PatentDe  


Dokumentenidentifikation EP1023175 20.04.2006
EP-Veröffentlichungsnummer 0001023175
Titel VERFAHREN ZUR BESCHICHTUNG VON ALUMINIUMBÄNDERN
Anmelder Alcoa Inc., Pittsburgh, Pa., US
Erfinder AVALOS, T., James, Livermore, CA 94550, US
Vertreter Sobisch & Callies, 37581 Bad Gandersheim
DE-Aktenzeichen 69833486
Vertragsstaaten DE, FR, GB
Sprache des Dokument EN
EP-Anmeldetag 28.05.1998
EP-Aktenzeichen 989248893
WO-Anmeldetag 28.05.1998
PCT-Aktenzeichen PCT/US98/10690
WO-Veröffentlichungsnummer 0098053992
WO-Veröffentlichungsdatum 03.12.1998
EP-Offenlegungsdatum 02.08.2000
EP date of grant 15.02.2006
Veröffentlichungstag im Patentblatt 20.04.2006
IPC-Hauptklasse B32B 37/00(2006.01)A, F, I, 20060206, B, H, EP
IPC-Nebenklasse B32B 15/08(2006.01)A, L, I, 20060206, B, H, EP   

Beschreibung[en]
Technical Field

The present invention is a method for coating an aluminum strip by extruding a thin polymeric film onto the strip.

Background Art

Currency, thermosetting protective and decorative coatings are generally applied to metal strip or strip for packaging end uses by roller-coating of a solvent-based film. After application of the film to the metal sheet or strip, the solvent is typically removed by evaporation and the applied coating is cured. The coating can be applied by a variety of processes such as roll coating, reverse roll coating, spraying, electrocoating, powder coating, and lamination. The coated strip may be used in such applications as cans and can ends, foil pouches, lidding stock, appliances, electrical devices, construction, aerospace or automotive body strip.

The present invention is a new process for coating can stock, lid stock, tab stock, and food container stock.

WO 96/32202 discloses a method and apparatus for extrusion coating both sides of a metal strip.

Brief Description of the Drawings

  • Figure 1 is a schematic view of a device for use in the present invention.
  • Figure 2 shows the extruder head.
  • Figure 3 shows the relationship of the extruder head to the support and pressure rollers.

Disclosure of the Invention

The present invention provides a process for coating an aluminum metal strip with a polymer, comprising the steps of:

  • heating an aluminum strip having a thickness between approximately 0.38 mm (0.015 inch) and 0.15 mm (0.006 inch) to a temperature above 177°C (350°F) but not more than 204°C (400°F);
  • positioning a surface of the aluminum strip with a support roller and a compression roller below an extrusion coating head configured to extrude a thin molten polymeric film onto the surface of the aluminium strip which is moving on the support roller;
  • extruding the thin molten polymeric film onto the surface of the aluminum strip which is moving the support roller before the aluminium strip enters a roll nip between the support roller and the compression roller which compresses the film when the aluminium strip is moved through the roll nip;
  • subsequently drawing the thin molten polymeric film to a thickness of from 0.0076 mm (0.0003 inch) to 0.00076 mm (0.00003 inch) on the surface of the aluminum strip in the roll nip;
  • postheating the coated aluminum strip to a temperature between 221°C (430°F) and 238°C (460°F); and
  • quenching the coated aluminum strip to a temperature between 54°C (130°F) and 66°C (150°F).

Preferably the present invention further comprises the steps of:

  • positioning a second surface of the aluminum strip with a second support roller and a second compression roller below a second extrusion coating head configured to extrude a thin molten polymeric film onto the surface of the aluminium strip which is moving on the support roller;
  • extruding the thin molten polymeric film onto the surface of the aluminum strip which is moving on the support roller before the aluminium strip enters a second roll nip between the second support roller and the second compression roller which compresses the film when the aluminium strip is moved through the second roll nip; and
  • subsequently drawing the thin molten polymeric film to a thickness of from 0.0076 mm (0.0003 inch) to 0.00076 mm (0.00003 inch) on the second surface of the aluminum strip in the roll nip,
  • before the step of postheating the coated aluminum strip.

Best Mode for Carrying out the Invention

In a preferred embodiment, the present invention is a method for coating both sides of a continuous process aluminum strip by extruding thin polymeric film onto the aluminum strip. Preferably, the aluminum strip is uncoiled, passed through a preheating unit, two extrusion heads, a post-heater, a quench, a lubricator, and then it is recoiled.

The present invention is designed to coat an aluminum strip surface with a thin polymeric film. (The polymeric film may also be called a extrudate, resin, or extrusion coating.) The aluminum strip can be produced in a variety of different ways. For example, the strip may be produced according to the methods shown in any of the following United States patents. U. S. Patent No. 5,470,405; 5,514,228; 5,515,908; 5,564,491; 5,496,423; and 5,356,495. These patents describe a process for producing an aluminum strip that is about 305 mm (12 inches) wide and is suitable for beverage can manufacture. The aluminum strip is typically coiled and stored in an uncoated state. However, the present invention contemplates obtaining strip from a stored coil or as an in-line process. Equipment for coiling is known in the art and it includes the following types: coil leveling lines, coil annealing lines, coil shearing lines, and coil lithostrip lines. Furthermore, standard coilers operate at speeds from 61 m (200 feet) per minute to 1219 m (4000 feet) per minute. Additionally, the coilers can operate at temperatures of the aluminum strip between 93°C (200°F). and 316°C (600°F).

At some point before the strip surface is coated with the resin, it is precleaned or pretreated to provide a better surface for the resin to adhere. Cleaning methods are known to those of skill in the art and include caustic or acid washes. Pretreatments may include chromium, zirconium, or titanium conversion coatings.

A preferred apparatus for use in the present device is illustrated in Figure 1 and it consists of entry rollers 2 to position the aluminum strip 4, a preheat oven 6, a first extrusion coating head 8 for the bottom surface of the strip 4, rollers 10 to position the aluminum strip 4 relative to the first extrusion coating head 8, a second extrusion coating head 12 for the top surface of the aluminum strip 4, a pair of rollers 14 designed to position the aluminum strip 4 relative to the second extrusion coating head, a final cure heater 16 and a roller 18 to position the aluminum strip 4 as it exits the heater and before it enters an air quench 20, a roller 22 to position the aluminum strip 4 as it leaves the air quench and enters a lubricator, two-roll coater 24, and exit rollers 26 designed to position the aluminum strip 4 relative to the lubricator and the coiler.

The aluminum strip 4 can be uncoiled by methods known in the art. During uncoiling, it is fed into the present process and apparatus for extrusion coating. The present extrusion coating device is operated in an in-line process as follows. Several rollers may be positioned before rolls 2 and after rolls 26 in the present device to ensure appropriate positioning of the moving aluminum strip 4. The first portion of the present device is a preheat portion 6, preferably an induction heater or an infrared heater. Other methods for heating a moving aluminum strip 4 are known in the art and they include the following: air-gas convection; infrared; plasma; and corona discharge heaters.

The moving aluminum strip 4 is between 0.15 and 0.38 mm (0.006 and 0.015 inches) in thickness, preferably between 0.20 and 0.30 mm (0.008 and 0.012 inches) in thickness. Preferably, the strip is at least 102 or 152 mm (4 or 6 inches) wide, more preferably, at least 203 or 254 mm (8 or 10 inches) wide. Preferably, the strip is no more than 414 or 610 mm (36 or 24 inches) wide, more preferably, no more than 508 or 305 mm (20 or 12 inches) wide. Consequently, a heater must be able to provide the appropriate heating capability to this type of material.

The moving aluminum strip 4 can be uncoiled at a rate of between 61 and 1219 m (200 and 4000) feet per minute, most preferably between 244 and 366m (800 and 1200 feet) per minute.

The preheat oven 6 heats the moving aluminum strip 4 to a temperature above 177°C (350° F)., but not more than 204°C (400° F). Preferably, the oven 6 heats the moving aluminum strip 4 to above 185°C (365° F)., but less than 199°C (390° F).

An extruder head 28 is shown in Figure 2 and is comprised of a single screw, slot die extruder for extruding a thin polymeric film onto at least one surface of the aluminum strip. It contains a hopper or reservoir 30 for loading resin pellets, which leads to an extruder barrel 32 where the pellets are heated to a low temperature melt point of not more than 143°C (380°F). or not less than 154°C (310° F)., more preferably not more than 188°C (370° F)., and not less than 63°C (325° F). Inside the extruder barrel, a rotating screw forces the melted resin through a transfer bar 34 and a feeding block 36. The rotating screw is driven by a motor and armature 38 and preferably generates 2000 Ibs pressure to extrude the resin.

The primary purpose of the slot die 40 is to define a width and to provide an even cross sectional film thickness as well as smoothness of the extruded film. The preferred die design is based on the hinge effect, allowing smooth, precise adjustments on relative narrow center lines.

A slot die 40 is positioned in the feeding block so that the film exits in a form of a thin curtain. The slot die 40 preferably extends 19 mm (3/4 of an inch) on each side of the strip width, but nor more than 25 mm (1 inch). Preferably, the slot die aperture 42 is at least 0.30 mm (0.012 inches) wide, preferably, not more than 0.64 mm (0.025 inches) wide. More preferably, the slot die aperture 42 is at least 0.36 mm (0.014 inches) wide, preferably, not more than 0.51 mm (0.020 inches) wide. The preferred die is hinged to allow adjustments to be made in the width of the die opening. Preferably, the width can be adjusted every 38 to 64 mm (1 S to 2 S inches) along the length of the die, more preferably, every 51 mm (2 inches).

The film thickness can be measured by a micrometer after it has been extruded and allowed to come to room temperature. Also, the film thickness can be measured as it is applied to the strip by using a device that measures the capacitance as compared to standards. Thereafter, the die may be adjusted to vary the film thickness.

The slot die 40 is positioned over two polymer-coated steel rolls. (The moving strip travels in the direction of the arrow shown in Fig. 2.). The two rollers are a support roller 44 and a pressure roller 46. Horizontal or vertical extruders can be used with, or without the feeding block arrangement. The polymer coated steel rolls are made of a high-temperature-resistant silicon-type polymer of between 35 and 50 durometer hardness. Figure 3 shows the positioning of the slot die 40 relative to the aluminum strip 4 and the two rollers 44, 46. The two rollers comprise a support roller 44 and a compression roller 46, also known as a nip pressure roller. The vertical offset 50 between the centers of both rolls 44, 46 is designed to reduce the air gap and reduce the air entrapment. Preferable, the centers of each roll are substantially vertically offset by about 25 mm (1 inch) to about 38 mm (1 S inches), more preferably the distance is between 29 mm and 32 mm (1 1/8 and 1 1/4 inches). The slot die 40 in the extruder head 28 is positioned between 3.2 mm to 25 mm (1/8 to 1 inches) above the aluminum strip 4, more preferably approximately 9.5 mm (3/8 of an inch). The slot die 40 is preferably positioned approximately between 41.3 and 57.4 mm (1-5/8 and 2-1/4 inches). more preferably approximately 51 mm (2 inches) from the center of the support roll 44 towards the compression roll 46 (see 52). It can be understood by one of ordinary skill in the art that the gap between the slot die 40 and the support roll 44, the speed of the aluminum strip 4, and the resin amount are proportioned so that the resin does not overcoat the aluminum strip 4. A modification in one of the elements above may necessitate a modification in another of the above elements. Such modifications are within the skill of the art. The compression roller 46 is used to draw the thin resin and to remove air.

The nip pressure roll 46 is designed so that it does not pick up any resin. These rolls are preferably covered with a silicone type polymer which provides release of the extruded films. This is an inherent property of silicone, it is incompatible with other resins, it only adheres to itself. The support roll 46 and the nip pressure roll 44 are also designed to be opened and closed. For example, the two rollers can be pulled apart for positioning of the strip 4 or other operations. Preferably, the distance between the centers of the rolls is 162 mm (6-3/8 inches) when opened, and 149 mm (5-7/8 inches) when closed. These rolls have given favorable performance in that: they provide a good pressure nip for the bonding of the resin to the moving aluminum strip; the extrudates do not adhere to the pressure roll surface, even at high pressure there is no evidence of the extruded film picking onto the roll surface; they eliminate air entrapment between the extrudate and the aluminum strip; they provide good drawing and polishing of the extruded film; and they exhibit excellent process temperature resistance.

The nip and support roller for the first extrusion coating head 8 of Figure 1 are positioned to coat one surface of the aluminum strip, e.g. the underside of the aluminum strip. The nip and support roller 14 of the second extrusion coating head 12 are positioned to coat the other surface of the aluminum strip, e.g.. the top of the aluminum strip in the same manner as the first extrusion coating head 8 applied film to the bottom of the strip. This operation is sequential, in that the first extrusion coating head 8 applies resin 'upstream' of the second extrusion coating head 12.

The resin from the extrusion coater is applied to the aluminum strip in a certain thickness. For example, it is preferred that the resin is extruded at no more than 0.46 mm (0.018 inches) thick, but not less than 0.13mm (0.005 inches) thick, more preferably no more than 0.41 (0.016 inches) thick, but less than 0.25 (0.01 inches) thick. The extrusion coating is drawn to a reduced thickness of from 0.0016 mm (0.0003 inches) thick to 0.000016 mm (0.00003 inches) thick. The extrusion coating may be drawn by the pressure of the compression roller, for example. Other methods of drawing are through the modification of the aluminum strip speed and the nip roll pressure.

After the aluminum strip 4 is moved from the second extrusion coating head 12 and its two rollers 14, it is fed to the final cure, such as an infrared or induction heater 16, to dry or cure the resin. Typical heaters of this type include: air-gas convection; infrared; plasma; and corona discharge heaters. This heater 16 also can be called a curing oven The temperature to which the aluminum strip 4 is heated is no more than 238°C (460° F)., but no less than 221°C (430° F). Preferably the aluminum strip is heated to no more than 232°C (450° F)., but no less than 221°C (440° F).

The moving aluminum strip 4 is passed to a quench 20, preferably an air quench, also called an air flotation cooler. Air quenching is designed to cool the moving aluminum strip 4 with the applied resin so that it can be lubricated and recoiled. Air quench devices are commonly known in the art. Other quenching/cooling devices include: cooling drum rolls; water quench; and/or a combination of air-water quenching.

The moving aluminum strip 4 is cooled to a temperature between 66°C (150°F), and 54°C (130° F). To achieve cooling to these temperatures, the air quench is adapted to provide air flows of approximately 366 m (1200 feet) per minute.

After passage through the air quench, the aluminum strip 4 is positioned using a roller 22 into a two roll (per side) coat lubricator 24. These lubricators 24 are known in the art and are commercially available. Representative examples of this type of device are: air spray; and electrostatic lubricators.

This lubricator 24 will apply a lubricant, such as a microcrystalline wax or light oil. This lubrication serves a purpose of lubricating the aluminum strip 4 for further can making operations such as cupping and body making (in the case of can body stock), or formation into the lid or tab for lid and tab stock.

The aluminum strip that is coated by this invention may be a variety of alloys and tempers, depending on the use of the strip. The strip is preferably greater than 102 or 152 mm (4 or 6 inches) wide, more preferably, more than 254 or 305 mm (10 or 12 inches) wide. Preferably, the width of the strip is not more than 914 or 610 mm (36 or 24 inches) wide, more preferably no more than 508 or 457 mm (20 or 18 inches) wide.

Typical aluminum alloys are used as can body stock, lid and tab stock. In general, alloys suitable for use in the practice of the present invention are those aluminum alloys containing from about 0 to about 0.6% by weight silicon, from 0 to about 0.8% by weight iron, from about 0 to about 0.6% by weight copper, from about 0.2 to about 1.5% by weight manganese, from about 0.2 to about 5% by weight magnesium, from about 0 to about 0.25% by weight zinc, with the balance being aluminum with its usual impurities. Representative of suitable alloys include aluminum alloys from the 1000, 2000, 3000, 4000, 5000, 6000, 7000, and 8000 series. Some examples are the 3000 and 5000 series, such as AA 3004, AA 3104, AA 5017, and 5182.

Typical tempers are the H-19 or H-39 tempers and the metal strip is typically 0.1778-0.356 mm (0.007 to 0.014 inches) thick.

Other devices used for coating surfaces of aluminum strip are shown in the following U.S. patents: 5,407,702; 5,582,319; and 5,197,536 as well as PCT Publication WO 94/01224.

In accordance with this invention, a variety of thermoplastic or thermosettable polyester resins can be used to coat an aluminum strip which is designed for use in packaging, such as can bodies, can lids or tabs. PCT publication WO 94/01224 provides a description of many resins that are used to coat aluminum can stock.

Thermoplastic resins suitable for use in this invention include polypropylene, polyethylene, polyamides (nylon), polycarbonates, and polyvinyl chloride (PVC) and epoxies. A highly preferred resin is Dow Primacor® 3460 polymer, which is an ethylene-acrylic acid copolymer.

The composition may, for example, comprise one of the following systems, or a blend of two or more such systems may be used:

  • 1) Epoxy resin, or epoxy novolac resin, preferably, but not limited to, bisphenol Apichlorohydrin-based materials exemplified by solid materials such as, for instance, Shell Epikote 1009, 1007, 1004, 1002, 1001 and 828, in combination with one or more resole phenolic resins which may be alkylated or non-alkylated as exemplified by Uravar FB190, Uravar FB120, Varcum 29-101, Varcum 29-108, Varcum 29-159, Varcum 29-183 and Varcum 94-635.

    The epoxy resin may be modified with one or more polyesters, which may be branched or linear, acid- and/or hydroxy-functional, as exemplified by Dynapol LH820 (a saturated, medium molecular weight, linear, hydroxy-functional polyester); Dynapol L858 (a saturated, high molecular weight, branched polyester); Dynapol L206, (a saturated, high molecular weight, linear polyester); and Uralac 2695 (a saturated, medium molecular weight, branched carboxylated polyester); or (b) one or more diacids, exemplified by succinic, adipic, sebacic, isophthalic, terephthalic and phthalic acids or © one or more diols exemplified by ethylene, propylene, diethylene and triethylene glycols, 1,4-butanediol, 1,6-hexanediol, and cyclohexanedimethanol.

    The system may be further crosslinked with one or more essentially solvent-free aminoplast resins, exemplified by Cymel 301 (hexamethoxymethyl melamine), Cymel 1123 (Benzoguanamine formaldehyde), Cymel 1170 (Glycol uril formaldehyde) and UFR-80 (Urea formaldehyde), all from Dyno Cynamid, and/or bisphenol A epichlorohydrin-based epoxy resins, exemplified by liquid materials such as, for instance, Shell Epikote 828, Dow DER330, Ciba Araldite GY2600 and 260, and/or epoxy novolac resins exemplified by Dow DEN 431 or DEN 438.
  • 2) Polyester resin, as exemplified by those described in 1)a) above, in combination with one or more resole phenolic resins as exemplified by those described in 1) above, and/or essentially solvent-free aminoplast resins, as exemplified by those described in 1) above. The system may be further crosslinked with additions of epoxy (e.g. liquid epoxy) and/or epoxy novolac resins as exemplified by those described in 1) above.
  • 3) Epoxy resin, as exemplified by materials such as those described in 1) above, in combination with one or more organic anhydrides or anhydride oligomers as exemplified by one or more of trimellitic, succinic, phthalic, hexahydrophthalic and tetrahydrophthalic anhydrides.
  • 4) Epoxy resin, as exemplified by materials such as those described in 1) above, in combination with high solids, typically at least 60 prcent, acid-functional acrylic polymers, acid value typically greater than 50 mg KOH/g as exemplified by Reichold Synthemal 40-462, McWhorter Acrylamac 7555, HiTek CMD 979, HiTek RGX-87425, Paraloid AT-70, or Paraloid AT-85.
  • 5) Hydroxy-functional polyester, as exemplified by those described in 1) above, in combination with isocyanate which may be internally or externally blocked as exemplified by uret diones, phenol blocked isocyanates, such as for instance, Desmodur AP stable (Byer), and/or essentially solvent-free aminoplast resin as described in 1) above,
  • 6) (a) Emulsion polymers based on crosslinkable thermosetting acrylic resins, as exemplified by Union Carbide Ucar 4510 and Rohm & Haas Primal AC1822, crosslinked with additional components such as essentially solvent-free aminoplast resins, liquid or solid epoxy resins or epoxy-novolac resins, all as described in 1) above. b) Emulsion polymers based on self-crosslinking thermosetting acrylic resins, as exemplified by Rhoplex AC-604, AC-625, AC 1230 and HA-16.
  • 7) A linear or branched polyester with acid functionality sufficient for reaction with the chosen crosslinking agent, which may be an epoxy resin, more especially an epoxy resin as described in 1) above. Typically, the polyester will have an acid value of at least 30 mg KOH/g as exemplified by EMS Grilesta V72/6 and Uralac P2695.

    The system may be crosslinked with dicyandiamide, epoxy-novolac, phenolic and/or aminoplast resins as described in 1) and 2) above.

The present device and process will now be illustrated by reference to the following examples which set forth particularly advantageous embodiments.

Example I

I coated both surfaces of a moving aluminum strip, having the following dimensions 0.0088 gauge by 6 inch width and 1800 linear feet, using the above described extrusion device. The extrudable resin was Vermicolor (manufactured by Dexter Coatings, resin ID no. 96-605-15). The process conditions were: Extruder Parameters: Barrel Temperature 410° F., 420° F., and 430° F. Transfer Bar 425° F. Feed Block 400° F. Die 400° F. Melt Temperature 370° F. Feeding Rate 50 RPM exterior surface 60 RPM interior surface and Pressure 1400 -2000 Line Process Speed 38.1 m per minute (125 f.p.m). for exterior surface 22.1 m per minute (75 f.p.m.) for interior surface Preheat Temperature 177°C (350° F) Cure Temperature 221°C (430° F) Substrate: 0.22 mm × 152 mm × 1579 × 549 m 0.0088" x 6" x 5182 x 1800 linear feet chemically and conversion coated with zirconium pretreatment. Applied Film Thickness: Interior surface 8 microns, exterior surface 4 microns Film Appearance: Acceptable clarity and gloss development upon thermal cure of 221°C (430° F) Film Adhesion: Excellent, with no tape removal or feathering after a 15 minute boiling water immersion test. No apparent blush on the coated film after this water-immersion test. Retortability (90 minutes at 21°C (250° F).) No apparent blush of the film in either the water or steam phase and no loss of adhesion. Beverage End Fabrication: Beverage, soft drink 202 ends were converted in a commercial end production plant. The ends from the extrusion coated test coil are comparable to the commercial ends being produced at the same time. The cut edge is clear with no haifing, the extruded film exhibits no flaking or fracturing in the countersink or rivet area of the converted ends.

Metal exposure on these fully converted ends was determined by means of Enamel Rater test expressed in mil-amp. Random Test End Actual Readings Mil-Amp. 1 0.1 2 0.1 3 0 4 0.1 5 0 6 0 7 0 8 0 9 0 10 0

Example II

To distinguish the present invention from previous processes I tested a resin that is disclosed as a preferred high melt viscosity polyester resin in U. S. Patent No. 5,407,702 and named DuPont Selar® resin PT-8307. I attempted to extrude this resin at a barrel temperature of 450-515 °F, a transfer bar temperature of 530-535 °F, a feed block temperature of 535 °F, an extruding die temperature of 535 °F, and a melt temperature of 480-500 °F. These temperatures were in the recommended range for this resin and they differ substantially from the temperatures recommended for the present process and device as shown above. However, even at these elevated temperatures, I was unable to extrude this resin in the present device due to the high melt viscosity of the resin.


Anspruch[de]
Verfahren zum Beschichten eines Aluminiumstreifens (4) mit einem Polymer, bestehend aus den Schritten: Erwärmen eines, eine Dicke zwischen ungefähr 0,38 mm (0,015 Inch) und 0,15 mm (0,006 Inch) aufweisenden Aluminiumstreifens (4) auf eine Temperatur oberhalb von 177 °C (350 °F), jedoch nicht höher als 204°C (400°F); Positionierung einer Oberfläche des Aluminiumstreifens (4) mit einer Stützrolle (44) und einer Druckrolle (46) unterhalb eines zur Beschichtung bestimmten Extrusionskopfes (8, 28), der dazu eingerichtet ist, einen dünnen schmelzflüssigen Polymerfilm auf die Oberfläche des Aluminiumstreifens (4) zu extrudieren, der sich auf der Stützrolle (44) bewegt; Extrudieren des dünnen schmelzflüssigen Polymerfilmes auf die Oberfläche des Aluminiumstreifens (4), der sich auf der Stützrolle (44) bewegt, und zwar bevor der Aluminiumstreifen (4) in einen Walzspalt zwischen der Stützrolle (44) und der Druckrolle (46) eintritt, durch welchen der Film komprimiert wird, sobald sich der Aluminiumstreifen (4) durch den Walzspalt hindurch bewegt; anschließendes Ziehen des dünnen schmelzflüssigen Polymerfilmes nach Maßgabe einer Dicke von 0,0076 mm (0,0003 Inch) bis 0,00076 mm (0,00003 Inch) auf der Oberfläche des Aluminiumstreifens (4) in dem Walzspalt; Nachenivärmen des beschichteten Alumiumstreifens (4) bis auf eine Temperatur zwischen 221 °C (430 °F) und 238 °C (460 °F): und Abschrecken des beschichteten Aluminiumstreifens (4) auf eine Temperatur zwischen 54 °C (130 °F) und 66°C (150 °F). Verfahren nach Anspruch 1, bestehend aus den Schritten

Positionierung einer zweiten Oberfläche des Aluminiumstreifens (4) mit einer zweiten Stützrolle (44) und einer zweiten Druckrolle (46) unterhalb eines zweiten zur Beschichtung bestimmten Extrusionskopfes (12, 28), der dazu eingerichtet ist, einen dünnen schmelzflüssigen Polymerfilm auf die Oberfläche des Aluminiumstreifens (4) zu extrudieren, der sich auf der Stützrolle (44) bewegt,

Extrudieren des dünnen schmelzflüssigen Polymerfilmes auf die Oberfläche des Aluminiumstreifens (4), der sich auf der Stützrolle (44) bewegt, und zwar bevor der Aluminiumstreifen (4) in einen zweiten Walzspalt zwischen der zweiten Stützrolle (44) und der zweiten Druckrolle (46) eintritt, durch welchen der Film komprimiert wird, sobald sich der Aluminiumstreifen /4) durch den zweiten Walzspalt hindurch bewegt; und

anschließendes Ziehen des dünnen schmelzflüssigen Polymerfilmes nach Maßgabe einer Dicke von 0,0076 mm (0,0003 Inch) bis 0.00076 mm (0,00003 Inch) auf der zweiten Oberfläche des Aluminiumstreifens (4) in dem Walzspalt,

und zwar vor dem Schritt des Nacherwärmens des beschichteten Aluminiumstreifens (4).
Verfahren nach Anspruch 1 oder 2, bestehend ferner aus dem Schritt des Vorbehandelns der Oberfläche des Aluminiumstreifens (4) mit einer Umwandlungsbeschichtung, die aus der, aus Chrom, Zirkon, und Titan bestehenden Gruppe ausgewählt ist, und zwar bevor der dünne schmelzflüssige Polymerfilm auf die Oberfläche des Aluminiumstreifens (4) extrudiert worden ist. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Schritt des Erwärmens des Aluminiumstreifens (4) in einem Vorwärmofen (6) durchgeführt wird und wobei das Verfahren ferner den Schritt des Positionierens des Aluminiumstreifens (4) mittels Eingangsrollen (2) vor dem Einführen des Aluminiumstreifens (4) in den Vorwärmofen umfasst. Verfahren nach einem der vorrangegangenen Ansprüche, wobei der Schritt des Abschreckens des Aluminiumstreifens (4) durchgeführt wird, indem der Aluminiumstreifen (4) mit Luft abgeschreckt wird. Verfahren nach einem der vorrangegangenen Ansprüche, welches ferner den Schritt des Schmierens des Oberfläche des Aluminiumstreifens (4) umfasst, auf welchem sich der dünne Polymerfilm befindet und des Aufwickelns des beschichteten Aluminiumstreifens (4) auf einem Haspel. Verfahren nach einem der vorrangegangenen Ansprüche, wobei der Aluminiumstreifen (4) ein Streifen bestehend aus einer Aluminiumlegierung ist. Verfahren nach einem der vorrangegangenen Ansprüche, wobei der Aluminiumstreifen eine Dicke zwischen ungefähr 0,30 mm (0,012 Inch) und 0,20 mm (0,008 Inch) aufweist. Verfahren nach einem der vorrangegangenen Ansprüche, wobei der dünne Polymerfilm aus einem thermoplastischen Harz besteht, welches aus der aus Polyester, Epoxid. Polypropylen, Polyethylen, Polyamid, Polycarbonat und Polyvinylchlorid bestehenden Gruppe ausgewählt ist. Verfahren nach einem der Ansprüche 1 bis 8, wobei der dünne, auf die Oberfläche des Aluminiumstreifens (4) extrudierte Polymerfilm aus einem warm aushärtenden Harz besteht. Verfahren nach einem der vorrangegangenen Ansprüche, welches ferner den Schritt des Vorreinigens der Oberfläche des Aluminiumstreifens (4) mit einem ätzenden oder sauren Reinigungsmittel umfasst, und zwar bevor der dünne Polymerfilm auf die Oberfläche des Aluminiumstreifens extrudiert wird..
Anspruch[en]
A process for coating an aluminum metal strip (4) with a polymer, comprising the steps of: heating an aluminum strip (4) having a thickness between approximately 0.38 mm (0.015 inch) and 0.15 mm (0.006 inch) to a temperature above 177°C (350°F) but not more than 204°C (400°F ); positioning a surface of the aluminum strip (4) with a support roller (44) and a compression roller (46) below an extrusion coating head (8, 28) configured to extrude a thin molten polymeric film onto the surface of the aluminium strip (4) which is moving on the support roller (44); extruding the thin molten polymeric film onto the surface of the aluminum strip (4) which is moving on the support roller (44) before the aluminium strip (4) enters a roll nip between the support roller (44) and the compression roller (46) which compresses the film when the aluminium strip (4) is moved through the roll nip; subsequently drawing the thin molten polymeric film to a thickness of from 0.0076 mm (0.0003 inch) to 0.00076 mm (0.00003 inch) on the surface of the aluminum strip (4) in the roll nip; postheating the coated aluminum strip (4) to a temperature between 221°C (430°F) and 238°C (460°F); and quenching the coated aluminum strip (4) to a temperature between 54°C (130°F) and 66°C (150°F). A process according to claim 1 further comprising the steps of: positioning a second surface of the aluminum strip (4) with a second support roller (44) and a second compression roller (46) below a second extrusion coating head (12, 28) configured to extrude a thin molten polymeric film onto the surface of the aluminium strip (4) which is moving on the support roller (94); extruding the thin molten polymeric film onto the surface of the aluminum strip (4) which is moving on the support roller (44) before the aluminium strip (4) enters a second roll nip between the second support roller (44) and the second compression roller (46) which compresses the film when the aluminium strip (4) is moved through the second roll nip; and subsequently drawing the thin molten polymeric film to a thickness of from 0.0076 mm (0.0003 inch) to 0.00076 mm (0.00003 inch) on the second surface of the aluminum strip (4) in the roll nip, before the step of postheating the coated aluminum strip (4). A process according to claim 1 or 2 further including the step of pretreating the surface of the aluminum strip (4) with a conversion coating selected from the group consisting of chromium, zirconium and titanium before the thin polymeric film is extruded onto the surface of the aluminum strip (4). A process according to any of claims 1 to 3 wherein the step of heating the aluminum strip (4) is performed in a preheat oven (6), and the method further includes the step of positioning the aluminum strip (4) with entry rollers (2) prior to passing the aluminum strip (4) into the preheat oven. A process according to any preceding claim wherein the step of quenching the aluminum strip (4) is performed by air quenching the aluminum strip (4). A process according to any preceding claim further including the steps of lubricating the surface of the aluminum strip (4) having the thin polymeric film and coiling the coated aluminum strip (4) on a coiler. A process according to any preceding claim wherein the aluminum strip (4) is an aluminum alloy strip. A process according to any preceding claim wherein the aluminum strip (4) has a thickness between approximately 0.30 mm (0.012 inch) and 0.20 mm (0.008 inch). A process according to any preceding claim wherein the thin polymeric film is a thermoplastic resin selected from the group consisting of polyester, epoxy, polypropylene, polyethylene, polyamides, polycarbonates and polyvinyl chloride. A process according to any of claims 1 to 8 wherein the thin polymeric film extruded onto the surface of the aluminum strip (4) is a thermosetting resin. A process according to any preceding claim further including the step of precleaning the surface of the aluminum strip (4) with caustic or acid washes before the thin polymeric film is extruded onto the surface of the aluminum strip (4).
Anspruch[fr]
Procédé pour revêtir une bande métallique d'aluminium (4) avec un polymère, comprenant les étapes de : chauffage d'une bande d'aluminium (4) ayant une épaisseur comprise entre environ 0,38 mm (0,015 inch) et 0,15 mm (0,006 inch) à une température supérieure à 177°C (350°F) mais non supérieure à 204°C (400°F) ; mise en position d'une surface de la bande d'aluminium (4) au moyen d'un rouleau de support (44) et d'un rouleau de compression (46) sous une tête de revêtement par extrusion (8, 28) configurée pour extruder un film polymère mince fondu sur la surface de la bande d'aluminium (4) qui se déplace sur le rouleau de support (44) ; extrusion du film polymère mince fondu sur la surface de la bande d'aluminium (4) qui se déplace sur le rouleau de support (44) avant que la bande d'aluminium (4) entre dans une zone de pincement entre le rouleau de support (44) et le rouleau de compression (46) qui comprime le film lorsque la bande d'aluminium (4) est déplacée à travers la zone de pincement entre rouleaux ; étirage subséquent du film polymère mince fondu jusqu'à une épaisseur de 0,0076 mm (0,0003 inch) à 0,00076 mm (0,00003 inch) sur la surface de la bande d'aluminium (4) dans la zone de pincement entre rouleaux ; post-chauffage de la bande d'aluminium revêtue (4) à une température comprise entre 221°C (430°F) et 238°C (460°F) ; et refroidissement rapide de la bande d'aluminium revêtue (4) à une température comprise entre 54°C (130°F) et 66°C (150°F). Procédé selon la revendication 1, comprenant de plus les étapes de : mise en position d'une seconde surface de la bande d'aluminium (4) au moyen d'un second rouleau de support (44) et d'un second rouleau de compression (46) sous une seconde tête de revêtement par extrusion (12, 28) configurée pour extruder un film polymère mince fondu sur la surface de la bande d'aluminium (4) qui se déplace sur le rouleau de support (44) ; extrusion du film polymère mince fondu sur la surface de la bande d'aluminium (4) qui se déplace sur le rouleau de support (44) avant que la bande d'aluminium (4) entre dans une seconde zone de pincement entre le second rouleau de support (44) et le second rouleau de compression (46) qui comprime le film lorsque la bande d'aluminium (4) est déplacée à travers la seconde zone de pincement entre rouleaux ; et étirage subséquent du film polymère mince fondu jusqu'à une épaisseur de 0,0076 mm (0,0003 inch) à 0,00076 mm (0,00003 inch) sur la seconde surface de la bande d'aluminium (4) dans la zone de pincement entre rouleaux, avant l'étape de post-chauffage de la bande d'aluminium revêtue (4). Procédé selon la revendication 1 ou 2, comprenant de plus l'étape de prétraitement de la surface de la bande d'aluminium (4) avec un revêtement de conversion choisi dans le groupe formé par le chrome, le zirconium et le titane avant que le film polymère mince soit extrudé sur la surface de la bande d'aluminium (4). Procédé selon l'une quelconque des revendications 1 à 3, dans lequel l'étape de chauffage de la bande d'aluminium (4) est exécutée dans un four de préchauffage (6) et la technique comprend de plus l'étape de mise en position de la bande d'aluminium (4) au moyen de rouleaux d'entrée (2) avant le passage de la bande d'aluminium (4) dans le four de préchauffage. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape de refroidissement rapide de la bande d'aluminium (4) est exécutée par trempe à l'air de la bande d'aluminium (4). Procédé selon l'une quelconque des revendications précédentes, comprenant de plus les étapes de lubrification de la surface de la bande d'aluminium (4) portant le film polymère mince et l'enroulement de la bande d'aluminium revêtue (4) sur un enrouleur. Procédé selon l'une quelconque des revendications précédentes, dans lequel la bande d'aluminium (4) est une bande d'alliage d'aluminium. Procédé selon l'une quelconque des revendications précédentes, dans lequel la bande d'aluminium (4) a une épaisseur comprise entre environ 0,30 mm (0,012 inch) et 0,20 mm (0,008 inch). Procédé selon l'une quelconque des revendications précédentes, dans lequel le film polymère mince est une résine thermoplastique choisie dans le groupe formé par un polyester, une résine époxy, le polypropylène, le polyéthylène, des polyamides, des polycarbonates et le chlorure de polyvinyle. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le film polymère mince extrudé sur la surface de la bande d'aluminium (4) est une résine thermodurcissable. Procédé selon l'une quelconque des revendications précédentes, comprenant de plus l'étape de pré-nettoyage de la surface de la bande d'aluminium (4) par des lavages caustiques ou acides avant que le film polymère mince soit extrudé sur la surface de la bande d'aluminium (4).






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com