PatentDe  


Dokumentenidentifikation DE102004027842A1 12.01.2006
Titel Abrieb- und kratzfeste Beschichtungen mit niedriger Brechzahl auf einem Substrat
Anmelder Institut für Neue Materialien gemeinnützige GmbH, 66123 Saarbrücken, DE
Erfinder Arndt, Heike, 66121 Saarbrücken, DE;
Jilavi, Mohammad, 66459 Kirkel, DE;
Mennig, Martin, 66287 Quierschied, DE;
Oliveira, Peter W., 66111 Saarbrücken, DE;
Schmidt, Helmut, 66130 Saarbrücken, DE
Vertreter Barz, P., Dipl.-Chem. Dr.rer.nat., Pat.-Anw., 80803 München
DE-Anmeldedatum 08.06.2004
DE-Aktenzeichen 102004027842
Offenlegungstag 12.01.2006
Veröffentlichungstag im Patentblatt 12.01.2006
IPC-Hauptklasse C23C 30/00(2006.01)A, F, I, ,  ,  ,   
IPC-Nebenklasse C03C 17/22(2006.01)A, L, I, ,  ,  ,      C03C 17/23(2006.01)A, L, I, ,  ,  ,      C03C 17/34(2006.01)A, L, I, ,  ,  ,      B05D 7/24(2006.01)A, L, I, ,  ,  ,      G02B 3/00(2006.01)A, L, I, ,  ,  ,      G02B 1/10(2006.01)A, L, I, ,  ,  ,      
Zusammenfassung Beschrieben wird ein Substrat mit einer abrieb- und kratzfesten Beschichtung mit niedriger Brechzahl, umfassend Magnesiumfluorid und mindestens ein Metall- oder Halbmetalloxid. Die Beschichtung kann durch Aufbringen einer Beschichtungszusammensetzung, umfassend Magnesiumfluorid oder eine Vorstufe davon, und mindestens ein Metall- oder Halbmetalloxid oder eine Vorstufe davon, auf ein Substrat und anschließende Wärmebehandlung erhalten werden.
Die Beschichtung eignet sich für optische Schichten insbesondere auf lichtdurchlässigen Substraten. Beispiele für geeignete Anwendungen sind Antireflexschichten und Interferenzschichtpakete.

Beschreibung[de]

Die Erfindung betrifft ein Substrat mit einer abrieb- und kratzfesten Beschichtung mit niedriger Brechzahl, umfassend Magnesiumfluorid und mindestens ein Metall- oder Halbmetalloxid, ein Verfahren zu dessen Herstellung und dessen Verwendung sowie die für das Verfahren verwendete Beschichtungszusammensetzung und deren Herstellung.

Viele Fluoride von Erdalkalimetallen, insbesondere Magnesiumfluorid (MgF2), zeichnen sich durch einen niedrigen Brechungsindex aus und sind daher als Materialien für dielektrische Mehrfachbeschichtungen und besonders für Antireflexbeschichtungen von großem Interesse. Diese Materialien werden sowohl als Komponenten in Mehrschichtsystemen als auch als Einzelschichten eingesetzt. Als &lgr;/4-Anitreflex-Einzelschicht wird insbesondere Magnesiumfluorid verwendet.

Im Allgemeinen werden dünne MgF2-Schichten über aufwendige und teure PVD- und CVD-Verfahren oder Sputtern erzeugt. Nachteil dieser Verfahren ist, dass die Beschichtung von großen Substraten sehr mühsam und kostspielig wird und gekrümmte Substrate nicht homogen beschichtet werden können. Außerdem kann keine gute Abriebfestigkeit erzielt werden. Ein weiterer Nachteil der so erzeugten Schichten ist, dass diese im Allgemeinen sehr dicht sind und daher näherungsweise einen dem Bulkmaterial entsprechenden Brechungsindex (n = 1,38) aufweisen. Dieser Brechungsindex ist ausreichend niedrig, um in Mehrschichtsystemen eingesetzt zu werden. Um jedoch optimale Antireflexeigenschaften auf gängigen Substraten mit einem Brechungsindex von ca. 1,5 (z.B. Glas) erzielen zu können, muss eine Antireflex-Einzelschicht idealerweise einen Brechungsindex von n = 1,22

aufweisen.

Eine Möglichkeit, um den Brechungsindex einer Schicht zu erniedrigen, besteht in der Erhöhung ihrer Porosität. Dies kann erreicht werden, indem die MgF2-Schichten nasschemisch appliziert werden.

EP-A-0641739 beschreibt die Synthese von Natrium-Magnesiumfluorid-Solen (NaF·MgF2). Dabei werden wässrige Natriumfluorid- und Magnesiumsalzlösungen gemischt und die gebildeten Nebenprodukt-Salze werden dann durch aufwendige Filtrationsverfahren abgetrennt. Die erhaltenen Aggregate der kolloidalen Partikel werden schließlich nass gemahlen. Um Antireflex-Beschichtungsmaterialien zu erhalten, werden nach einem Lösemittelaustausch die NaF·MgF2-Sole mit Filmbildnern gemischt und auf Glas appliziert. Die Transmission der beschichteten Gläser liegt jedoch nur bei 94,05% (550 nm) gegenüber 91,61 % (550 nm) für das unbeschichtete Glas. Neben der aufwendigen Synthese des Beschichtungsmaterials ist vor allem die unzureichende Antireflexwirkung dieser Schichten als Nachteil zu werten.

In ähnlicher Weise werden in JP-A-2026824 Magnesiumfluorid-Sole hergestellt. Auch hier werden wässrige Magnesiumsalzlösungen mit wässrigen Fluorid-Lösungen gemischt und erhitzt. Auch hier müssen Nebenprodukt-Salze mittels Ultrafiltration entfernt werden.

Dünne Schichten mit einem Brechungsindex von n = 1,16 (193 nm) auf optischen Substraten führen gemäß EP-A-1 315 005 zu einem Transmissionsverlust von weniger als 0,5 %. Die Schichten werden durch Applikation eines MgF2-Sols erzeugt. Das MgF2-Sol wird dabei durch Umsetzung von Magnesiumacetat mit Flusssäure in Methanol erhalten und anschließend autoklaviert.

Auch I. M. Thomas, Applied Optics 27 (1988) 3356-3358, beschreibt die Erzeugung von Magnesiumfluorid-Solen durch Umsetzung von Magnesiumacetattetrahydrat oder Magnesiummethanolat mit Flusssäure in trockenem Methanol. Quarzglas, das mit diesen Solen beschichtet ist, zeigt eine Transmission von annähernd 100 (~350 nm), d.h. der Brechungsindex dieser Schichten beträgt ca. 1,2. Somit sind Antireflexschichten mit den gewünschten optischen Eigenschaften zwar zugänglich, ein immenser Nachteil dieser Methode ist jedoch die Verwendung von Flusssäure (HF), da Flusssäure hochtoxisch ist.

Eine Sol-Gel-Route zur Herstellung von Magnesiumfluorid mit nicht-toxischen Ausgangstoffen wird in EP-A-071348 beschrieben. Dabei wird beispielsweise Magnesium in einem wasserfreien Lösungsmittel gelöst und mit fluorierten Alkoholen zum Fluoralkoxid umgesetzt. Nach Filtration der Lösung erfolgt die Hydrolyse der Mg-Alkoxide. Dieses Verfahren hat zwar den Vorteil, dass von nicht-toxischen, ungefährlichen Edukten ausgegangen wird, allerdings sind Edukte wie wasserfreie Lösungsmittel und fluorierte Alkohole kostspielig. Des Weiteren finden sich in dieser Patentanmeldung keinerlei Angaben über die optischen oder mechanischen Eigenschaften von Schichten, welche durch Tauchapplikation z.B. auf Glas der oben beschriebenen Sole erhältlich sind.

Eine weitere Methode zur Erzeugung von Magnesiumfluorid-Schichten, bei welchen von nicht-toxischen Edukten ausgegangen wird, wird in US-A-44932721 beschrieben. Dort werden Magnesiumfluorid-Schichten durch die thermische Disproportionierung von fluorhaltigen Magnesiumverbindungen wie Magnesiumtrifluoracetat, Magnesiumtrifluoracetylacetonat oder Magnesiumhexafluoracetylacetonat erzeugt. Die genannten Verbindungen werden in organischen Lösungsmitteln wie Butylacetat oder Ethylenglycolmonoethylether gelöst, mittels Schleudern, Sprühen oder Tauchen auf Substrate (Glas, Quarzglas) aufgebracht und bei mindestens 300°C für mindestens 1 min ausgehärtet. Die so erhaltenen Schichten besitzen einen Brechungsindex von 1,36 bis 1,38 und liegen damit im Bereich des Bulkmaterials. Dennoch zeigen so beschichtete Glassubstrate eine Restreflexion von 0,5%.

Auf ähnliche Weise werden nach S. Fujihara et al., Journal of Sol-Gel-Science and Technology 19 (2000) 311-314, Magnesiumfluorid-Schichten erzeugt. Eine Route beinhaltet die Umsetzung von Magnesiumacetat mit Trifluoressigsäure (TFA) und Wasser in 2-Propanol. Die Applikation dieser Sole auf Quarzglas mittels Schleudern und anschließendes Härten der Schichten bei 400°C bis 500°C ergeben Schichten, deren Brechungsindex im gewünschten Bereich (n = 1,2) liegt. Eigene Untersuchungen haben jedoch gezeigt, dass bei der Applikation der nach dieser Vorschrift hergestellten Sole schwerwiegende Benetzungsprobleme auftreten.

Wird hingegen Magnesiumethanolat (Mg(OEt)2) mit Trifluoressigsäure (TFA) in 2-Propanol zu Magnesiumtrifluoroacetat umgesetzt (S. Fujihara et al., Thin Solid Films 304 (1997) 252-255), zeigen sich nach eigenen Untersuchungen bei der Applikation selten Benetzungsprobleme. Die auf diese Weise hergestellten Sole wurden nach dieser Literaturstelle mittels Schleudern auf Quarzglas appliziert und bei Temperaturen von 300°C bis 600°C für 10 min gehärtet. Die so beschichteten Substrate zeigen eine relativ geringe Transmission von maximal ca. 96,6%. Angaben zum Brechungsindex dieser Schichten fehlen.

Es ist bekannt, dass Sole von Metall- oder Halbmetalloxiden für Schichten aus Metall- oder Halbmetalloxiden, wie ZrO2-, Al2O3-, TiO2-, Ta2O5- oder SiO2-Schichten, Beschichtungen mit guter optischer Qualität ergeben können, ihre Brechzahl liegt aber deutlich höher (1,46 bis 2,3) als die von MgF2-Schichten.

Der Erfindung lag die Aufgabe zugrunde, unter Verwendung von nicht oder nur wenig toxischen Ausgangsstoffen eine nasschemische Syntheseroute für niedrigbrechende optische Schichten bereitzustellen, die sich durch eine gute optische Qualität und insbesondere einen geringen Brechungsindex auszeichnen. Überdies sollte eine über den Stand der Technik hinausgehende Abriebfestigkeit dieser Schichten erreicht werden.

Die Aufgabe konnte überraschenderweise durch eine Beschichtungszusammensetzung gelöst werden, die Magnesiumfluorid oder eine Vorstufe davon und mindestens ein Metall- oder Halbmetalloxid oder eine Vorstufe davon umfasst. Die erfindungsgemäße Beschichtungszusammensetzung kann in einfacher Weise nasschemisch auf ein Substrat aufgebracht und durch Wärmebehandlung gehärtet bzw. verdichtet werden. Die Erfindung stellt somit auch ein Substrat mit einer abrieb- und kratzfesten Beschichtung mit niedriger Brechzahl, umfassend Magnesiumfluorid und mindestens ein Metall- oder Halbmetalloxid, bereit.

Erstaunlicherweise wurde gefunden, dass durch den erfindungsgemäßen Herstellungsweg keine signifikante Erhöhung der Brechzahl der Magnesiumfluorid-Halbmetall-/Metalloxid-Schichten gegenüber reinen Magnesiumfluoridschichten zu verzeichnen ist, sich ihre Kratzfestigkeit aber deutlich erhöht.

Die Beschichtungszusammensetzung umfasst Magnesiumfluorid oder eine Vorstufe davon und mindestens ein Metall- oder Halbmetalloxid oder eine Vorstufe davon. Bevorzugt liegt das mindestens eine Metall- oder Halbmetalloxid oder eine Vorstufe davon in der Beschichtungszusammensetzung als Sol vor, d.h. die Beschichtungszusammensetzung ist bevorzugt ein Beschichtungssol. Das Magnesiumfluorid oder eine Vorstufe davon können in Form eines Sols oder als Lösung vorliegen. Die Beschichtungszusammensetzung wird bevorzugt hergestellt, indem ein Sol oder eine Lösung von Magnesiumfluorid oder einer Vorstufe davon und ein Sol von mindestens einem Metall- oder Halbmetalloxid oder einer Vorstufe davon miteinander gemischt werden.

Das Sol oder die Lösung von Magnesiumfluorid oder einer Vorstufe davon kann auf jede nach dem Stand der Technik bekannte Weise hergestellt werden, die zum Teil vorstehend aufgeführt wurden. Bevorzugt wird das Sol oder die Lösung aus der Umsetzung einer Magnesiumverbindung, bevorzugt einer hydrolysierbaren Magnesiumverbindung, mit einer fluorierten organischen Verbindung erhalten, wobei die Reaktion gewöhnlich in einem organischen Lösungsmittel durchgeführt wird. Unter hydrolysierbar wird hier auch die Hydratisierbarkeit der Mg-Verbindung verstanden.

Unter einer Vorstufe sind hierbei insbesondere Verbindungen von Magnesium gemeint, die in MgF2 überführt werden können, insbesondere bei den Bedingungen zur Herstellung des erfindungsgemäßen Substrats, wie bei der Wärmebehandlung. So können z.B. Magnesiumverbindungen oder -komplexe von fluorierten organischen Verbindungen durch eine thermische Disproportionierungsreaktion in Magnesiumfluorid überführt werden. Gegebenenfalls erfolgen Disproportionierungsreaktionen bzw. die Überführung in MgF2 bereits bei Raumtemperatur, so dass in dem Sol oder der Lösung bereits MgF2 enthalten sein kann. Natürlich kann gegebenenfalls das Gemisch von Magnesiumverbindung und fluorierter Verbindung auch erwärmt werden, etwa um die Umwandlung in MgF2 in dem Sol bzw. der Lösung zu fördern.

Als Magnesiumverbindung eignen sich alle Verbindungen, die mit einer fluorierten organischen Verbindung umgesetzt werden können, insbesondere hydrolysierbare Magnesiumverbindungen. Beispiele sind Magnesiumalkoxide. Die Alkoxygruppe des Magnesiumalkoxid hat bevorzugt 1 bis 12 Kohlenstoffatome, wobei Magnesiummethanolat, Magnesiumethanolat, Magnesiumpropanolat und Magnesiumbutanolat bevorzugt sind. Die am meisten bevorzugte Verbindung ist Magnesiumethanolat (Mg(OEt)2). Das Alkoxid kann linear oder verzweigt sein, z.B. n-Propanolat oder Isopropanolat.

Als fluorierte organische Verbindung wird bevorzugt eine organische Verbindung mit einer CF3-Gruppe verwendet. Bevorzugt eingesetzte organische Verbindungen sind Ketone, insbesondere &bgr;-Diketone, und Carbonsäuren. Beispiele sind Trifluoracetylaceton, Hexafluoracetylaceton und Trifluoressigsäure, wobei Trifluoressigsäure besonders bevorzugt ist.

Als Lösungsmittel kann jedes geeignete Lösungsmittel verwendet werden, z.B. eines der nachstehend für die Herstellung der Metall- oder Halbmetalloxide aufgeführten. Zweckmäßig sind z.B. Alkohole. Beispiele sind Ethanol, n-Propanol, 2-Propanol oder Butanol.

Ein bevorzugter Herstellungsweg für das Sol oder die Lösung mit Magnesiumfluorid oder einer Vorstufe davon kann wie folgt beschrieben werden. Es wird eine hydrolysierbare Magnesiumverbindung, bevorzugt Magnesiumalkoholat, besonders bevorzugt Magnesiumethylat, in einem organischen Lösungsmittel, bevorzugt einem Alkohol, besonders bevorzugt 2-Propanol, dispergiert und anschließend mit einer organischen Verbindung, die mindestens eine CF3-Gruppe enthält, umgesetzt. Bevorzugt werden dafür CF3-Gruppen enthaltende Ketone und Carbonsäuren, insbesondere Trifluoressigsäure, verwendet. Anschließend werden eventuell vorhandene nicht gelöste Bestandteile abfiltriert.

Als Metall- oder Halbmetalloxide können alle Oxide von Metallen oder Halbmetallen (im Folgenden auch gemeinsam als M abgekürzt) eingesetzt werden. Insbesondere werden Oxide von Metallen oder Halbmetallen der Hauptgruppen III bis VI, insbesondere der Hauptgruppen III und IV, und/oder der Nebengruppen, bevorzugt der Nebengruppen II bis V, des Periodensystems der Elemente sowie Lanthaniden und Actiniden oder Mischoxide davon eingesetzt. Bevorzugte Metalle oder Halbmetalle M für die Metall- oder Halbmetalloxide sind z.B. B, Al, Ga, In, Si, Ge, Sn, Pb, Y, Ti, Zr, V, Nb, Ta, Mo, W, Fe, Cu, Ag, Zn, Cd, Ce und La oder Mischoxide davon. Es kann eine Art von Oxid oder eine Mischung von Oxiden eingesetzt werden.

Beispiele für Oxide, die gegebenenfalls hydratisiert sein können, sind ZnO, CdO, SiO2, GeO2, TiO2, ZrO2, CeO2, SnO2, Al2O3 (Böhmit, AlO(OH), auch als Aluminiumhydroxid), B2O3, In2O3, La2O3, Fe2O3, Fe3O4, Cu2O, Ta2O5, Nb2O5, V2O5, MoO3 oder WO3. Auch Silicate, Zirconate, Aluminate, Stannate von Metallen oder Halbmetallen, und Mischoxide, wie Indium-Zinn-Oxid (ITO), Antimon-Zinn-Oxid (ATO), Fluor-dotiertes Zinnoxid (FTO), Leuchtpigmente mit Y- oder Eu-haltigen Verbindungen, Spinelle, Ferrite oder Mischoxide mit Perowskitstruktur wie BaTiO3 und PbTiO3 können verwendet werden.

Bevorzugt sind Halbmetall- oder Metalloxide, die gegebenenfalls hydratisiert sind (Oxidhydrat), von Si, Ge, Al, B, Zn, Cd, Ti, Zr, Ce, Sn, In, La, Fe, Cu, Ta, Nb, V, Mo oder W. Besonders bevorzugt sind SiO2, Al2O3, Ta2O5, ZrO2 und TiO2, wobei ZrO2 am meisten bevorzugt ist.

Das Sol von mindestens einem Halbmetall- oder Metalloxid kann durch Dispergieren von hergestellten Teilchen, insbesondere nanoskaligen Teilchen, in einem Lösungsmittel oder in situ hergestellt werden. Die Teilchen können gewöhnlich auf verschiedene Weise hergestellt werden, z.B. durch Flammpyrolyse, Plasmaverfahren, Kolloidtechniken, Sol-Gel-Prozesse, kontrollierte Keim- und Wachstumsprozesse, MOCVD-Verfahren und Emulsionsverfahren. Diese Verfahren sind in der Literatur ausführlich beschrieben.

Das Sol von mindestens einem Halbmetall- oder Metalloxid wird vorzugsweise durch ein Sol-Gel-Verfahren hergestellt. Beim Sol-Gel-Verfahren werden gewöhnlich hydrolysierbare Verbindungen mit Wasser, gegebenenfalls unter saurer oder basischer Katalyse, hydrolysiert und gegebenenfalls zumindest teilweise kondensiert. Die Hydrolyse- und/oder Kondensationsreaktionen führen zur Bildung von Verbindungen oder Kondensaten mit Hydroxy-, Oxogruppen und/oder Oxobrücken, die als Vorstufen dienen. Durch geeignete Einstellung der Parameter, z.B. Kondensationsgrad, Lösungsmittel, Temperatur, Wasserkonzentration, Dauer oder pH-Wert, kann das die Oxide oder Vorstufen enthaltende Sol erhalten werden. Unter den Vorstufen der Oxide werden insbesondere die genannten Kondensationsprodukte verstanden. Weitere Einzelheiten des Sol-Gel-Verfahrens sind z.B. bei C.J. Brinker, G.W. Scherer: "Sol-Gel Science – The Physics and Chemistry of Sol-Gel-Processing", Academic Press, Boston, San Diego, New York, Sydney (1990) beschrieben.

Die Hydrolyse und Kondensation können in einem Lösungsmittel durchgeführt werden, sie können aber auch ohne Lösungsmittel durchgeführt werden, wobei bei der Hydrolyse Lösungsmittel oder andere flüssige Bestandteile gebildet werden können.

Als einsetzbare Lösungsmittel kommen sowohl Wasser als auch organische Lösungsmittel oder Mischungen in Betracht. Dabei handelt es sich um die üblichen, auf dem Gebiet der Beschichtung eingesetzten Lösungsmittel. Beispiele für geeignete organische Lösungsmittel sind Alkohole, vorzugsweise niedere aliphatische Alkohole (C1-C8-Alkohole), wie Methanol, Ethanol, 1-Propanol, Isopropanol und 1-Butanol, Ketone, vorzugsweise niedere Dialkylketone, wie Aceton und Methylisobutylketon, Ether, vorzugsweise niedere Dialkylether, wie Diethylether, oder Diolmonoether, Amide, wie Dimethylformamid, Tetrahydrofuran, Dioxan, Sulfoxide, Sulfone oder Butylglycol und deren Gemische. Bevorzugt werden Alkohole verwendet. Es können auch hochsiedende Lösungsmittel verwendet werden. Beim Sol-Gel-Verfahren kann das Lösungsmittel gegebenenfalls ein bei der Hydrolyse gebildeter Alkohol aus den Alkoholatverbindungen sein.

Als hydrolysierbare Verbindungen eignen sich prinzipiell alle hydrolysierbaren Metall- oder Halbmetallverbindungen, z.B. der vorstehend aufgeführten Metalle und Halbmetalle M. Es können eine oder mehrere hydrolysierbare Verbindungen eingesetzt werden.

Bei der hydrolysierbaren Metall- oder Halbmetallverbindung handelt es sich bevorzugt um Verbindungen der allgemeinen Formel MXn (I), worin M das vorstehend definierte Metall oder Halbmetall ist, X eine hydrolysierbare Gruppe ist, die gleich oder verschieden sein kann, wobei zwei Gruppen X durch eine zweizähnige hydrolysierbare Gruppe oder eine Oxogruppe ersetzt sein können oder drei Gruppen X durch eine dreizähnige hydrolysierbare Gruppe ersetzt sein können, und n der Wertigkeit des Elements entspricht, wenn X ein Ladung von 1 aufweist, und häufig 3 oder 4 ist. Gegebenenfalls kann die hydrolysierbare Verbindung auch nicht hydrolysierbare Gruppen aufweisen, die die hydrolysierbaren Gruppen teilweise ersetzen.

Beispiele für die hydrolysierbaren Gruppen X, die gleich oder voneinander verschieden sein können, sind Wasserstoff, Halogen (F, Cl, Br oder I, insbesondere Cl oder Br), Alkoxy (z.B. C1-6-Alkoxy, wie z.B. Methoxy, Ethoxy, n-Propoxy, i-Propoxy und n-, i-, sek.- oder tert.-Butoxy), Aryloxy (vorzugsweise C6-10-Aryloxy, wie z.B. Phenoxy), Alkaryloxy, z.B. Benzoyloxy, Acyloxy (z.B. C1-6-Acyloxy, vorzugsweise C1-4-Acyloxy, wie z.B. Acetoxy oder Propionyloxy), Amino und Alkylcarbonyl (z.B. C2-7-Alkylcarbonyl wie Acetyl) oder Komplexbildner wie &bgr;-Dicarbonyle (z.B. Acetylacetonato). Die genannten Gruppen können gegebenenfalls Substituenten, wie Halogen oder Alkoxy, enthalten. Bevorzugte hydrolysierbare Reste X sind Halogen, Alkoxygruppen und Acyloxygruppen, wobei Alkoholate besonders bevorzugt sind. Die Verbindungen können auch mit zusätzlichen komplexierenden Verbindungen stabilisiert sein.

Beispiele für Titanverbindungen der Formel TiX4 sind TiCl4, Ti(OCH3)4, Ti(OC2H5)4 Ti(pentoxy)4, Ti(hexoxy)4, Ti(2-ethylhexoxy)4, Ti(n-OC3H7)4 oder Ti(i-OC3H7)4. Weitere Beispiele für einsetzbare hydrolysierbare Verbindungen von Elementen M sind Al(OCH3)3, Al(OC2H5)3, Al(O-n-C3H7)3, Al(O-i-C3H7)3, Al(O-n-C4H9)3, Al(O-sek.-C4H9)3, AlCl3, AlCl(OH)2, Al(O2H4OC4H9)3, ZrCl4, Zr(OC2H5)4, Zr(O-n-C3H7)4, Zr(O-i-C3H7)4, Zr(OC4H9)4, ZrOCl2, Zr(pentoxy)4, Zr(hexoxy)4, Zr(2-ethylhexoxy)4, sowie Zr-Verbindungen, die komplexierende Reste aufweisen, wie z.B, &bgr;-Diketon- und (Meth)acrylreste, Borsäure, BCl3, B(OCH3)3, B(OC2H5)3, SnCl4, Sn(OCH3)4, Sn(OC2H5)4, VOCl3 und VO(OCH3)3. Beispiele für Silane der Formel SiX4 sind Si(OCH3)4, Si(OC2H5)4, Si(O-n- oder -i-C3H7)4, Si(OC4H9)4, SiCl4, HSiCl3, Si(OOCCH3)4. Von diesen Silanen sind Tetraalkoxysilane bevorzugt, wobei solche mit C1-C4-Alkoxy besonders bevorzugt sind, insbesondere Tetramethoxysilan und Tetraethoxysilan (TEOS).

Gegebenenfalls können die Halbmetall- oder Metalloxide auch in Anwesenheit eines Komplexbildners hergestellt werden. Beispiele für geeignete Komplexbildner sind z.B. ungesättigte Carbonsäuren und &bgr;-Dicarbonyl-Verbindungen, wie z.B. (Meth)acrylsäure, Acetylaceton und Acetessigsäureethylester.

Ferner kann gegebenenfalls ein Haftvermittler eingesetzt werden, der gewöhnlich mit dem Teilchen von Halbmetall- oder Metalloxid oder der Vorstufe davon wechselwirkt oder gebunden bzw. komplexiert wird und dadurch das Teilchen oberflächenmodifiziert und dadurch die Haftung an dem Substrat fördert. Neben der Gruppe für die Anbindung an das Halbmetall- oder Metalloxid oder der Vorstufe davon besitzt der Haftvermittler bevorzugt eine weitere funktionelle Gruppe. Auch Komplexbildner können sich als Haftvermittler eignen.

Beispiele für einen Haftvermittler sind ungesättigte Carbonsäuren wie (Meth)acrylsäure und ein hydrolysierbares Silan mit mindestens einer nicht hydrolysierbaren Gruppe, wobei sich das Silan insbesondere für Sole von SiO2 eignet.

Beispiel für hydrolysierbare Silane mit mindestens einer nicht hydrolysierbaren Gruppe als Haftvermittler sind Verbindungen der Formel RSiX3 (II), worin X wie in Formel (I) definiert ist. Bei dem nicht hydrolysierbaren Rest R kann es sich um nicht hydrolysierbare Reste R ohne eine funktionelle Gruppe oder bevorzugt mit einer funktionellen Gruppe handeln.

Der nicht hydrolysierbare Rest R ist beispielsweise Alkyl (vorzugsweise C1-8-Alkyl), Alkenyl (vorzugsweise C2-6-Alkenyl), Alkinyl (vorzugsweise C2-6-Alkinyl) und Aryl (vorzugsweise C6-10-Aryl). Die Reste R und X können gegebenenfalls einen oder mehrere übliche Substituenten, wie z.B. Halogen oder Alkoxy, aufweisen. Spezielle Beispiele für die funktionellen Gruppen des Restes R sind die Epoxy-, Hydroxy-, Ether-, Amino-, Monoalkylamino-, Dialkylamino-, Amid-, Carboxy-, Vinyl-, Acryloxy-, Methacryloxy-, Cyano-, Halogen-, Aldehyd-, Alkylcarbonyl-, und Phosphorsäuregruppe. Diese funktionellen Gruppen sind über Alkylen-, Alkenylen- oder Arylen-Brückengruppen, die durch Sauerstoff- oder -NH-Gruppen unterbrochen sein können, an das Siliciumatom gebunden. Die genannten Brückengruppen leiten sich z.B. von den oben genannten Alkyl-, Alkenyl- oder Arylresten ab. Die Reste R mit einer funktionellen Gruppe enthalten vorzugsweise 1 bis 18, insbesondere 1 bis 8 Kohlenstoffatome.

Beispiele für Silane der Formel (II) sind hydrolysierbare Silane mit einer Glycidyloxygruppe, Aminogruppe oder (Meth)acryloxygruppen, wie &ggr;-Glycidyloxypropyltrimethoxysilan, &ggr;-Glycidyloxypropyltriethoxysilan, 3-(Meth)acryloxypropyltri(m)ethoxysilan, 3-(Meth)acryloxypropyltrimethoxysilan, 3-Aminopropyltriethoxysilan, N-2-Aminoethyl-3-aminopropyltrimethoxysilan, Trimethoxysilylpropyldiethylentriamin. (Meth)acryl steht für Methacryl oder Acryl. Weitere konkrete Beispiele für hydrolysierbare Silane mit nicht hydrolysierbaren Gruppen können z.B. der EP-A-195493 entnommen werden. Bei der Oberflächenmodifizierung von nanoskaligen Teilchen handelt es sich um ein bekanntes Verfahren, wie es von der Anmelderin z.B. in WO 93/21127 (DE 4212633) oder WO 96/31572 beschrieben wurde.

Das Halbmetall- oder Metalloxid-Sol wird somit bevorzugt aus der entsprechenden hydrolysierbaren Verbindung, bevorzugt aus dem Metallalkoxid, durch Hydrolyse, gegebenenfalls in Gegenwart eines Katalysators und/oder Komplexbildners synthetisiert. Bevorzugt werden ZrO2-Sole verwendet, die z. B. aus Zirconium-tetra-n-propylat durch Reaktion mit Salzsäure in Gegenwart von Acetylaceton hergestellt werden können.

Anschließend werden das Sol von dem mindestens einen Metall- oder Halbmetalloxid oder dessen Vorstufen mit der Lösung oder dem Sol von Magnesiumfluorid oder dessen Vorstufen gemischt. Das Verhältnis kann in weiten Bereichen variieren. Im allgemeinen werden die Mengen aber so gewählt, dass das Stoffmengenverhältnis der Menge an Magnesium (Mg) in Magnesiumfluorid oder dessen Vorstufen zu Metall oder Halbmetall (M) in dem mindestens einen Metall- oder Halbmetalloxid oder dessen Vorstufen Mg/M in der Beschichtungszusammensetzung im Bereich von 1:0,01 bis 1:1,8, bevorzugter im Bereich von 1:0,05 bis 1:0,5 oder 1:0,1 bis 1:0,5 und besonders bevorzugt von 1:0,1 bis 1:0,2 liegt.

Die Beschichtungszusammensetzung umfasst neben Magnesiumfluorid oder dessen Vorstufen und dem mindestens einen Metall- oder Halbmetalloxid oder dessen Vorstufen, dem oder den Lösungsmitteln und gegebenenfalls Komplexbildnern bzw. Haftvermittlern bevorzugt im wesentlichen keine weiteren Komponenten. Es ist aber denkbar, andere Additive zuzugeben.

Daher machen Magnesiumfluorid oder dessen Vorstufen und das mindestens eine Metall- oder Halbmetalloxid oder dessen Vorstufen bevorzugt mindestens 80 Gew.-%, bevorzugter mindestens 90 Gew.-% und besonders bevorzugt mindestens 95 Gew.-% des Feststoffgehalts der Beschichtungszusammensetzung aus. Der Anteil an Magnesiumfluorid oder dessen Vorstufen beträgt bevorzugt mindestens 10 Gew.-%, bevorzugter mindestens 20 Gew.-% und besonders bevorzugt mindestens 30 Gew.-%, bezogen auf den Feststoffgehalt der Beschichtungszusammensetzung.

Die Beschichtungszusammensetzung wird auf ein Substrat aufgebracht. Prinzipiell kommen alle Substrate in Betracht. Beispiele für ein geeignetes Substrat sind Substrate aus Metall, Halbleiter, Glas, Keramik, Glaskeramik, Kunststoff, kristallinen Substraten oder anorganisch-organischen Kompositmaterialien. Bevorzugt werden Substrate verwendet, die gegenüber einer thermischen Behandlung der Beschichtung stabil sind. Die Substrate können vorbehandelt werden, z.B. zur Reinigung, durch eine Coronabehandlung oder mit einer Vorbeschichtung (z.B. einer Lackierung oder einer metallisierten Oberfläche).

Die erhaltenen Schichten werden insbesondere für optische Beschichtungen bzw. optische oder optoelektronische Anwendungen verwendet. Als Substrate sind insbesondere solche bevorzugt, die zumindest in einem bestimmten Bereich oder in bestimmten Bereichen des Lichtspektrums von UV-Licht über sichtbares Licht bis Infrarot-Licht lichtdurchlässig sind. Transparente Substrate mit Lichtdurchlässigkeit im Bereich des sichtbaren Lichts sind besonders zweckmäßig.

Beispiele für Kunststoffsubstrate sind Polycarbonat, Polymethylmethacrylat, Polyacrylate, Polyethylenterephthalat. Bevorzugt sind transparente Kunststoffe, Gläser (z. B. silicatische Gläser, wie Fensterglas oder optische Gläser, Kieselglas, Quarzglas, Borosilicatglas oder Kalknatronsilicatglas, Chalcogenid- und Halogenidgläser usw.) sowie kristalline Substrate (z. B. Saphir, Silicium oder Lithiumniobat).

Als Substrate für optische Anwendungen eignen sich z.B. Flachgläser, Uhrgläser, Instrumentenabdeckungen, Linsen und andere optische Elemente, Kunststofffolien oder transparente Behälter.

Als Beschichtungsverfahren können alle gängigen nasschemischen Methoden zur Herstellung optischer Schichten, wie z. B. Tauch-, Schleuder-, Sprühverfahren, Walzenbeschichtungstechniken oder Kombinationen aus diesen, sowie gängige Druckverfahren, z. B. Siebdruck, Flexodruck oder Tampondruck, eingesetzt werden. Weitere Beschichtungsverfahren sind Rakeln, Gießen, Streichen, Flutbeschichten, Slotcoating, Meniskus-Coating oder Curtain-Coating.

Nach Trocknen der aufgetragenen Beschichtungszusammensetzung erfolgt eine thermische Nachbehandlung der Beschichtung, z.B. über 50°C. Die eingesetzte Temperatur kann in weiten Bereichen variieren, bevorzugt erfolgt eine Wärmebehandlung im Temperaturbereich von 100 °C und 600 °C, bevorzugter von 300 bis 500 °C, besonders bevorzugt von 400 bis 450 °C. Durch die Wahl der Temperatur können die optischen Eigenschaften (z.B. Reflexion, Brechzahl) und die mechanischen Eigenschaften gesteuert werden. Sie richten sich nach den optischen Eigenschaften des Substrats (Brechzahl), nach dem beabsichtigten optischen Zweck (Antireflexbeschichtung, Interferenzschichtpaket), nach der thermischen Beständigkeit des Substrats und nach der gewünschten Anwendung (Außenanwendung, Innenanwendung). Durch die Wärmebehandlung kann z.B. eine Härtung bzw. Verdichtung und/oder eine Überführung der Vorstufen in MgF2 bzw. das Oxid erfolgen.

Das Verhältnis von Mg zu Metall oder Halbmetall in der fertigen Sicht entspricht zumindest in etwa dem Verhältnis in der Beschichtungszusammensetzung. Wie dort kann das Verhältnis in weiten Bereichen variieren. Im allgemeinen liegt das Stoffmengenverhältnis an Magnesium (Mg) in Magnesiumfluorid zu Metall oder Halbmetall (M) in dem mindestens einen Metall- oder Halbmetalloxid in der Beschichtung im Bereich von 1:0,01 bis 1:1,8, bevorzugter im Bereich von 1:0,05 bis 1:0,5 oder 1:0,1 bis 1:0,5 und besonders bevorzugt von 1:0,1 bis 1:0,2.

Die Schichten bestehen bevorzugt im Wesentlichen aus MgF2 und dem mindestens einen Halbmetall- oder Metalloxid. Gegebenenfalls können z.B. die vorstehend genannten Komplexbildner oder Haftvermittler oder andere Additive in relativ geringen Mengen in der fertigen Beschichtung enthalten sein. Eingesetzte organische Komponenten wie Komplexbildner oder vom Haftvermittler können gegebenenfalls bei der Wärmebehandlung flüchtig sein oder ausgebrannt werden. Es handelt sich daher gewöhnlich um größtenteils oder im Wesentlichen anorganische Schichten.

Magnesiumfluorid und das mindestens ein Metall- oder Halbmetalloxid machen bevorzugt mindestens 80 Gew.-%, bevorzugter mindestens 90 Gew.-% und besonders bevorzugt mindestens 95 Gew.-% der Beschichtung aus. Der Anteil an Magnesiumfluorid in der Beschichtung beträgt bevorzugt mindestens 10 Gew.-%, bevorzugter mindestens 20 Gew.-% und besonders bevorzugt mindestens 30 Gew.-%.

Die Schichtdicke kann in weiten Bereichen variieren, liegt aber gewöhnlich im Bereich von 20 nm bis 1 &mgr;m, bevorzugt 30 bis 500 nm und besonders bevorzugt 50 bis 250 nm.

Die erfindungsgemäße Beschichtung kann als Einzelschicht oder als eine Schicht von einem Mehrschichtpaket verwendet werden. Bei den anderen Schichten kann es sich um gleiche, gegebenenfalls mit anderen Verhältnissen, oder um andere, gewöhnlich ebenfalls optische Schichten handeln. Dementsprechend können vor und/oder nach der Beschichtung weitere Schichten auf übliche Weise auf das Substrat aufgebracht werden.

In der Regel wird die Beschichtung als optische Beschichtung verwendet. Die Beschichtung eignet sich insbesondere für Antireflexbeschichtungen, insbesondere als Einzelschicht, und für Interferenzschichtpakete. Diese Antireflex- und Interferenzschichten werden bevorzugt auf transparenten Substraten oder Substraten, die in mindestens einem Bereich des Wellenlängenbereichs vom UV-Licht bis IR-Licht lichtdurchlässig sind, verwendet.

Die folgenden Beispiele erläutern die Erfindung weiter, ohne sie einzuschränken. Die Lösung oder das Sol mit MgF2 oder dessen Vorstufen wird dabei vereinfacht als MgF2-Sol bezeichnet, auch wenn es sich um eine Lösung von MgF2-Vorstufen handeln sollte.

A) Herstellung der Sole

MgF2-Sol: Bei Raumtemperatur werden 25,396 g (0,22 mol) Magnesiumthylat in 522,810 g 2-Propanol gegeben. Zu der gerührten Dispersion werden 51,016 g (0,35 mol) Trifluoressigsäure (TFA) gegeben und bei Raumtemperatur gerührt. Zu Beginn der Reaktion ist eine leichte Erwärmung des Reaktionsgemisches zu beobachten. Mit Fortschreiten der Reaktion ist ein zunehmendes Aufklaren des Reaktionsgemisches zu beobachten. Nach 2 h werden eventuell vorhandene unlösliche Bestandteile mittels eines Spritzenfilters (1,2 &mgr;m) abgetrennt und dann wird die Reaktionsmischung bei Raumtemeratur stehen gelassen. Über Nacht bildet sich ein farbloser Niederschlag, welcher über einen Faltenfilter abgetrennt wird. Das Filtrat wird erneut über ein 1,2 &mgr;m-Spritzenfilter filtriert und es resultiert eine gelbe Lösung. Die Beschichtungszusammensetzung ist bei Raumtemperatur mindesten 4 Wochen lagerstabil.

SiO2-Sol: Bei Raumtemperatur werden 13,29 g (87,3 mmol) Tetramethoxysilan (TMOS) in 11,80 g Ethanol gelöst. Unter Rühren wird eine Mischung von 13,40 g (744,4 mmol) Wasser, 0,30 g Salzsäure (37%) und 11,80 g Ethanol zugegeben. Es wird mindestens 2 h bei Raumtemperatur gerührt (kurzeitige Erwärmung des Reaktionsgemisches nach Zugabe) und mit 130 g 2-Propanol verdünnt. Unmittelbar nach der Verdünnung werden unter Rühren 0,30 g (1,52 mmol) 3-Glycidyloxypropyltrimethoxysilan (GPTS) und 18 mg (0,08 mmol) 3-Aminopropyltriethoxysilan in 26 g 2-Propanol zugegeben. Das Gemisch wird 1 h bei Raumtemperatur gerührt und es resultiert ein farbloses, klares Sol, welches bei 4°C mindestens 4 Wochen lagerstabil ist.

Al2O3-Sol: 40 g (0,16 mol) Aluminium-tri-sek.-butylat werden bei Raumtemperatur unter Rühren in 240 g 2-Propanol gelöst. Unter Rühren werden 8 g (0,08 mol) Acetylaceton und 3,2 g (0,18 mol) Wasser zugegeben. Es wird 1 h bei Raumtemperatur gerührt und über ein 0,45 &mgr;m-Spritzenfilter filtriert. Es resultiert ein gelbes, klares Sol.

ZrO2-Sol: 24 g (51,3 mmol) Zirconium-tetra-n-propylat (70 Gew.-% in 1-Propanol) werden bei Raumtemperatur in 240 g 2-Propanol gelöst. Unter Rühren werden 2,553 g (25,5 mmol) Acetylaceton zugegeben und 10 min gerührt. Anschließend werden 1,8 g konzentrierte Salsäure zugegeben und es wird 1 h bei Raumtemperatur gerührt. Nach Filtration über ein 5 &mgr;m-Spritzenfilter resultiert ein gelbes, klares Sol.

B) Herstellung der MgF2-Komposite

Durch einfaches Mischen des MgF2-Sols mit den entsprechenden Mengen an SiO2-, Al2O3- bzw. ZrO2-Sol werden MgF2-Komposit-Sole hergestellt.

C) Beschichtungsvorgang

Kalknatronsilicat-Glasscheiben werden durch Abreiben mit Ethanol gereinigt und im Tauchverfahren (3,5 mm/s) mit dem jeweiligen Sol beschichtet. Die Aushärtung der Beschichtung erfolgt bei 450°C für 30 min.

D) Charakterisierung

Die Kratzfestigkeit wird mit einem Stahlwolletest (Stahlwolle 0000, 250 g/1 cm2, 10 Zyklen) getestet. Die Schädigung (Anzahl der erzeugten Kratzer) wird lichtmikroskopisch beurteilt. Das Reflexionsvermögen wird spektroskopisch bestimmt.

Beispiel 1 MgF2/SiO2-Komposite

Das Verhalten der erhaltenen Schichten bezüglich der Transmission wurde untersucht und ist in 1 wiedergegeben.

Eine deutliche Verbesserung der Kratzfestigkeit wird bereits bei einem Mischungsverhältnis von MgF2-Sol/SiO2-Sol von 50/60 erreicht. Die Transmission ist höher als im Fall des unbeschichteten Glases und ebenfalls höher als bei einer reinen SiO2-Schicht.

Beispiel 2 MgF2/Al2O3-Komposite

Das Verhalten der erhaltenen Schichten bezüglich der Transmission wurde untersucht und ist in 2 wiedergegeben.

Die Kratzfestigkeit von MgF2-Schichten wird durch das Beimischen von Al2O3-Solen verbessert. Die beste Performance zeigen MgF2/Al2O3-Mischungen von 80/20 mit einer verbesserten Kratzfestigkeit bei einer Transmission von maximal ca. 99%.

Beispiel 3: MgF2/ZrO2-Komposite

Das Verhalten der erhaltenen Schichten bezüglich der Transmission wurde untersucht und ist in 3 wiedergegeben.

Die deutliche Verbesserung der Kratzfestigkeit wird bei einem Mischungsverhältnis von MgF2-Sol/ZrO2-Sol von 80/20 erreicht. Die Transmission ist dabei mit maximal ca. 98% noch sehr gut.

Bestimmung der Brechzahlen und Schichtdicken durch Ellipsometrie für die Beispiele 2 und 3

Anspruch[de]
  1. Substrat mit einer abrieb- und kratzfesten Beschichtung mit niedriger Brechzahl, umfassend Magnesiumfluorid und mindestens ein Metall- oder Halbmetalloxid.
  2. Substrat nach Anspruch 1, dadurch gekennzeichnet, dass Magnesiumfluorid und das mindestens eine Metall- oder Halbmetalloxid mindestens 80 Gew.-% der Beschichtung ausmachen.
  3. Substrat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Stoffmengenverhältnis der Menge an Magnesium (Mg) in Magnesiumfluorid zu Metall oder Halbmetall (M) in dem mindestens einen Metall- oder Halbmetalloxid Mg/M in der Beschichtung im Bereich von 1:0,01 bis 1:1,8 liegt.
  4. Substrat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Beschichtung, umfassend Magnesiumfluorid und mindestens ein Metall- oder Halbmetalloxid, eine Einzelschicht oder eine Komponente eines Mehrschichtsystems ist.
  5. Substrat nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das mindestens eine Metall- oder Halbmetalloxid ZrO2, TiO2, Al2O3, Ta2O5 und/oder SiO2 ist.
  6. Substrat nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Substrat in mindestens einem Bereich des Wellenlängenbereichs vom UV-Licht bis IR-Licht lichtdurchlässig ist.
  7. Substrat nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Substrat ein transparenter Kunststoff, ein Glas oder ein kristallines Substrat ist.
  8. Substrat nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Magnesiumfluorid mindestens 10 Gew.-% der Beschichtung ausmacht.
  9. Substrat nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Substrat ein Flachglas, ein Uhrglas, eine Instrumentenabdeckung, eine Linse oder ein anderes optisches Element, eine Kunststofffolie oder ein transparenter Behälter ist.
  10. Verfahren zur Herstellung eines Substrats mit einer abrieb- und kratzfesten Beschichtung mit niedriger Brechzahl nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man eine Beschichtungszusammensetzung, die Magnesiumfluorid oder eine Vorstufe davon und mindestens ein Metall- oder Halbmetalloxid oder eine Vorstufe davon enthält, auf das Substrat aufbringt und wärmebehandelt.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Beschichtungszusammensetzung durch ein Beschichtungs- oder Druckverfahren auf das Substrat aufgebracht wird.
  12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Wärmebehandlung bei einer Temperatur von 100 bis 600°C durchgeführt wird.
  13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass das Substrat vor und/oder nach der Beschichtung mit einer oder mehreren gleichen oder anderen Schichten versehen wird.
  14. Verwendung eines Substrats mit einer abrieb- und kratzfesten Beschichtung mit niedriger Brechzahl nach einem der Ansprüche 1 bis 9 als Interferenzschichtpaket auf einem transparenten Substrat oder als Einfachentspiegelungsschicht auf einem transparenten Substrat.
  15. Beschichtungszusammensetzung für eine abrieb- und kratzfeste Beschichtung mit niedriger Brechzahl, die Magnesiumfluorid oder eine Vorstufe davon und mindestens ein Metall- oder Halbmetalloxid oder eine Vorstufe davon umfasst.
  16. Beschichtungszusammensetzung nach Anspruch 15, dadurch gekennzeichnet, dass sie Magnesiumfluorid oder eine Vorstufe davon als Sol oder in Lösung und das mindestens eine Metall- oder Halbmetalloxid oder eine Vorstufe davon als Sol umfasst.
  17. Beschichtungszusammensetzung nach Anspruch 15 oder Anspruch 16, dadurch gekennzeichnet, dass Magnesiumfluorid oder eine Vorstufe davon und das mindestens eine Metall- oder Halbmetalloxid oder eine Vorstufe davon mindestens 80 Gew.-% des Feststoffgehalts der Beschichtungszusammensetzung ausmachen.
  18. Verfahren zur Herstellung einer Beschichtungszusammensetzung nach einem der Ansprüche 15 bis 17, bei dem ein Sol oder eine Lösung von Magnesiumfluorid oder einer Vorstufe davon und ein Sol von mindestens einem Metall- oder Halbmetalloxid oder einer Vorstufe davon miteinander gemischt werden.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass das Sol oder die Lösung von Magnesiumfluorid oder einer Vorstufe davon durch Umsetzung einer Magnesiumverbindung mit einer fluorierten organischen Verbindung in einem organischen Lösungsmittel erhalten wird.
  20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die fluorierte organische Verbindung eine Verbindung mit einer CF3-Gruppe ist, bevorzugt ein Keton oder eine Carbonsäure, besonders bevorzugt Trifluoressigsäure.
  21. Verfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass die Magnesiumverbindung ein Magnesiumalkoholat, bevorzugt Magnesiumethylat, ist.
  22. Verfahren nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, dass das organische Lösungsmittel ein Alkohol ist.
  23. Verfahren nach einem der Ansprüche 19 bis 22, dadurch gekennzeichnet, dass das Sol von mindestens einem Metall- oder Halbmetalloxid oder einer Vorstufe davon durch Hydrolyse einer hydrolysierbaren Metall- oder Halbmetallverbindung, bevorzugt eines Metall- oder Halbmetallalkoholats, erhalten wird.
  24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass der Beschichtungszusammensetzung ein Komplexbildner und/oder ein Haftvermittler zugesetzt wird.
Es folgen 3 Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

  Patente PDF

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com