PatentDe  


Dokumentenidentifikation EP1006857 19.01.2006
EP-Veröffentlichungsnummer 0001006857
Titel VORRICHTUNG UND VERFAHREN ZUR ABTASTUNG MITTELS EINER PUNKTLICHTQUELLE
Anmelder University of Washington, Seattle, Wash., US
Erfinder MELVILLE, D., Charles, Issaquah, US;
TIDWELL, Michael, Seattle, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69832795
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 05.05.1998
EP-Aktenzeichen 989197108
WO-Anmeldetag 05.05.1998
PCT-Aktenzeichen PCT/US98/03192
WO-Veröffentlichungsnummer 0098049927
WO-Veröffentlichungsdatum 12.11.1998
EP-Offenlegungsdatum 14.06.2000
EP date of grant 14.12.2005
Veröffentlichungstag im Patentblatt 19.01.2006
IPC-Hauptklasse G09G 3/02(2006.01)A, F, I, ,  ,  ,   

Beschreibung[en]
BACKGROUND OF THE INVENTION

This invention relates to scanning display devices, and more particularly to light sources and scanners for scanning display devices.

In a typical scanning display device light is emitted from a light source, collimated through a lens, then passed through a scanner. The scanner deflects the light along a scanning pattern. The scanned light is directed toward a viewing screen, or in a retinal display, toward a viewer's eye. An image is perceived by a viewer's eye, either from viewing the screen or from the direct scanning of light on the eye.

For a retinal display, an eyepiece directs the light toward the viewer's eye. An "exit pupil" occurs shortly beyond the eyepiece in an area where a viewer's eye pupil is to be positioned. A viewer looks into the eyepiece to perceive the image. A small exit pupil allows persons who ordinarily wear corrective lenses to see the scanned image clearly without glasses. But generally, a small exit pupil is disadvantageous because one must carefully align the eye with the exit pupil to see the image. Slight movement of the eye, such as into one's peripheral viewing area, would cause the image to disappear. Accordingly, it is generally desirable to have large exit pupils.

The size of the exit pupil is determined by the aperture stop of the display and the optical magnification of components along the light path between the optical stop and the viewer's eye. Typically, the horizontal scanner of a raster scanning display is the limiting aperture. The exit pupil diameter is equal to the horizontal scanner aperture times the tangent of half the optical scan angle of the horizontal scanner divided by the tangent of half the field of view angle. Scanners that scan at high horizontal scanning speeds have small apertures, small scan angles or both. This results in a small exit pupil. To increase the exit pupil size, it is desirable to have a larger aperture. To achieve a large aperture a larger scanning mirror may be used. The drawback of a larger mirror is the increase in system size and weight, and the additional power required to move the mirror. Accordingly, another solution is desired for increasing exit pupil size while minimizing system size and weight.

US Patent No. 4,311,999 discloses a personal display having a linear array of optical filaments. The light output from different ones of the filament defines the image content on image lines along a first axis of display. The linear array performs a scanning movement along a second axis orthogonal to the length of the linear array. The filaments make no scanning movement along the first axis.

Similarly, US Patent No. 5,416,876 discloses display having a linear array of light sources formed by a ribbon of fiber optics aligned along a first axis. The linear array is vibrated along a second axis orthogonal to the first axis. The fiber optics are not scanned along the first second axis.

US Patent No. 5,596,339 discloses a retinal display having a first mirror which is moved to deflect light along one axis and a second mirror which is moved to deflect light along a second axis. The light emitters are not moved; instead the emitted light is deflected over moving angles.

US Patent No. 5,557,444 discloses one scanner having a mirror which is moved to deflect light along one axis and a second scanner having a mirror which is moved to deflect light along a second axis. The light emitters are not moved.

US Patent No. 5,625,372 discloses a micro-display that generates a source object. A magnification optic magnifies the source object and reflects a virtual image.

SUMMARY OF THE INVENTION

A scanning display scans light along a prescribed scanning pattern. In a raster scanning display the light is scanned along a horizontal scanning path and along a vertical scanning path. According to the invention, a scanning display device directly moves a light emitter along at least one of the display scanning paths. For example, in a raster scanning display the light emitter is physically moved along either one or both of the horizontal and vertical scanning paths, rather than scanning only the emitted light beam along such either one or both scanning paths. The light emitter is scanned along both the horizontal scanning path and the vertical scanning path. An advantage of scanning the light source is that a smaller, lighter weight display is achieved.

According to one aspect of the invention, a resonant cantilever translates one or more point sources (e.g., one point source for a monochromatic display; respective red, green and blue point sources for an RGB display). In one embodiment the cantilever motion is driven by an electromagnetic drive circuit. In another embodiment the cantilever motion is driven by a piezoelectric drive actuator.

According to another aspect of the invention, the light source is one or more light emitting diode point sources, one or more fiber optic point sources, or one or more light emitting polymer light sources.

According to another aspect of this invention, a scanning display apparatus includes an image signal source operative to produce an image signal, a scanning signal source generating a scanning signal, a light emitter coupled to the image signal source and responsive to the image signal to emit light, a support carrying the light emitter at a first portion of the support, and a drive circuit coupled to the support and responsive to the scanning signal to move at least the first portion of the support through a predetermined angular range. The light emitter is moved through the predetermined angular range to scan the emitted light along a desired scan path.

According to another aspect of the invention, the support carries a plurality of light emitting devices emitting respective beams of colored light. The plurality of light emitting devices are aligned in a common plane with the movement of the plurality of light emitters caused by the drive circuit occurring within the common plane. The image signal is operative with a timing to modulate each one of the light emitters so that the plurality of light emitters cumulatively define an image pixel of a desired color at a given pixel location as each one of the plurality of point sources moves through the corresponding position to address said image pixel.

According to another aspect of the invention, the drive circuit moves the support through the predetermined angular range at a resonant frequency of the support and light emitter(s).

According to another aspect of the invention,, the display is a retinal display having an eyepiece which receives the emitted light. The emitted light is focused to define an exit pupil at a location adjacent the eyepiece where a viewer's eye may be positioned to perceive an image generated by the apparatus.

According to an example not forming part of the claimed invention, the drive circuit scans the light emitters along a first scanning axis. A scanning device receives the emitted light at a mirror. The scanning device moves the mirror along a second scanning axis. In some embodiments the first scanning axis is a horizontal axis and the second scanning axis is a vertical scanning axis. The scanning along the two axes defines a raster scanning path for scanning an image.

According to another aspect of the invention, a method of scanning an optical beam responsive to a scanning signal includes modulating a light emitter with an image signal to generate a modulated light beam of image pixel components, receiving a scanning signal at a drive circuit operative to drive motion of a support, and moving the support through a predetermined angular range as controlled by the drive circuit. The light emitter is moved through the predetermined angular range with the support to scan the emitted light along a desired scan path.

According to another aspect of this invention, the scanning signal is periodic having a period which includes a first portion and a second portion. The step of moving includes driving motion of the support and light emitter in a first direction to a first extreme position in response to the scanning signal during the first portion of the scanning signal period. The step of moving also includes driving motion of the support and light emitter in a second direction opposite the first direction to a second extreme position in response to the scanning signal during a second portion of the scanning signal period. The steps of driving m a first direction and driving in a second direction are repeated for subsequent periods of the scanning signal to generate oscillatory motion of the support and light emitter in alternating first and second directions.

These and other aspects and advantages of the invention will be better understood by reference to the following detailed description taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

  • Fig. 1 is a block diagram of a display apparatus which moves light emitter(s) along one scanning axis and deflects an emitted light beam along a second scanning axis according to an embodiment of this invention;
  • Fig. 2 is a block diagram of a display apparatus which moves light emitter(s) along two axes;
  • Fig. 3 is a side view of an apparatus for scanning a light emitter along a scanning axis according to an embodiment of this invention;
  • Fig. 4 is a top view of the apparatus of Fig. 3;
  • Fig. 5 is a side view of an apparatus for scanning a plurality of light emitters along a scanning axis according to an embodiment of this invention;
  • Fig. 6 is a side view of an apparatus for scanning a fiber optic light emitter along a scanning axis according to an embodiment of this invention;
  • Fig. 7 is a top view of the apparatus of Fig. 6;
  • Fig. 8 is a sectional view of the apparatus of Figs. 6 and 7 along line VIII-VIII of Fig. 7;
  • Fig. 9 is a side view of an apparatus for scanning a plurality of fiber optic light emitters along a scanning axis according to an embodiment of this invention; and
  • Fig. 10 is a diagram of the light beam generated by a single point source of light at different positions along the scanning path:
  • Fig. 11 is a diagram depicting image pixels scanned by a plurality of light sources at a given time t1;
  • Fig. 12 is a diagram depicting image pixels scanned by the plurality of light sources of Fig. 12 at a later time t2;
  • Fig. 13 is a diagram depicting image pixels scanned by the plurality of light sources of Fig. 12 at a later time t3;
  • Fig. 14 is a diagram showing the timely light fronts from the respective light emitters which an image pixel;
  • Fig. 15 is a perspective view of an apparatus for scanning a light emitter along a scanning path according to an alternative embodiment of this invention; and
  • Fig. 16 is a side elevational view of a piezoelectric actuator of Fig. 15.

DESCRIPTION OF SPECIFIC EMBODIMENTS Overview

Fig. 1 shows a block diagram of a scanning display 10 having a scanning light source 12 according to an embodiment of this invention. The display 10 generates and scans light to create color or monochrome images at a display field 14. In some embodiments the display field is a viewing screen such as a cathode ray tube display screen. In a retinal display embodiment the display field is the retina of a viewer's eye. Varying embodiments of the display 10 achieve narrow to panoramic fields of view and low to high resolutions.

The scanning display 10 includes a processing unit 16, an image data interface 18, the scanning light source 12, and an optical subsystem 24. In some embodiments the display field 14 is an electrical or optical device included as part of the display 10. The image scanned by the display 10 is derived from an image content signal 17 generated by the processing unit 16. The processing unit 16 may be part of a computer, video device or another digital or analog image source device. The image content signal 17 is an RGB signal, NTSC signal, VGA signal or other formatted color or monochrome video or imaging signal. The processing unit 16 outputs the image content signal 17 to the image data interface 18.

The image data interface 18 generates an image signal 19 from the image content signal 17 for controlling the light emitted from the light source 12. The image data interface 18 also generates one or more scanning signals 20 from the image content signal 17.

The scanning light source 12 includes one or more point sources of light. In one embodiment a monochromatic light source is used. In another embodiment red, green, and blue light sources are used. In various embodiments each light source is formed by a light emitting diode, a laser, or a light emitting plasma source. In some applications, the light source may be located remotely by coupling light into an optical fiber. Preferably the emitted light 22 is spatially coherent. In one embodiment the light source 12 is modulated as a function of the image signal 19. In another embodiment the light source includes a modulator which responds to the image signal 19 to modulate light from the light source. The light source 12 is a scanning light source which moves light emitters along a scanning path. The emitted light 22 passes through the optical subsystem 24 and onward to the display field 14.

Fig. 2 shows a block diagram of a scanning display 10' in which like parts relative to the display 10 of Fig. 1 are given the same part numbers. The scanning display 10' includes a single axis scanning light source 12' which moves light emitters along a first scanning axis. Emitted light 22 passes through the optical subsystem 24 and impinges upon a mirror 29 at a scanner 26. The scanning light source 12' receives the scanning signal 20, while the scanner 26 receives another scanning signal 20'. Both scanning signals 20, 20' are received from the image data interface 18. The scanning source 12' is operative to move a light emitters along the first scanning path, while the scanner 26 is operative to deflect the emitted light 22 along a second scanning path. The scanner mirror 29 is driven by an electromagnetic drive circuit or a piezoelectric drive circuit. In other examples the scanner 26 includes acousto-optical deflectors, electro-optical deflectors, rotating polygons or galvanometers to perform the light deflection along the second scanning path. The timing of the scanner 26 operation is determined by the scanning signal 20'. In an example the scanning signals 20, 20' are periodic scanning signals.

In the example the light source 12' moves light emitters along a horizontal scanning axis at a horizontal scanning frequency determined by the scanning signal 20, while the scanner 26 deflects the emitted light 22 along a vertical scanning path at a vertical scanning frequency determined by the scanning signal 20'. For a retinal display embodiment the scanned light passes through an eyepiece 28 and into the viewer's eye E. The eyepiece 28 focuses the emitted light to define an exit pupil at a location adjacent the eyepiece 28 where a viewer's eye may be positioned to perceive an image.

Scanning Light Source

Figs. 3-4 show a single-axis scanning point source 40 embodying the scanning source 12, 12' of Figs. 1 and 2. The scanning source 40 includes a light emitter 42 which emits a coherent beam of light. In one embodiment the light emitter 42 is a laser diode. In another embodiment, the light emitter 42 is a light emitting diode with optics for making the output light coherent. The light emitter 42 is carried by a support 44. In one embodiment the support 44 is formed of spring steel and is a cantilever type of spring. The cantilever spring has a spring constant determined by its length, width and thickness. Preferably, the support 44 is resonant with a high Q value such that once the support starts moving very little energy is lost. As a result, very little energy is added during each period of movement to maintain a constant amplitude of motion of the support 44. For a high Q system the energy loss per cycle is less than 0.001%. The support 44 is anchored at one end 45 and is free at an opposite end 47. The frequency of scanning is determined by the scanning signal 20'. However, for a high Q system, the scanning signal 20' is preferably chosen to match the resonant frequency of the support 44 for the most efficient energy transfer. The frequency of the scanning signal 20 can he manually matched to the resonant frequency of the support or may be actively controlled by monitoring the motion of the support, as described U.S. Patent No. 5,694,237 issued December 2, 1997 entitled "Position Detection of Mechanical Resonant Scanner Mirror," naming inventor Charles D. Melville. Preferably, the scanning source 40 includes a position sensor for monitoring the position of the support 44 and light emitter 42. In some embodiments a common mode rejection piezoelectric sensor 58 is used. In other embodiments a sensor 60 responsive to changing inertia is used. An exemplary sensor 58 is described in such U.S. Patent No. 5,694,237 issued December 2, 1997 entitled "Position Detection of Mechanical Resonant Scanner Mirror."

The scanning source 40 also includes a base 46, a cap 48 and an electromagnetic drive circuit 50, formed by a permanent magnet 52 and an electromagnetic coil 54. The anchored end 45 of the support 44 is held to the permanent magnet 52 by the cap 48. The permanent magnet 52 is mounted to the base 46. The electromagnetic coil 54 receives the scanning signal 20 causing a magnetic field to act upon the support 44. The scanning signal 20 is a periodic signal having a changing amplitude. In a preferred embodiment the period corresponds to the natural resonant frequency of the moving parts (e.g., the support 44 and light emitter(s)). As a result the electromagnetic coil generates a changing magnetic field which moves at least a portion 49 of the support 44 through a prescribed angular range. The light emitter 42 is carried with the support through the prescribed angular range moving back and forth along a first scanning axis 56. Thus, the light emitter 42 and the emitted light 22 is scanned along the first scanning axis 56.

Fig. 5 shows an embodiment of a single-axis scanning source 40' which is the same as the source 40 of Fig. 3, but has a plurality of light emitters 42', 42", 42"'. In one embodiment the light emitters 42', 42", and 42'" are respective red, green and blue light emitting diode point sources with optics for generating output beams of coherent light. In another embodiment the light emitters 42', 42", and 42'" are respective red, green and blue lased diode point sources. Preferably the emitters 42', 42", 42'" are aligned in a common plane and move with the support in such common plane. In Fig. 5 such common plane is the plane of the paper and includes the scanning axis 56.

Figs. 6-8 show a similar scanning light source 70 in which like parts are given the same part numbers. The source 70 includes a fiber optic point source light emitter 62. Fig. 9 shows another scanning light source 70' including a plurality of fiber optic point light source emitters 62', 62". 62'" (e.g., red, green and blue light emitters) Again like parts are given the same part numbers as in the embodiments of Figs. 3-8. The scanning light sources 40', 70, 70' operate in the same manner as described for the scanning light source 40. For the fiber optic point sources the fiber is bonded or otherwise attached to the plate 44. The distal end of the fiber is cleaved or includes a collimating lens.

Method for Scanning the Light Emitter(s)

To generate a portion of an image within the display field 14, the light emitter 42/ 62 or light emitters 42', 42", 42"' / 62', 62", 62"' are scanned along the scanning axis 56. The light emitter(s) or a modulator which modulates the emitted light, receives the image signal 19. Where the light emitters 42', 42", 42"' / 62', 62", 62"' are directly modulated, each of the emitters outputs light at an intensity corresponding to a component of the image signal to define a color component of an image pixel.

The drive circuit 50 generates a force which moves the support 44 and light emitter(s) along the prescribed scanning path. In the illustrated embodiments of Figs. 3-9 the drive circuit 50 is an electromagnetic drive circuit. In the embodiment of Figs. 15 and 16, which will be described below, the drive circuit is a piezoelectric actuator. The drive circuit 50 receives the scanning signal 20 and in response creates a changing force to move the support 44 and light emitter(s). In one embodiment the scanning signal is a periodic, horizontal synchronization signal having a horizontal scanning frequency and a corresponding horizontal scanning period. For a single emitter embodiment, the emitter 42/62 defines a line of image pixels during all or a portion of the scanning signal period. For unidirectional scanning one line is generated per scanning period. For bidirectional scanning one line is generated for each one-half of a scanning period. Thus, for bidirectional scanning, the emitter 42/62 moves in a first direction along the scanning axis 56 during a first half of the scanning period to generate one line of pixels. During such first half, the support 44 moves through the predetermined angle to a first extreme deflection position. During the second half of the scanning period, the emitter 42/62 moves in a second direction along the scanning path to generate another line of image pixels. During such second half, the support 44 moves through the predetermined angle to a second extreme deflection position. The support 44 and light emitter move along the scanning axis 56 through the predetermined angular range to either the first or second extreme deflection position for each image line. The motion of the support 44 and emitter is driven alternatively in first and second directions along the scanning axis 56 during subsequent scanning periods to generate additional lines of the image.

Fig. 10 shows the emitter 42/62 position at different times tn-1, tn, tn+1 during a portion of a scanning period. The emitted light 22 impinges the optical subsystem 24 at differing angles corresponding to the differing times. The light 22 is directed toward differing image pixel locations in the display field 14 (e.g., image pixel addresses) along the scanning axis 56 at the different times.

Figs. 11-14 depict the method for scanning image pixels for an embodiment having a red emitter 42'/62', a green emitter 42"/62" and a blue emitter 42'''/62'''. At any given time each of the three emitters is addressing a different pixel. Fig. 11 shows the emitters at time t=t1. At such time emitter 42'/62' emits red light 22' directed to a location in the display field 14 corresponding to a pixel P1. At the same time emitter 42"/62" emits green light directed to a location in the display field 14 corresponding to a pixel P2 and emitter 42'''/62''' emits blue light directed to a location in the display field 14 corresponding to a pixel P3. Fig. 12 shows the emitters at a later time t=t2. At such time t2 emitter 42'/62' emits red light 22' directed to a location in the display field 14 corresponding to pixel P2. At the same time t2 emitter 42"/62" emits green light directed to a location in the display field 14 corresponding to pixel P3 and emitter 42'''/62''' emits blue light directed to a location in the display field 14 corresponding to a pixel P4. Fig. 13 shows the emitters at a still later time t = t3. At such time t3 emitter 42'/62' emits red light 22' directed to a location in the display field 14 corresponding to pixel P3. At the same time t3 emitter 42"/62" emits green light directed to a location in the display field 14 corresponding to pixel P4 and emitter 42"'/62"' emits blue light directed to a location in the display field 14 corresponding to a pixel P5.

Fig. 14 shows diagrammatically how wavefronts of red, green and blue light from the various emitters arrive sequentially at the pixel locations for pixels P2, P3, P4. Pixel P2 is formed by pixel component wavefronts 90, 92, 94 from the blue, green and red emitters impinging on the P2 location at differing times t0, t1, and t2, respectively. The time interval between wavefronts is very short - on the order of 650 microseconds. Because the retina integrates light energy, the user perceives the three sets of light energy as arriving substantially simultaneously. The user perceives the pixel as a combination of the red, green and blue light energy. Similarly, pixel P3 appears to be formed by pixel component wavefronts 96, 98, 100 from the blue, green and red emitters impinging on the P3 location at differing times t1, t2, and t3, respectively. Pixel P4 is formed by pixel component wavefronts 102, 104, 106 from the blue, green and red emitters impinging on the P4 location at differing times t2, t3, and t4, respectively.

To scan different lines of the image, in one example the emitted light 22 impinges on a mirror 29 of a scanner 26. The scanner 26 receives a scanning signal 20' corresponding to a vertical synchronization signal. The scanner 26 steps the mirror 29 at increments corresponding to the time period to scan one horizontal line. After each horizontal line is scanned the mirror 29 moves to another angle so that the next horizontal line is scanned at a different vertical position. The vertical synchronization period is periodic having a period greater than the horizontal scanning period. In a raster scanning display, with every completion of a vertical scanning period, a raster pattern has been scanned in the display field 14. The raster pattern is repeated to scan subsequent frames of an image for subsequent periods of the vertical synchronization signal. On skilled in the art will recognize that, although the emitters 42 are described as having different colors, the emitters can be of the same color. This example is of particular applicability where low power emitters are used. In such applications, the apparent pixel intensity will be determined by the integrated sum of the light intensities of the emitters 42.

Alternative Drive Circuit - Piezoelectric Actuator

Fig. 15 shows another embodiment 80 of a scanning light source 12, 12' in which the drive circuit includes one or more piezoelectric actuators 82. The scanning light source 80 of Fig. 15 may be adapted to carry a plurality of light emitters 84 in a similar manner as described for the sources 40' and 70'. The light emitters of the source 80 may be light emitting diodes (see Figs. 3-5), fiber optics (see Figs. 6-9), light emitting plasmas, or other point sources of light. Each point source emits or is adapted with optics to emit a beam of coherent light.

The scanning light source 80 includes support 44, a base 86, one or more piezoelectric actuators 82 and one or more light emitters 84. The light emitters 84 are coupled to the support 44 and carried by the support 44 during motion about an axis of rotation 88. The axis of rotation 88 defines the scanning axis 56 along which the emitted light scans. The base includes electrical connectors 120, 122. 124. Each connector is electrically coupled to a corresponding one of the respective light emitters 84. In some embodiments the image signal or an appropriate component of the image signal is received at respective connectors 120. 122, 124 for modulating the light emitters 84.

In one embodiment the support 44 is formed of spring steel and is a cantilever type of spring. The cantilever spring has a spring constant determined by its length, width and thickness. Preferably, the support 44 has a high Q value such that once the support starts moving very little energy is lost. As a result, very little energy is added during each period of movement to maintain a constant frequency of motion of the support 44.

Referring to Fig. 16, the piezoelectric actuator 82 includes a frame 110 which carries a plurality of piezoelectric volumes 112, 114. The volumes 112, 114 are symmetrically positioned relative to the support 44. The volume 112 receives the scanning signal 20 from the image data interface 18. The volume 114 receives an inversion of the scanning signal 20. The scanning signals are periodic having a changing amplitude. As a result, the volumes 112, 114 having a changing deformation. During one portion of the scanning signal period the volume 112 gets longer and thinner, while the other volume 114 gets shorter and fatter. As a result the support 44 is driven about the axis 88 in a first direction to a first extreme deflection. During another portion of the scanning period, the volume 112 gets shorter and fatter, while the volume 114 gets longer and thinner. As a result, the support 44 is driven about the axis 88 in the opposite direction to a second extreme deflection. The light sources 84 are carried with the support 44 moving along the scanning axis 56. In a preferred embodiment the period of the scanning signal 20 corresponds to the natural resonant frequency of the moving parts (e.g., frame 110, volumes 112, 114, support 44 and light emitter(s) 84).

Preferably the scanning source 80 includes a position sensor for monitoring the position of the support 44 and light emitter 84. In some embodiments a common mode rejection piezoelectric sensor is used. An exemplary sensor 58 is described in U.S. Patent No. 5.694,237 issued December 2, 1997 entitled "Position Detection of Mechanical Resonant Scanner Mirror." naming inventor Charles D. Melville.


Anspruch[de]
  1. Strahlabtastvorrichtung mit:
    • einer Abtast-Signalquelle (18) zum Erzeugen eines Abtastsignals (20);
    • einem Lichtemitter (12/42/62/84) zum Aussenden von Licht (22);
    • einer Halterung (44) zum Tragen des Lichtemitters in einem erstem Teil (49) der Halterung und, in Reaktion auf das Abtastsignal, zum Bewegen mindestens des ersten Teils entlang einer Horizontalachse (56) und einer Vertikalachse zum Abtasten des ausgesendeten Lichts entlang der Horizontalachse (56) und der Vertikalachse.
  2. Vorrichtung nach Anspruch 1, zum Bereitstellen einer Abtast-Anzeige (10/40/70/80) mit: einer Bildsignalquelle (16) zum Erzeugen eines Bildsignals (17), wobei der Lichtemitter (12/42/62/84) zum Aussenden von Licht (22) mit der Bildsignalquelle gekoppelt ist und auf das Bildsignal anspricht.
  3. Anzeigevorrichtung nach Anspruch 2, ferner mit:
    • einem Okular (28) zum Empfangen des abzutastenden ausgesendeten Lichts, wobei das ausgesendete Licht fokussiert ist, um eine Austrittspupille an einer dem Okular benachbarten Stelle zu definieren, an der das Auge eines Betrachters zum Wahrnehmen eines Bildes positioniert werden kann.
  4. Vorrichtung nach Anspruch 1, 2 oder 3, bei der der Lichtemitter mehrere Leuchteinrichtungen jeweils zum Aussenden von Lichtstrahlen aufweist, wobei die jeweiligen Lichtstrahlen ein Bild abtasten.
  5. Vorrichtung nach Anspruch 1, 2 oder 3, bei der der Lichtemitter eine Punktlichtquelle und einen Modulator aufweist, die zum Empfangen des ausgesendeten Lichts vorgesehen sind und auf das Bildsignal ansprechen.
  6. Vorrichtung nach Anspruch 1, 2 oder 3, bei der der Lichtemitter direkt in Reaktion auf das Bildsignal moduliert wird.
  7. Vorrichtung nach Anspruch 1, 2 oder 3, bei der der Lichtemitter eine Leuchtdiode (42) aufweist.
  8. Vorrichtung nach Anspruch 1, 2 oder 3, bei der der Lichtemitter mehrere Leuchtdioden (42) mit unterschiedlicher Wellenlänge aufweist.
  9. Vorrichtung nach Anspruch 1, 2 oder 3, bei der der Lichtemitter mehrere Leuchtdioden (42) derselben Wellenlänge aufweist.
  10. Vorrichtung nach Anspruch 1, 2 oder 3, bei der der Lichtemitter eine Faseroptik (62) aufweist.
  11. Vorrichtung nach Anspruch 1, 2 oder 3, bei der der Lichtemitter ein Leuchtplasma aufweist.
  12. Vorrichtung nach Anspruch 1, 2 oder 3, bei der das Abtastsignal ein periodisches Anzeigesynchronisiersignal ist.
  13. Vorrichtung nach Anspruch 1, 2 oder 3, bei der die Halterung eine freitragende Feder ist und die Bewegung der freitragenden Feder eine Verdrehbewegung ist, die bewirkt, dass sich der Lichtemitter um eine Drehachse (88) dreht.
  14. Vorrichtung nach Anspruch 1, 2 oder 3, bei der der Lichtemitter mehrere Leuchteinrichtungen (42) aufweist, die jeweils Farblichtstrahlen aussenden, wobei die mehreren Leuchteinrichtungen in einer gemeinsamen Ebene ausgerichtet sind, wobei die von der Antriebsschaltung bewirkte Bewegung der mehreren Lichtemitter in der gemeinsamen Ebene auftritt, und wobei das Bildsignal mit einer Zeitvorgabe arbeitet, um jeden Lichtemitter zum Definieren eines Bildpixel mit einer gewünschten Farbe an einer spezifischen Pixelstelle zu modulieren, wenn jeder Lichtemitter in der Lage ist, das Bildpixel zu adressieren.
  15. Vorrichtung nach Anspruch 1, 2 oder 3, bei der die Antriebsschaltung einen piezoelektrischen Aktuator (82) aufweist.
  16. Verfahren zum Abtasten eines optischen Strahls (22) in Reaktion auf ein Abtastsignal (20), mit folgenden Schritten:
    • Modulieren eines Lichtemitters (42/62/84) mit einem Lichtsignal (19) zum Erzeugen eines modulierten Lichtstrahls von Bildpixelkomponenten;
    • Empfangen des Abtastsignals an einer Antriebsschaltung (50/82) zum Antreiben einer Bewegung einer Halterung (44), wobei die Halterung den Lichtemitter trägt;
    • Bewegen der Halterung entlang einer horizontalen Abtastachse und einer vertikalen Abtastachse zum Abtasten von ausgesendetem Licht entlang der horizontalen Abtastachse (56) und der vertikalen Abtastachse.
  17. Verfahren nach Anspruch 16, bei dem die Halterung mehrere Lichtemitter trägt, wobei der Schritt des Modulierens das Modulieren der mehreren Lichtemitter mit dem Bildsignal jeweils zum Erzeugen von modulierten Lichtstrahlen mit einer Zeitvorgabe umfasst, bei dem Bild-Farbpixel erzeugt werden.
  18. Verfahren nach Anspruch 16, ferner mit dem Schritt des Empfangens des ausgesendeten Lichts an einem Okular (28), das das ausgesendete Licht fokussiert, um eine Austrittspupille an einer dem Okular benachbarten Stelle zu definieren, an der das Auge eines Betrachters zum Wahrnehmen eines Bildes positioniert werden kann.
  19. Verfahren nach Anspruch 16, bei dem die Halterung mit einem piezoelektrischen Aktuator (82) gekoppelt ist, und das ferner den Schritt des Verformens des piezoelektrischen Aktuators in Reaktion auf das Abtastsignal zum Antreiben der Bewegung der Halterung umfasst.
  20. Verfahren nach Anspruch 16, bei dem der Lichtemitter eine Punktlichtquelle ist, und bei dem der Schritt des Modulierens ferner das Modulieren der Punktquelle mit dem Bildsignal zum Erzeugen von moduliertem Licht umfasst, das über die Zeit mehrere Bildpixelkomponenten definiert.
  21. Verfahren nach Anspruch 16, bei dem die Halterung mehrere Lichtemitter (42/62/84) trägt, die jeweils Lichtstrahlen ausgeben, wobei der Schritt des Modulierens das Modulieren der jeweiligen Lichtstrahlen mit dem Bildsignal jeweils zum Erzeugen von modulierten Lichtstrahlen mit einer Zeitvorgabe umfasst, bei der Bild-Farbpixel erzeugt werden.
Anspruch[en]
  1. A beam scanning apparatus, comprising:
    • a scanning signal source (18) operative to generate a scanning signal (20);
    • a light emitter (12/42/62/84) operative to emit light (22);
    • a support (44) carrying the light emitter at a first portion (49) of the support and, in response to the scanning signal, operative to move at least the first portion along a horizontal axis (56) and a vertical axis to scan emitted light along the horizontal axis (56) and the vertical axis.
  2. An apparatus according to claim 1 for providing a scanning display (10/40/70/80), comprising: an image signal source (16) operative to produce an image signal (17), the light emitter (12/42/62/84) being coupled to the image signal source and responsive to the image signal to emit light (22).
  3. A display apparatus according to claim 2, further comprising:
    • an eyepiece (28) receiving the emitted light being scanned, wherein the emitted light is focused to define an exit pupil at a location adjacent the eyepiece where a viewer's eye may be positioned to perceive an image.
  4. An apparatus according to claim 1, 2 or 3, in which the light emitter comprises a plurality of light emitting devices emitting respective beams of light, and wherein the respective beams of light scan an image.
  5. An apparatus according to claim 1, 2 or 3, in which the light emitter comprises a point source of light and a modulator positioned to receive the emitted light and responsive to the image signal.
  6. An apparatus according to claim 1, 2 or 3, in which the light emitter is directly modulated in response to the image signal.
  7. An apparatus according to claim 1, 2 or 3, in which the light emitter comprises a light emitting diode (42).
  8. An apparatus according to claim 1, 2 or 3, in which the light emitter comprises a plurality of light emitting diodes (42) of differing wavelength.
  9. An apparatus according to claim 1, 2 or 3, in which the light emitter comprises a plurality of light emitting diodes (42) of the same wavelength.
  10. An apparatus according to claim 1, 2 or 3, in which the light emitter comprises a fiber optic (62).
  11. An apparatus according to claim 1, 2 or 3, in which the light emitter comprises a light emitting plasma.
  12. An apparatus according to claim 1, 2 or 3, wherein the scanning signal is a periodic, display synchronization signal.
  13. An apparatus according to claim 1, 2 or 3, wherein the support is a cantilever spring and the movement of the cantilever spring is a twisting motion which causes the light emitter to rotate about an axis of rotation (88).
  14. An apparatus according to claim 1, 2 or 3, in which the light emitter comprises a plurality of light emitting devices (42) emitting respective beams of colored light, wherein the plurality of light emitting devices are aligned in a common plane, wherein the movement of the plurality of light emitters caused by the drive circuit occurs with the common plane, and wherein the image signal is operative with a timing to modulate each one of the light emitters to define an image pixel of a desired color at a given pixel location as each one of the light emitters is in position to address said image pixel.
  15. An apparatus according to claim 1, 2 or 3, in which the drive circuit comprises a piezoelectric actuator (82).
  16. A method of scanning an optical beam (22) responsive to a scanning signal (20), comprising the steps of:
    • modulating a light emitter (42/62/84) with an image signal (19) to generate a modulated light beam of image pixel components;
    • receiving the scanning signal at a drive circuit (50/82) operative to drive motion of a support (44), the support carrying the light emitter;
    • moving the support along a horizontal scanning axis and a vertical scanning axis to scan emitted light along the horizontal scanning axis (56) and the vertical scanning axis.
  17. A method according to claim 16, in which the support carries a plurality of light emitters, and wherein the step of modulating comprises modulating the plurality of light emitters with the image signal to generate respective modulated light beams at a timing which creates image color pixels.
  18. A method according to claim 16, further comprising the step of receiving the emitted light at an eyepiece (28) which focuses the emitted light to define an exit pupil at a location adjacent the eyepiece where a viewer's eye may be positioned to perceive an image.
  19. A method according to claim 16, in which the support is coupled to a piezoelectric actuator (82), and further comprising the step of deforming the piezoelectric actuator in response to the scanning signal to drive motion of the support.
  20. A method according to claim 16, in which the light emitter is a point source of light, and in which the step of modulating comprises modulating the point source with the image signal to generate modulated light defining, over time, a plurality of image pixel components.
  21. A method according to claim 16, in which the support carries a plurality of light emitters (42/62/84) which output respective beams of light, and wherein the step of modulating comprises modulating the respective beams of light with the image signal to generate respective modulated light beams at a timing which creates image color pixels.
Anspruch[fr]
  1. Appareil de balayage par faisceau, comprenant :
    • une source (18) de signaux de balayage fonctionnant pour générer un signal (20) de balayage ;
    • un émetteur (12/42/62/84) de lumière fonctionnant pour émettre une lumière (22) ;
    • un support (44) transportant l'émetteur de lumière au niveau d'une première partie (49) du support et, en réponse au signal de balayage, fonctionnant pour déplacer au moins la première partie le long d'un axe horizontal (56) et d'un axe vertical pour balayer une lumière émise le long de l'axe horizontal (56) et de l'axe vertical.
  2. Appareil selon la revendication 1, destiné à fournir un affichage (10/40/70/80) de balayage, comprenant : une source (16) de signaux d'image fonctionnant pour produire un signal (17) d'image, l'émetteur (12/42/62/84) de lumière étant couplé à la source de signaux d'image et sensible au signal d'image pour émettre une lumière (22).
  3. Appareil d'affichage selon la revendication 2, comprenant en outre :
    • un oeilleton (28) recevant la lumière émise étant balayée, dans lequel la lumière émise est focalisée pour définir une pupille de sortie au niveau d'un emplacement adjacent à l'oeilleton où un oeil d'un observateur peut être positionné pour distinguer une image.
  4. Appareil selon la revendication 1, 2 ou 3, dans lequel l'émetteur de lumière comprend un pluralité de dispositifs d'émission de lumière émettant des faisceaux respectifs de lumière, et dans lequel les faisceaux respectifs de lumière balaient une image.
  5. Appareil selon la revendication 1, 2 ou 3, dans lequel l'émetteur de lumière comprend une source ponctuelle de lumière et un modulateur positionnés pour recevoir la lumière émise et sensibles au signal d'image.
  6. Appareil selon la revendication 1, 2, ou 3, dans lequel l'émetteur de lumière est directement modulé en réponse au signal d'image.
  7. Appareil selon la revendication 1, 2, ou 3, dans lequel l'émetteur de lumière comprend une diode électroluminescente (42).
  8. Appareil selon la revendication 1, 2, ou 3, dans lequel l'émetteur de lumière comprend une pluralité de diodes électroluminescentes (42) dont la longueur d'ondes diffère.
  9. Appareil selon la revendication 1, 2, ou 3, dans lequel l'émetteur de lumière comprend une pluralité de diodes électroluminescentes (42) de la même longueur d'ondes.
  10. Appareil selon la revendication 1, 2, ou 3, dans lequel l'émetteur de lumière comprend une fibre optique (62).
  11. Appareil selon la revendication 1, 2, ou 3, dans lequel l'émetteur de lumière comprend un plasma d'émission de lumière.
  12. Appareil selon la revendication 1, 2, ou 3, dans lequel le signal de balayage est un signal de synchronisation d'affichage, périodique.
  13. Appareil selon la revendication 1, 2, ou 3, dans lequel le support est un ressort cantilever et le déplacement du ressort cantilever est un mouvement de torsion qui amène l'émetteur de lumière à effectuer une rotation sur un axe de rotation (88).
  14. Appareil selon la revendication 1, 2, ou 3, dans lequel l'émetteur de lumière comprend une pluralité de dispositifs (42) d'émission de lumière émettant respectivement des faisceaux de lumière colorée, dans lequel la pluralité de dispositifs d'émission de lumière sont alignés sur un plan commun, dans lequel le déplacement de la pluralité d'émetteurs de lumière provoqué par le circuit d'entraînement se produit dans le plan commun et dans lequel le signal d'image fonctionne selon un rythme pour moduler chacun des émetteurs de lumière pour définir un pixel d'image d'une couleur souhaitée au niveau d'un emplacement de pixel donné lorsque chacun des émetteurs de lumière est en position pour adresser ledit pixel d'image.
  15. Appareil selon la revendication 1, 2, ou 3, dans lequel le circuit d'entraînement comprend un dispositif d'actionnement (82) piézoélectrique.
  16. Procédé de balayage d'un faisceau optique (22) sensible à un signal (20) de balayage, comprenant les étapes consistant à :
    • moduler un émetteur (42/62/84) de lumière avec un signal (19) d'image pour générer un faisceau de lumière modulée de composants de pixels d'image ;
    • recevoir le signal de balayage au niveau d'un circuit (50/82) d'entraînement fonctionnant pour entraîner un mouvement d'un support (44), le support transportant l'émetteur de lumière ;
    • déplacer le support le long d'un axe de balayage horizontal et d'un axe de balayage vertical pour balayer une lumière émise le long de l'axe (56) de balayage horizontal et de l'axe de balayage vertical.
  17. Procédé selon la revendication 16, dans lequel le support transporte une pluralité d'émetteurs de lumière, et dans lequel l'étape consistant à moduler comprend la modulation de la pluralité d'émetteurs de lumière avec le signal d'image pour générer des faisceaux de lumière modulée respectifs selon un rythme qui créé des pixels de couleur d'image.
  18. Procédé selon la revendication 16, comprenant en outre l'étape consistant à recevoir la lumière émise au niveau d'un oeilleton (28) qui focalise la lumière émise pour définir une pupille de sortie au niveau d'un emplacement adjacent à l'oeilleton où un oeil d'un observateur peut être positionné pour distinguer une image.
  19. Procédé selon la revendication 16, dans lequel le support est couplé à un dispositif d'actionnement (82) piézoélectrique, et comprenant en outre l'étape consistant à déformer le dispositif d'actionnement piézoélectrique en réponse au signal de balayage pour entraîner un mouvement du support.
  20. Procédé selon la revendication 16, dans lequel l'émetteur de lumière est une source ponctuelle de lumière, et dans lequel l'étape consistant à moduler comprend la modulation de la source ponctuelle avec le signal d'image pour générer une lumière modulée définissant, dans le temps, une pluralité de composants de pixels d'image.
  21. Procédé selon la revendication 16, dans lequel le support transporte une pluralité d'émetteurs (42/62/84) de lumière qui sortent des faisceaux de lumière respectifs, et dans lesquels l'étape consistant à moduler comprend la modulation des faisceaux de lumière respectifs avec le signal d'image pour générer des faisceaux de lumière modulée respectifs selon un rythme qui créé des pixels de couleur d'image.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com