers zur Regelung des Fehlersignalstroms unabhängig von der Spannungsversorgung des Stromregelungsschaltung zur Regelung des Messsignalstroms erfolgt. Auf diese Weise ist gewährleistet, dass der Fehlersignalstrom auch dann eingestellt werden kann, wenn die Spannungsversorgung der Stromreglerschaltung für den Messsignalstrom ausgefallen ist.

Die erste Stromreglerschaltung zur Regelung des Messsignalstroms kann ähnlich aufgebaut sein wie die zweite Stromreglerschaltung, wobei bei einer derzeit bevorzugten Ausführungsform der Messumformer einen ASIC umfasst und Teile der ersten Stromreglerschaltung in den ASIC integriert sind.

Weitere Einzelheiten und Gesichtspunkte der Erfindung ergeben sich aus den abhängigen Ansprüchen, und der Beschreibung des in den Zeichnungen dargestellten Ausführungsbeispiels. Es zeigt:

1: ein Blockschaltbild eines erfindungsgemäßen Messumformers;

2: den Zeitlichen Verlauf der Signale an den in 1 bezeichneten Testpunkten; und

3: ein Beispiel für einen Stromregler zur Realisierung der vorliegenden Erfindung.

Die in 1 gezeigte Schaltung eines erfindungsgemäßen Messumformers umfasst einen Mikroprozessor 1 mit einem Reset-Eingang und einem Taktausgang bzw. Triggerausgang zum Bereitstellen eines periodischen Taktsignals, welches als Kurve a in 2 dargestellt ist. Weiterhin ist ein Stromregler 2 vorgesehen, welcher den Speisestrom des Messumformers als Messsignalstrom zwischen 4 und 20 mA regelt. Der Stromregler 2 erhält im normalen Messbetrieb ein Stellsignal, welches einen Messwert repräsentiert, von dem Mikroprozessor 1 und regelt den Speisestrom auf einen dem Stellsignal entsprechenden Wert. Der Messumformer umfasst weiterhin Überwachungsschaltung 3 mit einem Takt-Eingang und einem Reset-Ausgang, dessen Signal als Kurve b in 2 dargestellt ist. Solange das Taktsignal des Mikroprozessors empfangen wird, bleibt der Reset-Ausgang der Überwachungsschaltung auf Null. Wenn allerdings das Taktsignal ausbleibt, dann wird am Reset-Ausgang ein Reset-Puls ausgegeben, der nach einer bestimmten Zeit wiederholt wird, wenn der Reset nicht erfolgreich war, und das Taktsignal des Mikroprozessors weiterhin 1 ausbleibt. Das Signal des Reset-Ausgangs wird zudem über einen Tiefpass 5 dem Eingang eines Komparators 4 zugeführt, der einen ersten Operationsverstärker umfasst. Der Signalverlauf am Komparatoreingang ist der Kurve c in 2 zu entnehmen. Bei erfolglosem Reset führen mehrere Reset-Pulse zu einem Spannungsanstieg, bis die Referenzspannung an dem Referenzeingang des Komparators 4 überschritten wird. Daraufhin wird die Spannung am Ausgang des Komparators 4 heraufgesetzt, und als Fehlerstellsignal an den Stromregler 2 ausgegeben, der nun den Speisestrom auf einen Fehlersignalstrom von beispielsweise 22 mA ausgibt. Der allgemeine Verlauf des Speisestroms ist schematisch der Kurve d in 2 zu entnehmen. Demnach liegt der Wert des Speisestroms im normalen Messbetrieb im Band zwischen 4 und 20 mA und wird nach einem kurzen undefinierten Übergang, der durch das X in der Kurve angedeutet ist, auf 22 mA geregelt.

Einzelheiten des Stromreglers 2 sollen kurz anhand von 3 erläutert werden.

Der gezeigte Stromregler 2 umfasst zwei parallel geschaltete Stromreglerschaltungen, von denen die erste Stromreglerschaltung einen den Messsignalstrom in dem ersten Bandbereich regelt und die zweite Stromreglerschaltung den Fehlersignalstrom auf einen Wert außerhalb des ersten Bandbereiches regelt.

Beide Stromreglerschaltungen umfassen im wesentlichen jeweils einen Stromregeltransistor 21, 25 dessen Basis jeweils an dem Ausgang eines Operationsverstärker 22, 26 angeschlossen ist. An den Eingängen der Operationsverstärker 22, 26 liegt jeweils eine Stellspannung zur Regelung des Messsignalstroms bzw. des Fehlersignalstroms. An dem zweiten Operationsverstärker 26 der zweiten Stromreglerschaltung der liegt der Ausgang des Komparators 4 über einen Reihenwiderstand R2 an. Der Referenzeingang des zweiten Operationsverstärkers liegt auf Masse. Wann nun der Ausgang des Komparators ebenfalls auf Masse liegt, ist das Ausgangssignal des zweiten Operationsverstärkers auf Masse und der zweite Transistor 25 sperrt. Wenn dagegen bei einem nachhaltigen Ausfall des Taktes des Mikroprozessors, der Komparator 4 ein Stellsignal UvFehlerstrom ausgibt, dann gibt der zweite Operationsverstärker 26 eine Spannung aus, welche den Widerstand des zweiten Transistors 25 herabsetzt, so dass ein Strom über den zweiten Transistor fließt, welcher einen Gesamtspeisestrom von 22 mA bewirkt.

Der Widerstand der Hauptelektronik, die durch den Speisestrom versorgt wird, und die hier nicht detailliert dargestellt ist, wird in dieser Darstellung durch den Widerstand 27 bzw. RHE zusammengefasst.

Die erste Stromreglerschaltung zur Regelung des Messsignalstroms ist prinzipiell ähnlich aufgebaut wie die zweite Stromreglerschaltung, wobei bei der dargestellten Ausführungsform der Messumformer einen ASIC 24 umfasst, und der Operationsverstärker 22 der ersten Stromreglerschaltung in den ASIC 24 integriert ist.


Anspruch[de]
  1. Messumformer, umfassend:

    einen Mikroprozessor (1) mit einem Reset-Eingang und einem Taktausgang zum Bereitstellen eines periodischen Taktsignals;

    eine Überwachungsschaltung (3) mit einem Takt-Eingang und einem Reset-Ausgang; und

    einen Stromregler (2) zur Ausgabe eines Messsignalstroms, welcher Messsignalstrom im Messbetrieb in einem ersten Bandbereich einen Messwert repräsentiert; und außerhalb des ersten Bandbereichs einen Fehler signalisiert

    wobei

    der Takt-Eingang der Überwachungsschaltung mit dem Taktausgang des Mikroprozessors verbunden ist,

    der Reset-Eingang des Mikroprozessors mit dem Reset-Ausgang der Überwachungsschaltung verbunden ist,

    bei Ausfall des Taktsignals am dem Reset-Ausgang der Überwachungsschaltung ein Reset-Signal periodisch ausgegeben wird, dadurch gekennzeichnet, dass

    der Messumformer weiterhin eine Komparatorschaltung (4) aufweist mit einem ersten Eingang, der über einen Tiefpass (5) mit dem Reset-Ausgang der Überwachungsschaltung (3) verbunden ist, mit einem zweiten Eingang, an dem eine Referenzspannung anliegt, und mit einen Ausgang, der mit einem Eingang des Stromreglers verbunden ist, wobei nach wiederholter Ausgabe des Reset-Signals die Spannung am ersten Eingang der Komparatorschaltung die Referenzspannung übersteigt, so dass am Ausgang des Komparators ein Stellsignal anliegt, welches den Stromregler veranlasst ein Fehlersignalstrom außerhalb des ersten Bandbereichs auszugeben.
  2. Messumformer nach Anspruch 1, wobei der Tiefpass ein RC-Glied umfasst.
  3. Messumformer nach Anspruch 1 oder 2, wobei die Komparatorschaltung einen ersten Operationsverstärker umfasst.
  4. Messumformer nach einem der vorhergehenden Ansprüche, wobei der erste Bandbereich 4 bis 20 mA beträgt.
  5. Messumformer nach Anspruch 4, wobei der Fehlersignalstrom mindestens 21 mA beträgt.
  6. Messumformer nach einem der vorhergehenden Ansprüche, wobei die Überwachungsschaltung einen digitalen Zähler umfasst, welcher von einem Startwert aus zählt und bei Über- oder Unterschreiten eines Grenzwertes die Ausgabe eines Reset-Signals veranlasst, wobei der Zähler sowohl durch jeden Puls des Taktsignals des Mikroprozessors als auch durch das Reset-Signal der Überwachungsschaltung auf seinen Startwert zurückgesetzt wird.
  7. Messumformer nach einem der vorhergehenden Ansprüche, wobei der Stromregler zwei parallele Stromreglerschaltungen umfasst, von denen die erste Stromreglerschaltung einen den Messsigalstrom in dem ersten Bandbereich regelt und die zweite Stromreglerschaltung den Fehlersignalstrom auf einen der außerhalb des ersten Bandbereiches regelt.
  8. Messumformer nach Anspruch 7, wobei die zweite Stromreglerschaltung einen zweiten Operationsverstärker umfasst, von dem ein Eingang mit dem Ausgang des Komparators verbunden ist, und dessen Ausgang mit der Basis eines Transistors verbunden ist, über den der Fehlersignalstrom eingestellt wird.
  9. Messumformer nach Anspruch 8 wobei die Spannungsversorgung des zweiten Operationsverstärkers zur Regelung des Fehlersignalstroms unabhängig von der Spannungsversorgung des Stromregelungsschaltung zur Regelung des Messsignalstroms erfolgt.
Es folgen 2 Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com