PatentDe  


Dokumentenidentifikation DE10040897B4 13.04.2006
Titel Nanoskalige poröse Fasern aus polymeren Materialien
Anmelder TransMIT Gesellschaft für Technologietransfer mbH, 35394 Gießen, DE
Erfinder Averdung, Johannes, Dr., 45894 Gelsenkirchen, DE;
Steinhart, Martin, 35039 Marburg, DE;
Heinrich, Lothar, Dr., 48165 Münster, DE;
Wendorff, Joachim H., Prof.Dr., 35043 Marburg, DE
Vertreter Olbricht & Buchhold, 35096 Weimar
DE-Anmeldedatum 18.08.2000
DE-Aktenzeichen 10040897
Offenlegungstag 07.03.2002
Veröffentlichungstag der Patenterteilung 13.04.2006
Veröffentlichungstag im Patentblatt 13.04.2006
IPC-Hauptklasse D01F 1/08(2006.01)A, F, I, 20051017, B, H, DE
IPC-Nebenklasse D01F 11/00(2006.01)A, L, I, 20051017, B, H, DE   C08J 5/06(2006.01)A, L, I, 20051017, B, H, DE   B01J 32/00(2006.01)A, L, I, 20051017, B, H, DE   B01J 20/26(2006.01)A, L, I, 20051017, B, H, DE   B01J 20/28(2006.01)A, L, I, 20051017, B, H, DE   B01J 20/30(2006.01)A, L, I, 20051017, B, H, DE   C12N 1/12(2006.01)A, L, I, 20051017, B, H, DE   A61K 47/30(2006.01)A, L, I, 20051017, B, H, DE   D01D 10/00(2006.01)A, L, I, 20051017, B, H, DE   

Beschreibung[de]

Die Erfindung betrifft ein Verfahren zur Herstellung von nanoskaligen polymeren Fasern mit Morphologien und Texturen, insbesondere mit offenen porösen Strukturen, sowie deren Modifizierung und Verwendung.

Aufgrund des hohen Oberflächen-Volumen-Verhältnisses und der Abweichungen von typischen Ordungsstrukturen in makroskopischen Systemen weisen nanoskalige Materialien besondere physikalische und chemische Eigenschaften auf, so beispielsweise beschrieben in Gleitner, H.; „Nanostructured Materials ", in Encyclopedia of Physical Science and Technology, Vol. 10, p. 561 ff.. Hierzu gehören kurzreichenden magnetische Eigenschaften metallischer oder oxidischer Materialien, leichtes feldinduziertes Tunneln von Elektronen aus Filamentspitzen oder durch nanoskalige Mikrodomänen hervorgerufene, besonderes vorteilhafte Biokompatibiltätseigenschaften. Aufgrund dieser gegenüber makroskopischen Materialien veränderten Eigenschaftsprofile konnten inzwischen technologische Neuentwicklungen in der Mikroelektronik, Display-Technologie, Oberflächentechnik, bei Herstellung von Katalysatoren und in der Medizintechnik, insbesondere als Trägermaterialien für Zell- und Gewebekulturen, erzielt werden.

Fasermaterialien mit Filamentdurchmessern, die kleiner sind 300 nm und durchaus Abmessungen von einigen 10 nm erreichen, eignen sich im Falle elektrischer Leitfähigkeit als Feldelekronenemissionselektroden gemäß WO 98/11588. Auch in Halbleitersystemen, beschrieben in US 5 627 140, bieten sie technologische Vorteile, ebenso als Katalysatorsysteme mit verbesserten Aktivitätsprofilen, dargelegt in WO 98/26871. Derartige Fasern lassen sich chemisch modifizieren und mit chemischen Funktionen versehen, beispielsweise durch chemisches Ätzen oder durch Plasmabehandlung, zu Geweben verarbeiten oder zu filzähnlichen Materialien verdichten. Sie können sowohl in ungeordneter Form als auch gerichtet oder geordnet als Gewebe, Gestricke, Gewirke oder in anderer verdichteter Anordnung in makroskopische Werkstoffsysteme eingearbeitet werden, um die mechanischen oder andere physikalische Eigenschaften der Werkstoffe zu verbessern.

Fasern mit Durchmessern kleiner als 3000 nm lassen sich gemäß WO 00/22207 mit Hilfe von sich entspannenden Druckgasen aus speziellen Düsen herstellen. Stand der Technik sind auch elektrostatische Spinnverfahren, beschrieben in DE 100 23 456.9. In GB 2 142 870 wird beispielsweise ein solches Verfahren beschrieben, das zur Herstellung von gewebten Gefäßimplanten dient.

Nanofasern lassen sich als Template für Coatings verwenden, die beispielsweise aus Lösungen oder durch Aufdampfen auf die Fasern aufgebracht werden. Auf diese Weise lassen sich sowohl polymere, keramische, oxidische, glasartige oder auch metallische Materialien als geschlossene Schichten auf den Fasern abscheiden. Durch Herauslösen, Verdampfen, Schmelzen oder Pyrolyse der inneren, polymeren Templatfaser sind auf diese Weise Röhrchen unterschiedlichster Werkstoffe erhältlich, deren innere Durchmesser von 10 nm bis zu einigen &mgr;m je nach Filamentdurchmesser einstellbar sind, und deren Wandstärken je nach Coating-Bedingungen im nm- oder &mgr;m-Bereich liegen. Die Herstellung derartiger Nano- oder Mesoröhrchen ist beschrieben in DE 10 23 456.9.

Für bestimmte Anwendungen von nanoskaligen Fasern erscheint es zweckmäßig, eine große Oberfläche durch poröse Materialien zu erzeugen. So lassen sich gemäß WO 97/43473 Fasern mit einem porösen Coating versehen. Nach einer anschließenden Pyrolysebehandlung stehen Fasern mit hoher Porosität zur Verfügung, die beispielsweise für katalytische Verwendungen vorteilhaft sind.

Die oben beschriebenen Verfahren zur Herstellung von porösen nano- und mesoskaligen Fasern erfordern mehrere Prozeßschritte und sind zeit- und kostenaufwendig. Weiterhin bieten poröse Fasermaterialien gegenüber geschlossenen, massiven Fasern zusätzliche technische Vorteile, da sie eine deutlich höhere Oberfläche aufweisen. Nanoröhren besitzen zwar eine sehr große Oberfläche, sind aber aufgrund des Pyrolyseschrittes in der Herstellung recht aufwendig.

EP 0 047 795 beschreibt polymere Fasern, die einen massiven Kern und eine poröse, schaumartige Ummantelung des Kerns aufweisen. Der Faserkern soll eine hohe mechanische Stabilität besitzen, wobei der poröse Mantel eine hohe Oberfläche aufweist. Bei sehr oberflächenaktiven Anwendungen wie z. B. Filtrationen reicht die nach EP 0 047 795 erzeugte poröse Struktur in vielen Fällen nicht aus.

Daher lag der Erfindung die Aufgabe zugrunde, nano- und mesoskalige polymere Fasern mit einer sehr großen Oberfläche durch ein einfaches Verfahren zugänglich zu machen.

Gegenstand der vorliegenden Erfindung sind daher poröse Fasern aus polymeren Materialien, wobei die Fasern einen Durchmesser von 20 bis 4000 nm und Poren in Form von mindestens bis zum Faserkern reichenden und/oder durch die Faser reichenden Kanälen aufweisen.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von porösen Fasern aus polymeren Materialien, wobei eine 3 bis 20 Gew.-%-Lösung eines Polymeren in einem leicht verdampfbaren organischen Lösemittel oder Lösemittelgemisch mittels Elektrospinning bei einem elektrischen Feld über 105V/m versponnen wird, wobei die resultierende Faser einen Durchmesser von 20 bis 4000 nm und Poren in Form von mindestens bis zum Faserkern reichenden und/oder durch die Faser reichenden Kanälen aufweist.

Elektrospinnverfahren sind z. B. bei Fong, H.; Reneker, D.H.; J. Polym. Sci., Part B, 37 (1999), 3488 und in DE 100 23 456.9 beschrieben.

Es haben sich Feldstärken von 20 bis 50 kV, bevorzugt 30 bis 50 kV, sowie lineare Spinngeschwindigkeiten (Austrittsgeschwindigkeit an der Düse) von 5 bis 20 m/s, bevorzugt 0,8 bis 15 m/s bewährt.

Erfindungsgemäße poröse Faserstrukturen enthalten als polymeres Material Polymerblends oder Copolymere, bevorzugt Polymere wie Polyethylen, Polypropylen, Polystryrol, Polysulfon, Polylactide, Polycarbonat, Polyvinylcarbazol, Polyurethane, Polymethacrylate, PVC, Polyamide, Polyacrylate, Polyvinylpyrrolidon, Polyethylenoxid, Polypropylenoxid, Polysaccharide und/oder lösliche Cellulosepolymere, wie z. B. Celluloseacetat.

Diese Polymere können einzeln oder in Form ihrer Blends eingesetzt werden. In einer besonderen Ausführungsform der Erfindung wird mindestens ein wasserlösliches und mindestens ein wasserunlösliches Polymer eingesetzt.

Wird ein Blend aus wasserlöslichen und wasserunlöslichen Polymeren eingesetzt, so kann das Massenverhältnis jeweils zwischen 1 : 5 bis 5 : 1, bevorzugt 1 : 1 betragen.

In Verfahren nach der Erfindung werden 3-20 Gew.-%, bevorzugt 3-10 Gew.-%, besonders bevorzugt 3-6 Gew.-% mindestens eines Polymeren in einen organischen Lösungsmittel gelöst und mittels Elektrospinning zu einer porösen Faser versponnen. Die erfindungsgemäßen Fasern weisen Durchmesser von 20 bis 1500 nm, bevorzugt 20 bis 1000, besonders bevorzugt 20 bis 500, ganz besonders bevorzugt 20 bis 100 nm auf.

Als leicht verdampfbares organisches Lösemittel können Dimethylether, Dichlormethan, Chloroform, Ethylenglykoldimethylether, Ethylglykolisopropylether, Ethylacetat, Aceton eingesetzt werden oder Gemische derselben, gegebenenfalls ergänzt um weitere Lösemittel. Der Verdampfungsschritt kann bei Normaldruck oder auch im Vakuum erfolgen. Gegebenenfalls ist der Druck den Siedepunkten dem Lösemittel anzupassen.

Es ist zweckmässig, Lösungsmittel bzw. Lösungsmittelgemische im Verfahren einzusetzen, die für das betreffende Polymer/Polymer-Blend ein Theta-Löungsmittel darstellt. Der Thetazustand der Polymerlösungen kann auch während des Elektrospinning-Prozeß durchlaufen werden. Dies ist z. B. während des Verdampfungsschritts des Lösungsmittels der Fall.

Zu Polymerlösungen im Theta-Zustand sei verwiesen auf Elias, H. G., in Polymer Handbook, III. Ed., John Wiley & Sons, 1989; Abschnitt VII.

Diese Lösungen werden mittels Elektrospinning versponnen. Typischerweise wird eine Polymerlösung kontinuierlich mit einer Pumpe in Spinndüsen oder labormäßig in eine Spritzenkanüle gefördert, deren Durchmesser bei der zur Verfügung stehenden Apparatur maximal 0,5 mm beträgt. Die Feldstärken zwischen Kanüle und Gegenelektrode betragen z. B. 2 × 105 V/m, der Abstand kann 200 mm erreichen. Es entstanden gleichförmige Fasern mit Durchmessern von 20 bis 4000 nm, wie sie in 1 als rasterelektronenmikroskpische Aufnahme erkennbar sind. Instabilitäten können auch zu unregelmäßigen Verdickungen bei den Spinnfäden führen. Die überraschenderweise regelmäßige Morphologie, die durch offene Poren gekennzeichnet ist, wird durch die Vergrößerungen gemäß 2 bis 5 deutlich. Die Herstellung der porösen, polymeren Nano- und Mesofäden wird anhand der Beispiele verdeutlicht.

Ein Merkmal für die hohe Oberfläche der erfindungsgemäßen porösen Fasern ist die Oberfläche, die über 100 m2/g, bevorzugt über 300 m2/g, insbesondere über 600 m2/g, ganz besonders bevorzugt über 700 m2/g beträgt. Diese Oberflächen lassen sich anhand der Abmessungen, wie sie sich aus den rasterelektronenmikroskopischen Aufnahmen ergeben, berechnen oder durch Stickstoffadsorption nach dem BET-Verfahren messen.

Die nach dem erfindungsgemäßen Verfahren hergestellten porösen Fasern lassen sich zu Geweben, Gestricken und geformtem sowie strukturiertem Preßgut verarbeiten, naßchemisch und plasmachemisch modifizieren oder durch Tränken und anschließendes Trocknen mit Materialien unterschiedlicher Zielsetzungen, beispielsweise pharmazeutische Wirkstoffe oder katalytische Precurser, beladen.

Weiterhin können die erfindungsgemäßen porösen Fasern als Ad- oder Absorptionsmittel, im biologischen Bereich (Biomaterial) sowie als Template zur Herstellung von hochporösen Festkörpern (z. B. Keramiken durch Abformen und Herausbrennen der polymeren Templates) verwendet werden.

Es ist weiterhin möglich, die porösen Fasern gemäß der Erfindung einer Oberflächenmodifizierung durch ein Niedertemperaturplasma oder chemische Reagenzien, wie zum Beispiel wäßriger Natronlauge, anorganischen Säuren, Säureanhydriden oder -halogeniden oder auch je nach Oberflächenfunktionalität mit Silanen, Isocyanaten, organischen Säurehalogeniden oder -anhydriden, Alkoholen, Aldehyden oder auch Alkylierungschemikalien einschließlich der entsprechenden Katalysatoren, zu unterziehen. Durch die Oberflächenmodifizierung können die porösen Fasern eine hydrophilere oder hydrophobere Oberfläche erhalten, was bei der Verwendung im biologischen oder biomedizinischen Bereich vorteilhaft ist.

Erfindungsgemäße poröse Fasern können als verstärkende Composite-Komponenten in polymeren Werkstoffen, als Filtermaterialien, als Träger für Katalysatoren z. B. nach Belegung der Poren mit Nickel als Hydrierkatalysator oder pharmazeutisch wirksame Agenzien, als Gerüstmaterial für Zell- und Gewebekulturen und für die verschiedensten Arten von Implantaten, bei denen beispielsweise die Osseointegration oder die Vaskularisierung strukturell verwendet werden. So lassen sich Epithelzellen ohne weiteres auf porösem Polystyrolfasern kultivieren. Ebenso gelingt es, Oesteoblasten auf poröse Polylactid-Trägern aufzubringen und ein Zellgewebe unter Differenzierung zu züchten.

Ein weiterer überraschender Effekt ist die durch optische Doppelbrechung erkennbare Anisotropie dieser erfindungsgemäßen porösen Fasern. Sie sind daher im besonderen Maße als Verstärkungskomponente in Faserverbundwerkstoffen geeignet, wobei die große innere Oberfläche insbesondere nach geeigneter Oberflächenmodifizierung für eine wirksame Bindung und Festigkeit der Polymermatrix sorgt.

In einer anderen Ausführungsform der Erfindung werden ternäre Gemische aus zwei Polymeren und einem leicht verdampfbaren Lösemittel oder Lösemittelgemisch versponnen, wobei eine der Polymerkomponenten wasserlöslich ist, beispielsweise Polyvinylpyrrolidon, Polyethylenoxid, Polypropylenoxid, Polysaccharide oder Methylcellulose. Diese ternären Lösungen wurden in der gleichen Weise elektrostatisch versponnen wie die oben ausgeführten binären Gemische. Hierbei entstanden Nano- und Mesofasern, die jedoch keine poröse Morphologie zeigten. Eine nicht poröse Struktur der Faser wird mit üblichen Elektrospinning-Verfahren erhalten. Zweckmässig wird dabei mit Polymer-Lösungen gearbeitet, die weitab vom Theta-Zustand liegen und diesen auch nicht während des Spinning-Prozeß durchlaufen.

Erst nach einer Wasserbehandlung bei erhöhten Temperaturen, die zum Herauslösen der wasserlöslichen Polymerkomponente führte, zeigten die Fasermaterialien eine poröse Morphologie, mit mindestens bis zum Faserkern reichenden und/oder durch die Faser reichenden Poren in Form von Kanälen, siehe rasterelektronische Untersuchungen in (6).

Auch dieses Fasermaterial kann zu Geweben, Gestricken und geformten sowie strukturierten Preßkörpern verarbeitet, oberflächlich modifiziert sowie funktionalisiert und den oben aufgeführten Verwendungen zugeführt werden.

Anhand der nachfolgenden Vergleichsbeispiele wird die erfindungsgemäße Herstellung von ultradünnen, zylindrischen, porösen Fasern näher beschrieben.

Beispiel 1:

Teilkristallines Poly-L-lactid (PLLA) mit einer Glastemperatur von 63 °C, einer Schmelztemperatur von 181 °C und einem mittleren Molekulargewicht von 148.000 g/mol (Hersteller: Böhringer Ingelheim, Germany) wurde in Dichlormethan (FLUKA, Germany; chromatogrphierein) gelöst. Die Konzentration des Polymers in der Lösung betrug 4,4 Gew.-%.

Die Dosierungsgeschwindigkeit der Lösung zur Austrittskanüle, die einen inneren Durchmesser von 0,5 mm besaß, wurde variiert zwischen 0,3 und 2 cm3/s. Die Temperatur der Lösung war auf 25 °C eingestellt.

Die Abstände zwischen Kanülenspitze und Gegenelektroden lagen zwischen 10 und 20 cm, die Arbeitsspannung war auf 35 kV.

Bei dem Spinnprozeß entstanden je nach Dosiergeschwindigkeit poröse Fasern mit Durchmessern von 100 nm bis 4 &mgr;m. Die rasterelektronenmikroskpischen Aufnahmen (REM; Gerät : CamScan 4) zeigen einheitlich geformte Fasern, wie sie in 1 dargestellt sind, die bei höherer REM-Auflösung die durchgängige, offene poröse Struktur erkennen lassen (2). Sowohl die in Spinnrichtung orientierten ellipsoiden Porenöffnungen, mit Porenweiten von 100 bis 400 nm in Richtung der Faserachsen und 20 bis 200 nm quer zur Faserrichtung, als auch polaristionsmikroskopische Untersuchungen (Mikroskop Zeiss MBO 50 einschließlich drehbarem Polarisator) an den Fasern weisen auf eine erhebliche Anisotropie der auf diese Weise hergestellten porösen Fasermaterialien hin.

Die BET-Oberflächen dieser porösen Fasern lagen zwischen 200 und 800 m2/g, eine Berechnung der Oberfläche aus den REM-Aufnahmen ergab sogar Oberflächen bis zu 1.500 m2/g.

Die REM-Aufnahme 3 zeigt eine poröse PLLA-Faser, die mit einer Dosiergeschwindigkeit der Lösung von 0,8 cm3/s hergestellt wurde. Die BET-Oberfläche dieser Faser wurde mit 650 m2/g gemessen, der aus der REM-Aufnahme errechnete Wert lag bei 1.200 m2/g.

Beispiel 2:

Ein aromatisches Polyurethan (TecoflexTM, Hersteller: Thermetics, USA) mit der mittleren Molmasse von 180.000 g/mol wurde zu 6 Gew-% in Aceton (FLUKA, Germany; gromatographierein) gelöst. Die Temperatur der Lösung war auf 23 °C eingestellt.

Die Bedingungen der elektrostatische Verspinnung entsprachen denen des Beispiels 1. Es wurden ebenfalls anisotrope, poröse Fäden mit Durchmessern von 120 nm bis 4 um erhalten, deren BET-Oberfläche zwischen 150 und 600 m2/g lagen.

Die REM-Aufnahme 4 zeigt solchen Polyurethan-Fäden, die bei einer Dosierung von 1,2 cm3/s erhalten wurden (BET : 490 m2/g).

Beispiel 3:

Eine 13 Gew-%ige Lösung von Polycarbonat mit einem mittleren Molekulargewicht von 230.000 g/mol in Dichlormethan gemäß Beispiel 1 wurde bei einer Zulauftemperatur von 20 °C mit einer Dosiergeschwindigkeit von 1,5 cm3/s elektrostatisch versponnen. Die elektrische Feldstärke betrug 30 kV/m.

5 zeigt eine auf diese Weise hergestellte Faser, deren Poren durch deutlich kleinere Durchmesser gekennzeichnet sind. Die Porosität der Fasern betrug 250 m2/g. Anhand von Berechnungen, die mit den Poren- und Fadenabmessungen gemäß der REM-Aufnahme durchgeführt wurden, muß von mindestens bis in den Fadenkern reichenden Poren ausgegangen werden.

Nach dem gleichen erfindungsgemäßen Verfahren und unter denselben Bedingungen wurde eine Lösung von 7,5 Gew-% Polyvinylcabazol in Dichlormethan zu Fäden verarbeitet. Die Ergebnisse entsprachen denen der Polycarbonat-Verspinnung.

Das nachfolgende Beispiel beschreibt exemplarisch die Herstellung von ultradünnen porösen Fasern aus Blends von wasserunlöslichen und wasserlöslichen Polymeren.

Beispiel 4:

Ataktisches, amorphes Poly-D,L-lactid (PDLLA) mit einem mittleren Molekulargewicht von 54.000 g/mol und einer Glastemperatur von 52 °C (Hersteller : Böhringer Ingelheim, Germany) und Polyvinylpyrrolidon mit einem mittleren Molekulargewicht von 360.000 g/mol (Typ K90; FLUKA, Germany) wurden in den Massenverhältnissen 5:1, 1:1 und 1:5 in Dichlormethan gelöst. Die Konzentrationen der Polymermischungen in Dichlormethan lagen zwischen 2 und 5 Gew-%.

Bei einem Elektrodenabstand von 23 cm wurde eine Arbeitsspannung von 40 kV eingestellt. Die Dosierungsgeschwindigkeiten betrugen 0,5 bis 2 cm3/s.

Es wurden Fäden mit Durchmessern von 80 nm bis 4 um erhalten, die im REM keinerlei Porösität erkennen ließen.

Durch Behandlung der auf diese Weise hergestellten Fasern oder der daraus gefertigten Vliese mit Wasser unter Zimmertemperatur läßt sich das wasserlösliche Polyvinylpyrrolidon (PVP) vollständig herauslösen. Bereits nach 15 Minuten Einwirkung von Ultraschall war die Entfernung von PVP vollständig.

Die Abbildung 6 zeigt beispielhaft die REM-Aufnahme einer auf diese Weise hergestellten, porösen Faser aus einem Gemisch von PVP:PDLLA = 5:1, dessen BET-Oberfläche mit 315 m2/g gemessen wurde.

In der Reihenfolge der PVP-PDLLA-Verhältnisse 1:1 und 1:5 wurden abnehmende Porositäten erhalten mit BET-Oberflächen von 210 m2/g und 170 m2/g.

Die erfindungsgemäß hergestellten porösen Fäden lassen sich regellos knäulförmig abscheiden. Bei geeigneter Geometrie der Gegenelektrode sind auch flächige oder bandförmige Anordnungen der Spinnfasern herstellbar.

Anwendungsbeispiel 1:

Poröse, knäulförmig angeordnete Spinnfasern gemäß Beispiel 1 wurden in eine zylindrische Aluminiumform mit einem Durchmesser von 20 mm, Randhöhe ebenfalls 20 mm, flächendeckend eingefüllt und von Hand zusammengepreßt, so daß eine Schichthöhe von 5 mm entstand. Anschließend wurden mit einem paßgerechten Aluminiumkolben die eingetragenen porösen Fasern bei 50 °C über einen Zeitraum von 15 Minuten mit einer Druckkraft von 30 kp verdichtet.

Hierdurch entstanden flache, runde Preßkörper mit Schichtdicken von 200 bis 600 &mgr;m, deren BET-Oberflächen um nicht mehr als 15 % unter den BET-Oberflächen der eingesetzten Fasern lagen.

Die im Beispiel 1 beschriebene, mit einer Dosiergeschwindigkeit von 0,8 cm3/s hergestellte, poröse Faser wurde auf die oben beschriebene Weise in mehreren Stufen verpreßt und in der letzten Phase mit einer Anpreßkraft von 60 kp über einen Zeitraum von 60 Minuten bei 50 °C verdichtet. Es entstand ein Preßkörper von 1,2 mm Dicke mit einer BET-Oberfläche von 380 m2/g.

Die Benetzbarkeit der Preßkörper mit Wasser war durchschnittlich, die Kontaktwinkel lagen zwischen 45 und 58 Grad.

Die auf diese Weise hergestellte Platte wurde als Ad- und Absorptionsmittel in einer Labornutsche mit dichten Verschluß zwischen Füllzylinder und der darunter liegenden Glasfritte verwendet. Aus einer Menge von 100 ml einer 0,1 % Zuckerlösung wurde der Zucker in einem einmaligen Durchlauf vollständig von der aus den erfindungsgemäßen porösen Fasern hergestellten Sorptionsschicht zurückgehalten.

Anwendungsbeispiel 2:

Die gemäß Beispiel 2 hergestellten knäulförmig vorliegenden, porösen Fasern wurden in einem Mikrowellenplasma und Einwirkung von eines Argon/Sauerstoffgemischs aktiviert.

Das verwendete Gerät, Hexagon, wurde von der Firma Technics Plasma, Germany, bezogen. Die Mikrowellenleistung war auf 300 W eingestellt, der Systemdruck betrug 0,02 bar und die beiden Gasen wurden über ein definiertes Leck zu je 4·10–3 Normalliter/min kontinuierlich zudosiert. Die porösen Fäden waren in der Plasmaanlage in einer waagerecht angeordneten, aus Glas gefertigten, zylindrischen und einseitig offenen Drehtrommel (n=20 Umdrehungen/Minute) eingebracht.

Nach der Plasmabehandlung wurden die aktivierten porösen Fäden in eine wäßrige Lösung von 5 Gew-% Hydroxyethyl-methacrylat (Hersteller : Röhm, Germany) eingerührt und nach einer Einwirkungsdauer von 15 Minuten abfiltiriert und unter Wasserstrahlvakuum bei 50 °C über 24 Stunden getrocknet.

Anschließend wurden die auf die oben dargelegte Weise behandelten Fasern unter mehrfachem Wenden mit UV-Strahlen behandelt. Als UV-Quelle diente eine Anordnung aus 4 Ultra-Vitalux-Strahler (Hersteller: Osram, Germany). Die Dauer der Strahlenexposition betrug 30 Minuten, der mittlere Abstand zur Quelle 20 cm.

Da sich nach anschließendem Wässern der Fasern im Filtrat kein freies Hydroxyethylmethacrylat nachweisen ließ (Erfassungsgrenze : 200 ppm im Wasser), konnte von einer nahezu vollständigen chemischen Bindung des Hydroxyethylmethacrylats auf der Oberfläche der porösen Fasern ausgegangen werden.

Die daraus hergestellten Preßkörper gemäß Anwendungsbeispiel 1 hatten eine BET-Oberfläche von 680 m2/g und waren durch eine sehr gute Benetzbarkeit mit Wasser gekennzeichnet.

In Zusammenarbeit mit der Universität Münster, Institut für Physiologische Chemie, Germany, wurden die aus Anwendungsbeispiel 1 und 2 erhaltenen Preßkörper auf ihr Verhalten gegenüber lebenden Zellen untersucht. Hierzu wurden die Proben mit humanen Nabelschnur-Endothelzellen (HUVEC) geimpft und anschließend ihr Wachstumsverhalten untersucht.

Während die Proben, appliziert in 24well Mikrotiterplatten (Nunc, Dänemark), gemäß Anwendungsbeispiel 1 nach 5 Tagen (37 °C, 37 Vol-% CO2 in der sterilen Raumluft) eine HLTVEC-Zellzahl von 22.000 bis 30.000 pro Kavität zeigten, wurden unter gleichen Bedingungen mit Proben der Preßlinge gemäß Anwendungsbeispiel 2 Endothelzellen-Zahlen von 45.000 bis 60.000 pro Kavität erreicht.

Es erwies sich weiterhin, daß bei Proben des Anwendungsbeispiels 2 weder eine DNA-Akivierung, noch die m-RNA-Synthese oder die Exprimierung von zelltypischen Proteinen verringert, verändert oder degeneriert werden. Durch das in Anwendungsbeispiel 2 beschriebene Verfahren, lassen sich aus den erfindungsgemäß hergestellten porösen Fasern zell- und gewebevertägliche Biomaterialien herstellen.

Anwendungsbeispiel 3:

Fasermaterialien gemäß Beispiel 2 und 3 wurden zu Fäden ähnlich dem klassischen Spinnprozeß gedreht und verdichtet, wofür die Fasern leicht angefeuchtet wurden. Es wurde wollfaserähnliches Fadenmaterial erhalten, mit einer Fadenstärke von 0,3 bis 0,4 mm. Nach dem Trocknen weiteten sich die Fäden auf 0,6 bis 1 mm Fadenstärke auf.

Dieses Fadenmaterial aus den erfindungsgemäßen porösen Primärfasern lassen sich aufspulen und konnten labormäßig zu einfachen Geweben verarbeitet werden.

Die Verwendung von Klebern, Bindern und Festigkeit unterstützenden Vernetzern für oberflächenaktivierte Fasern (Anwendungsbeispiel 2) verbessern sowohl die Verarbeitbarkeit der Fasernmaterialien, gewonnen aus den erfindungsgemäßen Primärfaser, und ihre Reißfestigkeit.

Die auf diese Weise hergestellten Gewebe eignen sich insbesondere zur Herstellung von hochporösen Katalysatorträgern, Wärmeisolationsmaterialien, Absorbern und Filter, als Gerüstmaterial im Tissue Engineering und für die Blutgefäß- sowie Knochenimplantologie. Die hohen Porositäten fördern die Vaskularisierung, unterstützen sowohl die Zellversorgung mit Nährstoffen als auch die Entsorgung von Stoffwechselprodukten und bieten Vorteile für die Zelldifferenzierung sowie Osseofikation und Gewebeintergration.

Anwendungsbeispiel 4:

Fasern gemäß der Beispiele 1 und 3 wurden in einer Plasmaanlage (Hersteller : Eltro, Baesweiler, Germany), in einer rotierenden Glastrommel gemäß Anwendungsbeispiel 2, bei einem Druck von 15 Pa, einer Mikrowellenleistung von 2 kW und 2,45 GHz, einer Pulsdauer von 500 &mgr;s und Periodendauer von 2 s einer mit Nickelcarbonyl (FLUTKA) beaufschlagten Argonatmosphäre ausgesetzt. Hierzu strömte Argon mit 5 1/h über ein auf 40 °C erwärmtes Nickeltetracarbonyl. Die Zuführungsleitungen zur Plasmakammer waren auf 100 °C thermostatisiert, um Abscheidungen von Ni(CO)4 auszuschließen.

Nach einer Behandlungsdauer von bereits 10 Minuten waren die Fäden durch Abscheidung von feinstem metallischen Nickel vollständig geschwärzt.

Die auf diese Weise behandelten porösen Faden wurden gemäß Anwendungsbeispiel 1 zu Platten von 1 mm Dicke verpreßt und in quadratische Teile von 5 mm Kantenlänge zerschnitten. Anschließend wurden sie über 3 Stunden bei 50 °C in einem thermostatisierten Glasrohr mit Wasserstoff nachreduziert. Die Ströungsgeschwindigkeit des Wasserstoffs betrug 10l/h.

Anschließend wurde bei gleichbleibender Temperatur Ethylen mit einer Strömungsgeschwindigkeit von 1 1/h zugemischt. Es fand eine vollständige Hydrierung des Ethylens zu Ethan statt.


Anspruch[de]
  1. Poröse Fasern aus polymeren Materialien, dadurch gekennzeichnet, dass die Fasern einen Durchmesser von 20 bis 4000 nm und Poren in Form von mindestens bis zum Faserkern reichenden und/oder durch die Faser reichenden Kanälen aufweisen.
  2. Poröse Fasern nach Anspruch 1, dadurch gekennzeichnet, dass die Fasern eine Oberfläche von über 100 m2/g aufweisen.
  3. Poröse Fasern nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als polymeres Material ein Homopolymer, Copolymer oder Polymerblend eingesetzt wird.
  4. Poröse Fasern nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als polymeres Material Polyethylen, Polypropylen, Polystyrol, Polysulfon, Polylactide, Polycarbonat, Polyvinylcarbazol, Polyurethane, Polymethacrylate, PVC, Polyamide, Polyacrylate, Polyvinylpyrrolidone, Polyethylenoxid, Polypropylenoxid, Polysaccharide und/oder lösliche Cellulosepolymere eingesetzt werden.
  5. Poröse Fasern nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als polymeres Material mindestens ein wasserlösliches und mindestens ein wasserunlösliches Polymer eingesetzt wird.
  6. Poröse Fasern nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass poröse Fasern einer Oberflächenmodifizierung durch ein Niedertemperaturplasma oder chemische Reagenzien unterzogen werden.
  7. Verfahren zur Herstellung von porösen Fasern aus polymeren Materialien, dadurch gekennzeichnet, dass eine 5 bis 20 Gew.-%-Lösung mindestens eines Polymeren in einem leicht verdampfbaren organischen Lösemittel oder Lösemittelgemisch mittels Elektrospinning bei einem elektrischen Feld über 105V/m versponnen wird, wobei die Lösung kontinuierlich mit einer Pumpe in Spinndüsen oder eine Spritzenkanüle gefördert wird und die lineare Spinngeschwindigkeit von 5 bis 20 m/s beträgt und wobei die resultierende Faser einen Durchmesser von 20 bis 4000 nm und Poren in Form von mindestens bis zum Faserkern reichenden und/oder durch die Faser reichenden Kanälen aufweist.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass ein oder mehrere wasserlösliche und ein oder mehrere wasserunlösliche Polymere eingesetzt werden.
  9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass das organische Lösungsmittel oder Lösungsmittelgemisch ein Theta-Lösungsmittel für das polymere Material ist.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Lösung des mindestens einem Polymeren im Theta-Zustand ist oder diesen während des Elektrospinning durchläuft.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die porösen Fasern einer Oberflächenmodifizierung durch ein Niedertemperaturplasma oder chemische Reagenzien unterzogen werden.
  12. Verwendung der porösen Fasern nach einem der Ansprüche 1 bis 6 als Träger für pharmazeutisch wirksame Agenzien.
  13. Verwendung der porösen Fasern nach einem der Ansprüche 1 bis 6 als Träger für Katalysatoren.
  14. Verwendung der porösen Fasern nach einem der Ansprüche 1 bis 6 als verstärkende Composit-Komponente in polymeren Werkstoffen.
  15. Verwendung der porösen Fasern nach einem der Ansprüche 1 bis 6 als Ad- und Absorptionsmittel.
  16. Verwendung der porösen Fasern nach einem der Ansprüche 1 bis 6 als Gerüstmaterial für Zell- und Gewebekulturen.
Es folgt ein Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com