PatentDe  


Dokumentenidentifikation EP1057149 06.07.2006
EP-Veröffentlichungsnummer 0001057149
Titel FLAMM- UND RAUCHDETEKTION
Anmelder Purdue Research Foundation, West Lafayette, Ind., US
Erfinder SIVATHANU, Yudaya, West Lafayette, IN 47906, US;
JOSEPH, K., Rony, West Lafayette, IN 47906, US;
TSENG, Likeng, West Hills, CA 91304, US;
GORE, P., Jay, West Lafayette, IN 47906, US;
LLOYD, Andrew, Indiana 47448, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69931610
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 19.01.1999
EP-Aktenzeichen 999031750
WO-Anmeldetag 19.01.1999
PCT-Aktenzeichen PCT/US99/01071
WO-Veröffentlichungsnummer 1999036892
WO-Veröffentlichungsdatum 22.07.1999
EP-Offenlegungsdatum 06.12.2000
EP date of grant 31.05.2006
Veröffentlichungstag im Patentblatt 06.07.2006
IPC-Hauptklasse G08B 17/12(2006.01)A, F, I, 20051017, B, H, EP

Beschreibung[en]
FIELD OF INVENTION

The present invention relates to fire and smoke detection methodology and associated apparatus.

BACKGROUND OF THE INVENTION

Conventional smoke sensors utilize light scattering or smoke ionization measurements, while conventional temperature sensors used in fire detection utilize thermocouple measurements. There are at least three disadvantages with conventional single sensor fire detectors: (1) there is a significant time delay between the start of the fire, and the transport of either combustion products or smoke to positions close enough to the detector to enable detection: (2) in instances when fire occurs in or at impermeable barriers (such as smoldering inside walls), the fire cannot be easily detected even in advanced stages of burning; and (3) single sensor detectors involve a high rate of false alarms due to any number of conditional changes in the operating environment, such as dust caused by vacuuming or smoke from burnt food, etc.

Combinations of smoke sensors and odor sensors which involve multiple fire signatures are less prone to false alarms (Okayama YU., Ito, T. and Sasaki, T., "Design of Neural Net to Detect Early Stages of Fire and Evaluation By Using Real Sensors' Data," In Proc. 4 th Int. Symp. On Fire Safety Science. 1994, pp. 751-9). However, multiple sensors involve greater construction cost and increased complexity of signal processing hardware and software.

More recently, there has been increased interest in the use of radiation emission sensors (flame detectors) as an alternative to smoke and heat sensors (Middleton, J.F., "Flame Detectors," 9 th Int. Conf. On Automat. Fire Detection, AUBE-89, Duisburg, Germany, 1989, pp. 143-54). The three major advantages of emission sensors are: (1) their ability to survey the entire room for fire initiation. (2) their fast response time, and (3) false signals can be readily distinguished since most fires are unsteady with unique frequency content, leading to unambiguous discrimination based on the power spectral density of the measured intensities (Grosshandler, W.L., "An Assessment of Technologies for Advanced Fire Detection," Heat and Mass Transfer in Fire and Combustion Systems, Vol. HTD-223, ASME, New York, 1992, pp. 1-9).

Single channel flame detectors operate either in the ultraviolet (where solar radiation is totally absorbed by the earth's atmosphere) or in the infrared (where flame emission is primarily from hot CO2) parts of the spectrum. Ultraviolet signals from flames are normally very low leading to false alarms from indoor radiation sources such as incandescent lights, arc welding processes, etc. Therefore, ultraviolet flame sensors are limited to outdoor usage where interfering solar radiation is absorbed by the earth's atmosphere. Another disadvantage of ultraviolet flame detectors is that even minute contamination of the optical windows causes a significant loss of sensitivity.

Therefore, infrared flame detectors are used for large indoor areas such as aircraft hangars and warehouses where direct solar radiation is minimal. Single channel infrared detectors look for radiation emitted from hot CO2 gases present in most flames at wavelengths around 2.7 µm or 4.4 µm. These single channel detectors must have precise band-pass optical filters in order to detect fires while successfully rejecting solar radiation. A corresponding problem with single channel detection is that since only one channel of information is present, the chances of false alarms are relatively high (Middleton, 1989; Okavama, et al. 1994).

False alarm problems present with single channel detection can be partially alleviated by using two channels of detection information. Typically two-channel flame detectors use one channel in the infra-red (typically at 4.4 µm) to detect hot combustion products. The second channel is chosen above or below the 4.4 µm band where there is a high level of solar radiation coupled with low levels of flame radiation. The addition of the second channel is purely for the prevention of false alarms by rejecting interference (such as direct solar radiation) from a continuum source that does not have the ubiquitous 4.4 µm CO2 band. Fire is still detected using the 4.4 µm infrared channel, and in cases where fire is present along with the interfering source, it might be difficult to resolve the signal unambiguously (Middleton, 1989).

Conventionally, frequency analysis of radiation from flames is complicated for at least two reasons. (1) Most pool flames in a stable undisturbed pool have a characteristic flicker frequency associated with them. This characteristic frequency depends on the diameter of the pool. For example, a 5 cm flame pool might have a flicker frequency of 6.7 Hz and a 1 meter pool of the same material might have a flicker frequency of only 1.5 Hz. Therefore, the flicker frequency can vary from 1 Hz to 20 Hz in many fires. (2) For forced flames (such as those issuing from a burst pipe or oil well), it is very difficult to distinguish any flicker frequencies. In such an instance, the frequency spectrum can be very flat from 0 to 15 Hz with no discernible flicker frequency.

Apparatus for such a frequency analysis is mentioned by U.S. Patent No. 5,594,421 to Thulliard. However, the analysis requires input data over a long period (typically 10 seconds) to obtain a "discernible" frequency component. Jet flames and smoldering flames cannot provide this component.

US Patent No. 4 857 895 discloses a combined obscuration and scattered-light smoke detector wherein light from a light source in a smoke chamber of the smoke detector is reflected from an image-forming optical component onto a first light sensor, which senses a reduced electrical signal in the presence of smoke, while a second sensor, viewing light from the light source at an angle, senses an increased electrical signal in the presence of smoke. The output of each receptor is subjected to a band pass filter, an amplifier and a comparator. The resultant signals insure early and reliable activation of an alarm when even a low level of smoke is present in the smoke detector. A second light source having a wavelength different from that of the first light source provides, in the obscuration mode, added sensitivity to smoke.

US Patent 4 665 390 to Kern, et al. looks at a probability density function (PDF) of specific radiation intensities and compares that factor with a factor obtained from a Gaussian noise factor. This analysis is not a frequency spectrum analysis (or a flame flicker frequency analysis). One should note that even bright sunlight can have a non-Gaussian PDF of intensities. In fact PDFs and frequency spectrums are two non-overlapping aspects of any signal, and Patent 4 665 390 utilizes the mean and Kurtosis (which are moments of the PDF) that have no relation to the frequency spectrum. Moreover, many different signals have the same PDF but different power spectral densities (PSDs). For example, a sine wave at 10 Hz and another sine wave at 20 Hz have the same PDF but totally different PSDs.

It is noted that both the above detectors, in addition to requiring a wait-state, cannot detect smoldering fires and/or operate in locations with fireplaces.

Conventional techniques have long utilized fiber optic for the transmission of sensed information over distance. Such apparatus is shown by Kern et al. in US Patent No. 4 701 624 and 5 051 590.

SUMMARY OF INVENTION

The two most distinguishing characteristics of a natural flame are its apparent source temperature and the power spectral density of the radiation intensities emitted from it. Most accidental fires, with the exception of those in the methyl alcohol industry, are luminous because of small carbon particulate formed by most organic materials upon combustion. Research with such fires reveals the following. Two-wavelength pyrometric measurements were conducted utilizing luminous pool and jet fires to reveal that the peak temperatures within these fires were in the range 1400 ± 300 K. The power spectral density (PSD) of radiation fluctuations from natural fires exhibit a wide range of frequencies.

Based on these facts, one objective of the present invention is to set forth a near-infrared fire detector that is nearly impervious to false alarm.

One objective of the present invention relates to the fact that different signals can have the same PDFs as that of a fire (as mentioned in the above example, bright sunlight with some clouds, light reflecting off a body of water, etc.). This problem, inherent in the prior art can be eliminated if both the PDF and PSD of a temperature signal is studied in accordance with the claimed invention. The PDF is a measure of the amplitude alone while the PSD is a measure of how the amplitude of the signal varies in time. Therefore, having both is more advantageous since the signals such as the sunlight can be eliminated as set forth below in detail.

Another objective of the invention relates to an improved radiation viewing ability. Unlike conventional apparatus which is restricted to using fiber optic as a transmission medium, the present invention utilizes a novel multi-fiber optic fiber arrangement as an actual optical viewing means to significantly enlarge the viewing angle of detection.

Moreoever, to meet an objective related to better and faster response time, the invention set forth and claimed herein operates in real time.

According to a first aspect of the invention, we provide a smoke and flame detector as defined in claim 1.

According to a second aspect of the invention, we provide a method of detecting a flame as defined in claim 18.

The novel detector is not restricted to conventionally waiting for flame flicker to occur to then evaluate the flicker at high frequencies - which with conventional apparatus may or may not meet "real world" fire situations. As set forth in detail hereinbelow, the present invention uses relatively low frequencies in the near infrared with two wavelengths closely spaced with narrow band filters to obtain an emission temperature. This novel ability, in conjunction with a probability density function utilized with a noise normalised power spectral density analysis, detects a flame in real time and discriminates it from other radiation sources.

As set forth in detail hereinbelow, the novel features of the present invention include:

  1. (1) an integrated and noise normalized power spectrum analysis of radiation in the near infrared wavelength, that is responsive to a wide range of fires using a fixed sampling frequency and a fixed sampling time, and
  2. (2) utilization of two near-infrared wavelengths closely spaced with narrow bandpass optical filters to obtain a probability density function (PDF) of a source temperature.

These two novel provisions enable fire detection based on a firm statistical analysis of radiation signatures that is independent of the fire size or nature, ranging from smoldering cotton fires to high speed jet flames. In addition, the utilization of a fixed sampling frequency and time enables real time fire detection.

Still further, the present invention provides simultaneous smoke and flame detection in smoke filled enclosures. Such a novel feature enables use of the flame detector of the invention in rooms with fireplaces or other open flame appliances, and allows the utilization of the smoke detector of the invention in kitchens or aircraft cargo bays and other locations which are by their nature very dusty, smoky, humid, or otherwise exhibit an atmosphere laden with particulate.

These and other novel solutions to the long felt problems of the prior art, will be discussed in detail hereinbelow.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the invention is shown in the attached drawings in which:

  • Fig. 1a is a diagram of a NIR detector tested in accordance with the present invention;
  • Fig. 1 is a diagram of the geometry used to evaluate the NIR fire detector using reflected radiation;
  • Fig. 2 shows a graph of the PDFs of apparent source temperatures for open fires;
  • Fig. 3 shows a graph of normalized PSDs of spectral radiation intensities for open fires;
  • Fig. 4 shows a graph of PDFs of apparent source temperatures for smoldering fires;
  • Fig. 5 shows a graph of normalized PSDs of spectral radiation intensity at 1000 nm for smoldering fires;
  • Fig. 6 is a diagram showing the geometry used for numerical evaluation of the fire detector of the invention;
  • Fig. 7 shows a graph of the effect of reflections on the apparent temperatures estimated by the present invention;
  • Fig. 8 shows a graph of the effect of reflection on the apparent temperatures inferred by the detector of the claimed invention;
  • Fig. 9 is an open side view of an assembled fire and smoke detector in accordance with the invention;
  • Fig. 9a is a top view of the fire and smoke detector of Fig. 9;
  • Fig. 9b is an end view of the fire and smoke detector of Fig. 9;
  • Fig. 10 is an exploded perspective view of the components of the detector of Fig. 9;
  • Fig. 11 is an interior perspective view of an alternate embodiment of the fire and smoke detector of the present invention;
  • Fig. 12 is a schematic circuit drawing of the preferred embodiment of the invention; and
  • Fig. 13 is a block diagram of a smoke detector in accordance with the invention.

DESCRIPTION

The principle of operation of the near-infrared fire detector in accordance with the present invention relates to a novel two-wavelength optical pyrometer developed for determining soot volume fractions and temperatures in laboratory scale fires. The spectral radiation intensity emitted by a source at any wavelength, &lgr; is given by the equation of radiative transfer as: I &lgr; = &egr; &lgr; I &lgr; b

where I&lgr;b is the blackbody intensity at the unknown source temperature T and e&lgr; is its apparent spectral emissivity. The apparent spectral emissivity of particulate generated in fires burning organic material is inversely proportional to the wavelength.

For fire detection, the exact temperature and the emissivity of a flame source is usually not of great importance. Rather, the existence of any high temperatures :n the vicinity of the detector is sufficient to indicate the presence of a fire. Therefore, the spectral emissivity of any radiation source (either direct or reflected) can be assumed to vary inversely with wavelength irrespective of its chemical composition, or the spectral reflectivity of intervening material.

Using this assumption, the apparent temperature of any source, determined from the measured spectral radiation intensities at two wavelengths can be defined as: T = h c k ( 1 &lgr; 1 1 &lgr; 2 ) / ln { [ &lgr; 2 6 &lgr; 1 6 ] [ I &lgr; 1 I &lgr; 2 ] }

where h is Planck's constant, k is the Boltzmann constant, and c is the speed of light. The advantage of using two wavelengths close to one other is that the assumption of 1/&lgr; dependence for the emissivity of the source does not seriously affect the apparent source temperature obtained using Eq. (2).

A schematic diagram of the near-infrared fire detector test apparatus is shown in Fig. la. The fire detector 4a consists of a 150° view angle reflector 4b that collects and collimates the radiation incident on it. The collimated radiation is split into two parts which are incident on two photo multiplier tubes (PMTs) 3b, 3c with narrow band pass filters 5b, 5c (10 nm FWHM) centered at 900 and 1000 nm in front of them.

The voltage outputs from the two PMTs 5b, 5c were monitored using an A/D board 6a and a laboratory computer 7a. These voltages were converted to spectral radiation intensities using calibration constants obtained using a standard reference blackbody (Infrared Industries) maintained at 1100K. From the spectral radiation intensities, a time series of apparent source temperatures was obtained using Eq. (2). This time series was statistically analyzed to determine an efficient method of distinguishing fires from background radiation such as sunlight, fluorescent and incandescent lamps (not shown).

Tests of fire detectors commonly used in residential and commercial buildings are typically conducted using six standard fires specified in the European Committee for Standardization (CEN, 1982) guidelines. To characterize the near infrared radiation emanating from natural fires, three of these six test fires were chosen for the present study.

Fire detectors commonly used in residential and commercial buildings are tested using several standard fires specified in the CEN guidelines. See CEN, "Components of Automatic Fire Detection Systems: Fire Sensitivity Test," Part 9, European Committee for Standardization, Brussels (1982). Three of the test-fires were open luminous fires obtained from the burning of a wooden crib (designated TF1 in the CEN guidelines), a heptane pool (TF5) and polyurethane mats (TF4). Two of the test fires were smoldering combustion from cotton fibers (TF2) and wooden pellets (TF3). The five test fires, TF1 to TF5, were used to evaluate the operation of the near infrared fire detector of the invention when only reflected radiation is incident on it.

The test configuration used for the evaluation of the NIR fire detector of the invention using reflected radiation is shown in Fig. 1. Direct radiation from the test fires 1 is blocked using screens 2.

Only that portion of the radiation that is reflected from a poster board 3 is allowed to impinge on the detector 4. The reflectivity of the poster board 3 at 900 and 1000 nm is very low. Therefore, the spectral radiation intensities incident on the NIR fire detector 4 from the reflected radiation were an order of magnitude lower than those incident from direct radiation. In addition, the poster board 3 has different reflectivities at 900 and 1000 nm. Therefore, the ratio of the spectral radiation intensities at 900 and 1000 nm incident on the near infrared fire detector 4 changes. This causes either an increase or decrease in the apparent source temperatures calculated using Eq. 1.

The probability density functions (PDFs) of apparent source temperatures estimated from measurements of direct and reflected spectral radiation intensities are shown in Fig. 2. The PDFs of apparent source temperatures obtained with the three open fires (heptane 5, foam 6, and wood 7) in the direct view of the detector 4 are shown in the bottom panel (B) of Fig. 2. The apparent source temperatures for the three open fires 5, 6, 7 range from 1300 to 1800 K.

The PDFs of apparent source temperatures for the three open fires 5, 6. 7 when only reflected radiation is incident on the detector 4 are shown in the top panel A of Fig. 2. For liquid pool fires, the higher temperatures are usually associated with very low soot volume fractions. Therefore, even at these higher temperatures, the spectral radiation intensities could be lower than those obtained at relatively lower temperatures. In addition, at the lowest range of temperatures, the spectral radiation intensities are also very low. Therefore, after one reflection, only the middle range of temperatures (with some spectral biasing) are detected by a conventional infrared fire detector (not shown).

The changes in the shape of the apparent source temperature PDFs could be due to a combination of factors, including spectral biasing of the reflected intensities, shape of the flame, and correlation between local temperatures and emissivities. In addition, the wood fire 7 is transient in nature, and the temperatures obtained from direct and reflected radiation could be at different stages in the development of the fire.

For the polyurethane foam fires 6, only the middle range of temperatures (in comparison with the direct tests) is detected from reflected radiation (similar to the heptane pool fires 5). Despite the differences in the PDFs obtained from the direct and indirect viewing of the fire, all of the temperatures fall within 1000 to 2000 K. This satisfies a first criterion for the existence of a fire in the vicinity of the detector 4 which states that at least 40% of the PDF of apparent source temperature should be between 700 and 2500 K. See Sivathanu, ''Radiative Heat Transfer Inside a Cylindrical Enclosure with Nonparticipating Media Using A Deterministic Statistical Method," Proceedings of the ASME Heat Transfer Division, HTD-Vol. 332, pp. 145-152, ASME, New York (to be published, and herein incorporated by reference).

The second criterion that should be satisfied for the existence of a fire in the vicinity of the detector 4 is that the normalized power spectral density (PSD) of spectral radiation intensities at 10 Hz should be 1.5 higher than a random signal. The first condition is important to detect sources of high temperatures in the immediate vicinity of the fire detector. The second condition is important to eliminate ambiguous signals originating from natural and artificial sources such as incandescent and fluorescent lamps, solar radiation reflected from building materials, natural gas burners and electric hot plates (not shown). The normalized PSDs of spectral radiation intensity at 1000 nm for the three open fires are shown in Fig. 3. The normalized PSDs obtained from reflected and direct radiation are shown in the top (A) and bottom panels (B) respectively of Fig. 3.

In both cases, the total energy of the fluctuations below 10 Hz is 1.5 times greater than that from white noise, satisfying the second criteria for the presence of a fire in the vicinity of the detector 4. The PDFs of apparent source temperatures for the smoldering fires (cotton fiber 8 and wooden pellets 9) are shown in Fig. 4. Smoldering fires have much lower temperatures than open fires.

The PDFs of apparent source temperatures obtained from direct radiation for the smoldering cotton fire 8 varies from 900 to 1100 K, and that for the smoldering wood fire 9 varies from 700 to 900 K, as shown in the bottom panel of Fig. 4. The PDF of apparent source temperatures obtained using reflected radiation from the smoldering cotton fire 8 is approximately 200 K lower. In addition, the PDF is not continuous. This is because the reflected intensities incident on the NIR fire detector from the smoldering cotton fire 8 are very low. For the smoldering wood fire 9, the reflected intensities were below the detection threshold of the NIR fire detector 4.

The normalized PSDs of spectral radiation intensities at 1000 nm for the two smoldering fires are shown in Fig. 5. The intensities obtained from the direct view of the smoldering wood fire 9 and from the reflected view of the cotton fire 8a are barely above the noise level, and therefore could not be identified by the near infrared fire detector 4 as valid fire signals.

The major reason for the very poor performance with the smoldering wood fire 9 is that the smolder surface is face down on the burner (not shown) and therefore very little of the smoldering surface is visible. A standard test fire (TF3) is typically designed to test smoke detectors and not flame detectors. See CEN, "Components of Automatic Fire Detection Systems: Fire Sensitivity Test." Part 9, European Committee for Standardization, Brussels (1982). For flame detection, an alternative standard test for smoldering wood would be more appropriate. The intensities obtained from reflected radiation at 900 and 1000 nm are an order of magnitude lower than those obtained from direct radiation.

Therefore, conventional fire detection algorithms (based on the absolute magnitude of intensities), which have to account for this variation, typically result either in decreased sensitivity or lower immunity to false alarms. The PDFs of apparent source temperatures obtained from the reflected radiation are shifted to higher values.

Numerical evaluation of the near infrared fire detector 4 was conducted using a photon tracing algorithm in conjunction with the discrete probability function (DPF) method. See "Radiative Heat Transfer Inside a Cylindrical Enclosure with Nonparticpating Media Using A Deterministic Statistical Method," Proceedings of the ASME Heat Transfer Division, HID-Vol 332, PP. 145-152, ASME, New York. The simulations were performed for axisymmetric and rectangular enclosures. The axisymmetric simulations were carried out for a cylindrical enclosure with aspect (length to radius) ratio of 3. See "Radiative Heat Transfer Inside a Cylindrical Enclosure with Nonparticipating Media Using A Deterministic Statistical Method," Proceedings of the ASME Heat Transfer Division, HTD-Vol 332, PP. 145-152, ASME, New York.

The geometry used for the three dimensional simulations is described below and shown in Fig. 6. A three dimensional rectangular enclosure 60 of length L, and width and height a, has a heptane pool fire 5 at one end. The angular distribution of spectral radiation intensities emanating from a standard heptane pool fire 5 was measured and used as a radiation source for the simulations.

A detector 4 is placed at the other end as shown in Fig. 6. Part of the radiation emitted by the blackbody is absorbed by the walls 60a of the enclosure 60, and the remainder reflected. The absorptivity of the walls 60a also changes with wavelength. The reflectivity of the walls 60a of the enclosure 60 has both a specular and diffuse component. The effect of the interaction of the photons with the walls 60a of the enclosure 60 on the temperatures estimated by the NIR fire detector 4 are calculated using a photon tracing algorithm as set forth in detail in "Radiative Heat Transfer Inside a Cylindrical Enclosure with Nonparticipating Media Using A Deterministic Statistical Method," Proceedings of the ASME Heat Transfer Division, HTD-Vol 332, PP. 145-152, ASME, New York.

In the photon-tracing algorithm, photons of different wavelengths representing the heptane fires 5 are launched into the enclosure 60 at various angles, also representing the heptane fires 5. An individual photon strikes a surface 60a of the enclosure 60 depending on this angle of launch. At the surface 60a, the photon is either absorbed or reflected based on a probability assigned by the surface reflectivity to each of these events. Further, the photon may be reflected at the same angle as that of the incidence or may be reflected at a random angle also based on probabilities assigned by the surface reflection properties. Finally, the photons incident on the detector 4 are absorbed and contribute to the radiation intensity signal. In the calculation procedure, over 10,000 photons are launched and the intensity measured by the detector 4 is equated to the fraction of these photons hitting the detector 4 times the intensity of the fire 5.

The accuracy of the calculations were confirmed by comparison with analytical results that are available for limiting cases. See "Radiative Heat Transfer Inside a Cylindrical Enclosure with Nonparticipating Media Using A Deterministic Statistical Method." Proceedings of the ASME Heat Transfer Division, HTD-Vol 332, PP. 145-152, ASME. New York. For example, when the reflectivity is set to zero, the fraction of photons that reach the detectors 4 is just the view factor, and the estimated temperature obtained for a 1500 K blackbody source remains unchanged. In addition, when the reflectivity and the specularity were set to one, all the photons reach the detector 4 with no spectral biasing, and the estimated temperature is again 1500 K.

The PDFs of apparent source temperatures for an axisymmetric enclosure (not shown) with and without considering reflections from the walls of the enclosure are depicted in Fig. 7. The aspect (length to radius) ratio of the enclosure was 3. The walls of the enclosure were assumed to have reflectivities of 0.8 and 0.88 for the 1000 nm and 900 nm radiation respectively. The specularity of the reflection was assumed to be 0.4.

The PDFs of source temperatures with and without considering the reflected photons from the walls of the enclosure are shown by the dotted and solid line in Fig. 7 respectively. A fraction of photons was directly incident on the detector 4 without undergoing any reflections from the wall. Therefore, the apparent source temperatures obtained from these direct photons were not changed. The effect of the reflections is to increase the apparent source temperatures inferred by the NIR fire detector 4 since the longer wavelength photons are preferentially absorbed. Therefore, the PDF of apparent source temperatures obtained taking the reflected photons into account has a bimodal behavior. Despite the higher values for the estimated source temperatures, the NIR fire detector 4 could successfully discriminate the fires from background radiation, since most of the temperatures are still within 800 to 2500 K.

The PSDs of intensities do not vary with reflections in the simulation (as well as in ideal experiments) since the time taken by the photons to undergo multiple reflections with a wall 60a is much lower than the smallest time scales present in the flow.

The effect of wall 60a reflections on the PDF of apparent source temperatures for the rectangular enclosure 60 is shown in Fig. 8. Similar to the axisymmemtric case, the walls 60a of the enclosure 60 were assumed to absorb 20% of the photons at 1000 nm, and 12% of the photons at 900 nm. The specularity of the reflectivity was also set at 0.4. Similar to the results of the axisymmetric enclosure, the preferential absorption of the longer wavelengths leads to an increase in the apparent source temperatures (shown by the dotted line in Fig. 8). In addition, the combination of direct and reflected photons result in a bimodal PDF for the apparent source temperatures. Despite the changes in the PDF caused by the reflections, the range of temperatures still satisfy the criteria for the presence of a fire in the vicinity of the detector 4. See "Fire Detection Using Time Series Analysis of Source Temperatures," Fire Safety Journal, January 1998, Vol. 29, pp. 301-315; "Fire Detection Systems: Fire Sensitivity Test," Part 9, European Committee for Standardization, Brussels (1982).

Two major conclusions obtained from this experimental evaluation of the NIR fire detector 4 are: (1) open fires can be detected with very low false alarm rates even when the fire 1 is not in the direct view of the detector 4, and (2) smoldering fires can be detected when the fire 1 is in direct view of the detector 4. The major conclusion obtained from this numerical work is that the performance of the NIR fire detector 4, even with significant spectral biasing for radiation reflected from building materials, is novel and very beneficial.

A near-infrared fire detector which operates on the principle of apparent source temperatures obtained from spectral radiation intensity measurements at two near-infrared wavelengths has been described in theory. A detection algorithm is provided that is capable of indicating the presence of fire in the vicinity of the detector based on a probability density function and power spectral density analysis of apparent source temperatures. The novel detector is also effective for detecting many fires that are not in its direct view and that may occur in the presence of interference from natural and artificial sources.

We turn now to a detailed description of a preferred embodiment of the present invention. The following description should be read in conjunction with Figs. 9-12. In both residential and automotive applications, detector 900 may provide output to a selected alarm device (901) including one that may play audio instructions, an electronic security system, an automated telephone, or to a fire suppression system such as sprinklers. The fire suppression systems may also include automated actuation devices such as squib actuated bottles (not shown). The sensitivity and range of the device, background tolerances, and even the process for detection and false signal discrimination in the two applications can be customized by programming.

Fig. 9 shows an assembly of the entire invention. Fig. 10 shows details of the assembled parts. Fig. 12 shows the electronic components. The detector 900 includes a flame detection unit 90 and a smoke detection unit 99. The flame detection unit 90 has a wide view angle (at least 270 degrees and can approach 360 degrees) afforded by fiber optic doublets 91 mounted on multiple viewing faces 92 of a viewing head 93. Each member of the fiber optic doublet 91 carries radiation from the room (not shown) into a multi-fiber connector 94. The multi-fiber connector 94 has a reflective inner surface or a receptacle (not shown) to direct all incoming radiation carried into it on to the near infrared photo-detectors 95a, 95b. The photo-detectors 95a, 95b are equipped with narrow band optical filters (not shown) at two closely spaced wavelengths in the near infrared part of the spectrum (700 to 1000 nm wavelengths).

The photo-detectors 95a, 95b generate electrical signals corresponding to the incident near infrared radiation intensities. These signals are digitized by an analog to digital conversion chip 97 and input to a microprocessor 98. The microprocessor 98 contains stored information concerning calibration constants of the detectors, optical fibers, and filters and converts the digital input into digital near-infrared light intensity values. The radiation intensity I&lgr;1 = C&lgr;1 V1 where V1 is the voltage on the first photo-diode and C&lgr;1 is a calibration constant for the combination of optical filters, diodes and electronic amplification circuits. The radiation intensity I&lgr;2 = C&lgr;2 V2 where V2 is the voltage on the second photo-diode and C12 is a calibration constant for the combination of optical filters, diodes and electronic amplification circuits. C&lgr;1 and C&lgr;2 which are stored in memory 98a. If at least 40% (or some number between 1% and 99%) of the source temperatures obtained from the 128 points are between 700 and 2500 K, then a frequency analysis is conducted as explained below. The near infrared intensities at the two wavelengths are sampled for a specific time-period and a series of digital radiation temperatures of the incident radiation field are calculated. For example, one could sample for 1 second at 128 Hz, store at least 128 data points for each photo-detector 95a, 95b and then store the sample or the temperature obtained from Eq. (2)) with store 98a. These temperatures and intensities are used to generate a probability density function and a power spectral density.

A record of the background intensities and power spectral densities is continuously generated and updated by the microprocessor 98 and compared with stored information retrieved from store 98a concerning corresponding values when radiation from a flame is incident on any one or more of the fiber doublets 91. The average of the background intensities are also stored for ten seconds and at any particular sampling period of 1 sec, the intensities are stored after subtracting the average intensity obtained from 10 seconds before the current period. This allows a dynamic background intensity correction. The biggest advantage of this scheme is the variation in ambient radiation (such as bright sunny days or dark nights or brightly lit room etc.), does not affect the sensitivity of the detector 4 in any means.

The power spectral density describes how the variance of a random process is distributed with frequency. For an unsteady signal I&lgr;(t) being sampled at a frequency of M (Hz), the noise normalized PSD EN at a frequency f, is defined as: E N ( f ) = 0 f E ( f ) d f 0 f S ( f ) d f

where E(f) is the spectrum function for the signal I&lgr;(t), divided by the mean square deviation of I&lgr;.

The spectrum function is the Fourier transform of the auto-correlation coefficient, R(t) and is given by: E ( f ) = 2 + R ( t ) exp ( i 2 &pgr; f t ) d t

where R(t), is the autocorrelation coefficient at two different times and is given by: r x x ( &Dgr; t ) = i = 1 N x ( t ) x ( t + &Dgr; t ) x 2 R ( &Dgr; t ) = i = 1 N I ( t ) I ( t + &Dgr; t ) I 2

This spectrum function can be obtained by standard FFT, commercial FFT subroutines such as ISML. MatLab, or commercial FFT hardware, wavelet analyses or other suitable means. S(f) is the spectrum function for white noise, which when sampled at a frequency of M (and low pass filtered at M/2), has a uniform value 2/M between 0 and M/2 and is 0 at other frequencies. I' is the fluctuation of I1 from its mean value obtained from all data points.

Physically, the normalized PSD at any frequency represents the ratio of the total energy of the signal below that frequency in comparison with a white noise source sampled with the same temporal resolution. The area under the power spectral density curve for any frequency range is proportional to the energy of the instantaneous fluctuations of the signal from its mean value. Fire is detected if the noise normalized area under the frequency spectrum curve is greater than 1.5 at a frequency (f) which could be from 5 to 20 Hz.

One can also obtain ratioed power spectral density (ER) which is defined as: E R ( f ) = f 1 L f 1 H E ( f ) d f f 2 L f 2 H E ( f ) d f

where f1L is a first lower frequency ranging from 0 to 50 Hz. f1H is a first higher frequency greater than f1L, f2L is second lower frequency ranging from 0 to 50 Hz, and , f2H is a second higher frequency greater than f2L. Physically, this represents that the total power in one band of frequencies is compared with the total power in another band of frequencies.

Power spectral density of noise normalizes the incident power spectral density before comparison. The microprocessor therefore knows the probability density function signatures and noise normalized power spectral density signatures of standard fires in the first instance.

The microprocessor 98 evaluates a detected flame based on incident radiation therefrom. The distance of a flame from the detector 900 does not restrict the detection, because source temperature rather than the intensity of the source is the detection criterion. This noise normalized power spectral density check allows the invention to discriminate between a non-fire radiation source and a fire.

For detection of slow smoldering fires and smoke, as well as for compliance with current building codes, the present invention contemplates separate smoke detection channels. As shown in Fig. 13, the transmittance (extinction) of light across a smoke chamber 1304 of length L is given by: t = I / I O

where I is voltage on the transmission detector 1301 and Io is the voltage when there is no smoke (obtained from 10 seconds earlier). s = K V

where K is a calibration constant (such as using a known optical arrangement or a standard reference material such as polystyrene bead or alcohol droplets from a monodisperse generator (not shown)) and V is the voltage on the scattering detector 1302. Detector 1302 can either have a wide angle or a narrow angle view, as desired.

Parameter (s/t) is the scattering to extinction ratio and provides information on the optical characteristics of soot produced from fires. Therefore if this parameter falls within 0.2 and 0.3, then the scattering to extinction ratio is typical of soot formed by hydro-carbon combustion. If this falls within 0.7 and 0.9, then it is representative of particulates formed from the combustion of silicone fuels. The smoke detection cell 99 responds to light absorption or scattering of impinging light on the detector as discussed below.

As shown in Fig. 9. light-sensing optical fiber 99c receives light-pulses from light emitting diode 105 (Figs. 9, 10) serving as a scattered light detector reference. The pulses are at a very high frequency to avoid any interference with the noise-normalized power spectral density of radiation monitored by the flame sensor 90. A portion of these light pulses is scattered when there is smoke entering into chamber 99 through apertures 102B (Fig. 9a). Correspondingly, the light intensity level received by the scatter channel fiber 99a increases. This scattered light information is relayed to the photodiodes 95a or 95b by optical fiber 99a.

Simultaneously, light sensing optical fibers 99b receive light pulses from the LED 105 (Fig. 10), as light absorption signals. A portion of these light pulses are absorbed when there is smoke in chamber 99. Pulses emanating from fiber 99a, 99b are amplified by op/amps 104a and routed to the microprocessor 98. The microprocessor 98 makes a comparison of the scattered light sensed by the fibers 99a. and the absorbed light sensed by fibers 99b at a high frequency without interfering with the low frequency flame detection channels described earlier. The microprocessor 98 is thus enabled to determine if smoke is present. The present invention contemplates usage of inexpensive, readily available acrylic fiber optic (such as that manufactured by 3M Corporation) to serve as light sensing fibers 99a-c. View angles approaching 360 degrees utilizing optic fiber can be attained.

The microprocessor 98 compares the intensities on the scattering and absorption channels to estimate the size and concentration of associated particulate. Such a check eliminates false alarms by dust and smog.

The presence of smoke by itself could be used to sound an alarm and/or send the appropriate output signal via a sounding device 100 or to an external alarm 901. Presence of smoke in addition to that of flame is the alarm criterion in some areas (open kitchen, room with a fireplace), where a flame is expected. Any logical combination of the results of the flame plus smoke detection scheme in accordance with the present invention can be programmed into the microprocessor depending on the application, as one of ordinary skill can readily appreciate. The detector unit 900 can be housed in a suitable box 101 with a cover 102 (Figs. 9a, 9b, 10). An indicator 96 (Figs. 9, 9a, b) can be provided to show when the detector 900 is operational. The indicator 96 can take the form of a panel light, LED. or similar apparatus as one of ordinary skill can appreciate.

Use of these novel concepts and these inventive processes simultaneously for detecting fires using affordable infrared optics, while avoiding false alarms with unique discriminating algorithms is one provision of the present invention. As mentioned previously, use of readily available plastic fiber optic as a sensing means is another novel aspect. The smoke detection and discrimination method is enabled because fire-generated smoke has unique particulate size distribution and optical properties that can be examined using near-infrared optics. The flame detection method is enabled due to the fact that common household and automotive fires have two unique characteristics: (1) source temperature probability distribution function, and (2) noise-normalized power spectral density.

Fig. 11 shows an alternate embodiment of the invention that does not rely on the use of fiber optics for light transmission. This embodiment 110 uses a fish-eye lens 111 and a beam splitter 112 instead of the fiber optics hereinbefore described. Instead of a fish eyes lens, any number of wide angle, ultra wide angle or similar optic apparatus could be utilized. The present invention therefore need not be restricted to an embodiment that uses fiber optics.

The embodiment of Fig. 11 includes a suitable housing 116 carrying a printed circuit board 115 with a digital signal processor (DSP) 115 operatively connected to a first detector 113 for a first wavelength, and a second detector 114 for a second wavelength. The DSP 115 could have an inboard A/D connector or an outboard A/D connector, as one of ordinary skill can easily contemplate.

Light entering the housing through apertures 111a strike the fish-eye lens 111 which passes the light to a beam splitter 112 which splits the light into two paths for transmission to first and second detectors 113 and 114. The detectors 113 and 114 relay the light information to the DSP 115 for suitable processing and if an alarm condition is found, DSP115 activates sounding device 100 accordingly.

Those who are skilled in the art will readily perceive how to modify the invention. Therefore, the appended claims are to be construed to cover all equivalent structures which fall within the true scope of the invention.


Anspruch[de]
Ein Rauch- und Flammendetektor (4, 4a, 110, 900, 1304), der Folgendes beinhaltet: erste und zweite Photodetektoren (95a, 95b, 113, 114), die in einem nahen Infrarotspektrum einsatzfähig sind; erste und zweite optische Filtermittel (5b, 5c), die mit den besagten ersten beziehungsweise zweiten Photodetektoren (95a, 95b, 113, 114) gekoppelt sind; einen analog zu digital (A/D) Konverter (6a, 97), der betrieblich mit den besagten Photodetektoren (95a, 95b, 113, 114) gekoppelt ist; einen Mikroprozessor (98), der betrieblich mit dem besagten A/D-Konverter (6a, 97) gekoppelt ist; ein Datenspeichermittel (98a), um Informationen zu speichern, wobei das besagte Datenspeichermittel (98a) mit dem besagten Mikroprozessor (98) und dem besagten A/D-Konverter (6a, 97) gekoppelt ist; erste und zweite Photodioden (95a, 95b, 113, 114); einen digital zu analog (D/A) Konverter (6a, 97), der betrieblich mit den besagten Photodioden (95a, 95b, 113, 114) gekoppelt ist; den besagten Mikroprozessor (98), der betrieblich mit den besagten ersten und zweiten Photodioden (95a, 95b, 113, 114) und dem besagten D/A-Konverter (6a, 97) gekoppelt ist; eine Vielzahl von Lichtmesselementen (99a, 99b, 99c), um damit Licht von wenigsten einer der besagten ersten und zweiten Dioden (95a, 95b, 113, 114) aufzunehmen, und das aufgenommene Licht an den besagten Mikroprozessor (98) weiterzuleiten; wenigstens eines der besagten Lichtmesselemente (99a, 99b, 99c), das ein Detektionsmittel (99b) für die Lichtabsorption beinhaltet, um für den besagten Mikroprozessor (98) Informationen, die mit der Intensität des aufgenommenen Lichts zusammenhängen, bereitzustellen; wenigstens ein anderes der besagten Lichtmesselemente (99a, 99b, 99c), das ein Detektionsmittel (99a) für Streulicht beinhaltet, welches an den besagten Mikroprozessor (98) gekoppelt ist, um damit Streulicht aufzunehmen, und das aufgenommene Streulicht an den besagten Mikroprozessor (98) weiterzuleiten; was dadurch gekennzeichnet ist, dass der besagte Mikroprozessor (98) des Weiteren Mittel für die Umwandlung des Lichtintensitätwertes und für die Stichprobenprüfung beinhaltet, um die von dem besagten A/D-Konverter (6a, 97) eingegebene Lichtintensität in Werte in einem Bereich in einem nahen Infrarotspektrums umzuwandeln, und die besagten Werte für einen vorher festgesetzten Zeitraum als Stichproben zu prüfen; das besagte Datenspeichermittel (98a) die Intensitätswerte, die aus einer vorher festgesetzten Stichprobenprüfperiode erhalten wurden, speichert, und der besagte Detektor (4, 4a, 110, 900, 1304) die besagten gespeicherten Werte dazu verwendet, die Temperatur-PDF und die an das Grundrauschen normalisierte, spektrale Leistungsdichte zu bestimmen; jeder der besagten Photodetektoren (95a, 95b, 113, 114), Photodioden (95a, 95b, 113, 114), Lichtmesselemente (99a, 99b, 99c) und optischen Filtermittel (5a, 5b) eine Eichkonstante beinhalten; und worin ein ausgegebenes, an das Grundrauschen normalisiertes Verhältnis EN (f) berechnet wird, unter Verwendung von: E N ( F ) = 0 F E ( f ) d f 0 F S ( f ) d f

worin E(f) die spektrale Leistungsdichte der Spannung, der Intensität oder der Temperatur ist, und S(f) die spektrale Leistungsdichte des Zufallsrauschens ist, welches für eine festgelegte Häufigkeit der Stichprobenprüfungen konstant ist.
Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 1, worin wenigstens eines der besagten Detektionsmittel (99b) für die Lichtabsorption und der besagten Detektionsmittel (99a) für Streulicht eine optische Linse (111) beinhaltet. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 1, worin wenigstens eines der besagten Lichtmesselemente (99a, 99b, 99c) aus optischer Faser besteht. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 3, worin die besagte optische Faser (99a, 99b, 99c) aus Kunststoff besteht. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 1, worin das besagte Detektionsmittel (99a) für Streulicht aus optischer Faser besteht. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 1, worin das besagte Detektionsmittel (99b) für die Lichtabsorption aus optischer Faser besteht. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 5, worin die besagte optische Faser (99a, 99b, 99c) aus Kunststoff beseht. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 1, worin das besagte Datenspeichermittel (98a) Informationen beinhaltet, welche mit den besagten Eichkonstanten zusammenhängen. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 1, worin der besagte Mikroprozessor (98), unter Verwendung der besagten gespeicherten Werte für die Intensität ein Einstrahlungsfeld in Übereinstimmung mit einer detektierten Strahlungsintensität I&lgr;1 = C11 V1 berechnet, wobei V1 die Spannung an der ersten Photodiode (95a, 95b, 113, 114) ist, und C11 die besagte Eichkonstante ist, und worin eine detektierte Strahlungsintensität I&lgr;2 = C12 V2 ist, wobei V2 die Spannung an der zweiten Photodiode (95a, 95b, 113, 114) ist, und C12 eine Eichkonstante ist. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 9, worin der besagte Mikroprozessor (98) über eine Vielzahl von Stichprobenprüfpunkten eine Wahrscheinlichkeitsdichte für die Temperatur einer Flammenquelle bestimmt, in Übereinstimmung mit

T = KI&lgr;1/I&lgr;2 für jeden der besagten Stichprobenprüfpunkte,

wobei T die Temperatur ist, K eine Eichkonstante ist, und I&lgr;1 und I&lgr;2 erfasste Intensitäten repräsentieren.
Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 10, worin die besagte bestimmte Temperatur in dem besagten Datenspeichermittel (98a) gespeichert wird. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 10, worin wenigstens einer der besagten Stichprobenprüfpunkte für die Temperatur in einen Temperaturbereich fällt, der ungefähr zwischen 700K und 2500K liegt. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 1, beinhaltet des Weiteren einen Tiefpassfilter (5b, 5c, 104a), wobei das besagte weiße Rauschen bei einer Frequenz von M/2 tiefpassgefiltert wird. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 13, worin das besagte tiefpassgefilterte, weiße Rauschen einen einheitlichen Wert 2/M zwischen Null und M/2 beinhaltet, und worin der besagte Wert bei anderen Frequenzen ungefähr gleich Null ist. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 1, worin ein festgesetzter Level von EN(f) dazu verwendet wird, das Vorhandensein eines Feuers anzuzeigen. Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 1, worin aus einem Verhältnis die spektrale Leistungsdichte ER(f) berechnet wird, in Übereinstimmung mit E R ( F ) = f 1 L f 1 H E ( f ) d f f 2 L f 2 H E ( f ) d f

worin f1L eine erste untere Frequenz ist, die von 0 bis 50 Hz reicht, f1H eine erste höhere Frequenz ist, die größer als f1L ist, f2L eine zweite tiefere Frequenz ist, die von 0 bis 50 Hz reicht, und f2H eine zweite höhere Frequenz ist, die größer als f2L ist.
Der Rauch- und Flammendetektor (4, 4a, 110, 900, 1304) aus Anspruch 16, worin der Wert von ER(f) das Vorhandensein eines Feuers anzeigt. Ein Verfahren um eine Flamme zu detektieren, welches folgende Schritte beinhaltet: Erfassen eines Levels von natürlicher Strahlung; Detektieren von wenigstens einer Strahlungsquelle, die eine Frequenz im nahen Infrarotspektrum hat; Stichprobenprüfung der detektierten Strahlung über einen vorher festgesetzten Zeitraum; was dadurch gekennzeichnet ist, dass das Verfahren die folgenden Schritte enthält: Berechnen einer Reihe von Strahlungstemperaturen in Echtzeit, um ein einfallendes Strahlungsfeld zu bestimmen; Erzeugung einer Wahrscheinlichkeitsdichtefunktion (PDF) für einen von einem einfallenden Strahlungsfeld, einer Temperatur und einem Spannungslevels; Berechnen einer Leistungsdichte für die besagte PDF; Vergleichen der erfassten, natürlichen Strahlung mit der berechneten Leistungsdichte, um einen Wert zu liefern; und Bereitstellen eines Alarms, der es anzeigt, wenn der besagte Wert einen vorher festgesetzten Level übersteigt.
Anspruch[en]
A smoke and flame detector (4, 4a, 110, 900, 1304) comprising: first and second photo-detectors (95a, 95b, 113, 114) operational within a near-infrared spectrum; first and second optical filter means (5b, 5c) coupled to said first and second photo-detectors (95a, 95b, 113, 114), respectively; an analog to digital (A/D) converter (6a, 97) operatively coupled to said photo-detectors (95a, 95b, 113, 114); a microprocessor (98) operatively coupled to said A/D converter (6a, 97); memory means (98a) for storing information, said memory means (98a) coupled to said microprocessor (98) and said A/D converter (6a, 97), first and second photo-diodes (95a, 95b, 113, 114); a digital to analog (D/A) converter (6a, 97) operatively coupled to said photo-diodes (95a, 95b, 113, 114); said microprocessor (98) operatively coupled to said first and second photo-diodes (95a, 95b, 113, 114) and said D/A converter (6a, 97); a plurality of light sensing means (99a, 99b, 99c) for receiving light from at least one of said first and second diodes (95a, 95b,113, 114) and passing the received light to said microprocessor (98); at least one of said light sensing means (99a, 99b, 99c) comprising a light absorption detection means (99b) for providing information to said microprocessor (98) relating to the intensity of received light; at least another of said light sensing means (99a, 99b, 99c) comprising a scattered light detection means (99a) coupled to said microprocessor (98) for receiving scattered light and passing the received scattered light to said microprocessor (98); characterized in that, said microprocessor (98) further comprises light intensity value conversion and sampling means for converting light intensity input from said A/D converter (6a, 97) to values in a near-infrared spectrum range and sampling said values for a predetermined period; said memory means (98a) stores intensity values obtained from a predetermined sampling period and said detector (4, 4a, 110, 900, 1304) utilizes said stored values to determine temperature PDF and noise normalized power spectral density; each said photo-detector (95a, 95b, 113, 114), photo-diode (95a, 95b, 113, 114), light sensing means (99a, 99b, 99c), and optical filter means (5b, 5c) comprises a calibration constant; and wherein a noise normalized ratio EN(f) output is calculated using; E N ( f ) = 0 F E ( f ) d f 0 F S ( f ) d f

where E(f) is the power spectral density of voltage, intensity, or temperature, and S(f) is the power spectral density of random noise which is constant for a fixed sampling frequency.
The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 1 wherein at least one of said light absorption detector means (99b) and said scattered light detection means (99a) comprises an optic lens (111). The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 1, wherein at least one said light sensing means (99a, 99b, 99c) comprises optic fiber (99a, 99b, 99c). The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 3, wherein said optic fiber (99a, 99b, 99c) is comprised of plastic. The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 1 wherein said scattered light detection means (99a) comprises optic fiber. The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 1 wherein said light absorption detection means (99b) comprises optic fiber. The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 5 wherein said optic fiber (99a, 99b, 99c) is comprised of plastic. The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 1, wherein said storage means (98a) comprises information relating to said calibration constants. The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 1, wherein said microprocessor (98), utilizing said stored intensity values calculates an incident radiation field in accordance with a detected radiation intensity I&lgr;1 = C11 V1 where V1 is the voltage on the first photo-diode (95a, 95b, 113, 114) and C11 is said calibration constant and wherein a detected radiation intensity I&lgr;2 = C12 V2 where V2 is the voltage on the second photo-diode (95a, 95b, 113, 114) and C12 is a calibration constant. The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 9, wherein said microprocessor (98) determines a probability density of a flame source temperature over a plurality of sample points in accordance with

T = KI&lgr;1/I&lgr;2 for each said sample point,

where T is the temperature, K is a calibration constant and I&lgr;1 and I&lgr;2 represent intensities recorded.
The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 10, wherein said determined temperature is stored in said memory means (98a). The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 10, wherein at least one of said temperature sample points falls within a range of temperatures that ranges between approximately 700K and 2500K. The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 1, further comprising a low pass filter (5b, 5c, 104a), whereby said white noise is low pass filtered at a frequency of M/2. The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 13, wherein said low pass filtered white noise comprises a uniform value 2/M between zero and M/2, and said value is approximately zero at other frequencies. The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 1, wherein a fixed level of EN(f) is used to indicate the existence of a fire. The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 1, wherein a ratioed power spectral density ER(f) is calculated in accordance with E R ( f ) = f 1 L f 1 H E ( f ) d f f 2 L f 2 H E ( f ) d f

where f1L is a first lower frequency ranging from 0 to 50 Hz, f1H is a first higher frequency greater than f1L, f2L is second lower frequency ranging from 0 to 50 Hz, and f2H is a second higher frequency greater than f2L.
The smoke and flame detector (4, 4a, 110, 900, 1304) of claim 16 wherein the value of ER(f) indicates the existence of a fire. A method of detecting a flame comprising the steps of: recording a level of background radiation; detecting at least one source of radiation having a frequency within the near infrared spectrum; sampling the detected radiation for a predetermined period; characterized in that the method includes the steps of; calculating a series of radiation temperatures in real time to determine an incident radiation field; generating a probability density function (PDF) for one of an incident radiation field, a temperature and a voltage level; calculating a power density for said PDF; comparing the recorded background radiation with the calculated power density to yield a value; and providing an alarm indication when said value exceeds a predetermined level.
Anspruch[fr]
Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) comprenant : - un premier et un second photodétecteurs (95a, 95b, 113, 114) opérationnels dans un spectre du proche infrarouge ; - des premier et un moyens de filtrage optique (5a, 5b) couplés auxdits premier et second photodétecteurs (95a, 95b, 113, 114), respectivement ; - un convertisseur analogique-numérique (A/N) (6a, 97) couplé de façon opérative auxdits photodétecteurs (95a, 95b, 113, 114) ; - un microprocesseur (98) couplé de façon opérative audit convertisseur A/N (6a, 97) ; - des moyens de mémoire (98a) pour stocker des informations, lesdits moyens de mémoire (98a) étant couplés audit microprocesseur (98) et audit convertisseur A/N (6a, 97) ; une première et une seconde photodiodes (95a, 95b, 113, 114) ;

un convertisseur numérique-analogique (N/A) (6a, 97) couplé de façon opérative aux dites photodiodes (95a, 95b, 113, 114) ;

ledit microprocesseur (98) étant couplé de façon opérative auxdites première et seconde photodiodes (95a, 95b, 113, 114) et audit convertisseur N/A (6a, 97) ;

une pluralité de moyens sensibles à la lumière (99a, 99b, 99c) pour recevoir la lumière émise depuis au moins une desdites première et seconde diodes (95a, 95b, 113, 114) et véhiculer la lumière reçue audit microprocesseur (98) ;

au moins un desdits moyens sensibles à la lumière (99a, 99b, 99c) comprenant un moyen de détection par absorption de lumière (99b) pour fournir audit microprocesseur (98) des informations relatives à l'intensité de la lumière reçue ;

au moins un autre desdits moyens sensibles à la lumière (99a, 99b, 99c) comprenant un moyen de détection de lumière diffusée (99a) couplé audit microprocesseur (98) pour recevoir la lumière diffusée et véhiculer la lumière diffusée reçue audit microprocesseur (98) ; caractérisé en ce que,

ledit microprocesseur (98) comprend en outre des moyens de conversion de valeur d'intensité de lumière et d'échantillonnage pour convertir l'entrée d'intensité de lumière provenant dudit convertisseur A/N (6a, 97) en valeurs dans une plage du spectre du proche infrarouge et pour échantillonner lesdites valeurs sur une période prédéterminée ;

lesdits moyens de mémoire (98a) stockent des valeurs d'intensité obtenues à partir d'une période d'échantillonnage prédéterminée et ledit détecteur (4, 4a, 110, 900, 1304) utilise lesdites valeurs stockées pour déterminer une température PDF et une densité spectrale de puissance normalisée de bruit ;

chacun desdits photodétecteurs (95a, 95b, 113, 114), desdits photodiodes (95a, 95b, 113, 114), des moyens sensibles à la lumière (99a, 99b, 99c) et desdits moyens de filtrage optique (5a, 5b) comprend une constante d'étalonnage ; et enfin

dans lequel une sortie de rapport normalisée de bruit EN(f) est calculée en utilisant : E N ( f ) = 0 F E ( f ) d f 0 F E ( f ) d f

où E(f) est la densité spectrale de puissance de la tension, l'intensité ou la température, et S(f) est la densité spectrale de puissance de bruit aléatoire qui est constante pour une fréquence d'échantillonnage fixe.
Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 1, dans lequel au moins un parmi ledit moyen de détection par absorption de lumière (99b) et ledit moyen de détection de lumière diffusée (99a), comprend une lentille optique (111). Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 1, dans lequel au moins un desdits moyens sensibles à la lumière (99a, 99b, 99c) comprend une fibre optique (99a, 99b, 99c). Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 3, dans lequel ladite fibre optique (99a, 99b, 99c) est composée à base d'un plastique. Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 1, dans lequel lesdits moyens de détection de lumière diffusée (99a) comprennent une fibre optique. Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 1, dans lequel lesdits moyens de détection par absorption de lumière (99b) comprennent une fibre optique. Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 5, dans lequel ladite fibre optique (99a, 99b, 99c) est composée à base d'un plastique. Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 1, dans lequel lesdits moyens de mémoire (98a) comprennent des informations relatives auxdites constantes d'étalonnage. Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 1, dans lequel ledit microprocesseur (98), utilisant lesdites valeurs d'intensité stockées, calcule un champ de radiation incident en accord avec une intensité de radiation détectée I=&lgr;1 = C11 V1 où V1 est la tension sur la première photodiode (95a, 95b, 113, 114) et C11 est ladite constante d'étalonnage et dans lequel une intensité de radiation détectée I=&lgr;2 = C12 V2 où V2 est la tension sur la seconde photodiode (95a, 95b, 113, 114) et C12 est une constante d'étalonnage. Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 9, dans lequel ledit microprocesseur (98) détermine une densité de probabilité d'une température d'une source de flammes sur une pluralité de points échantillons en accord avec

T = KI&lgr;1 / I&lgr;2 pour chaque point échantillon,

où T est la température, K est une constante d'étalonnage et I&lgr;1 et I&lgr;2 représentent des intensités enregistrées.
Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 10, dans lequel ladite température déterminée est stockée dans lesdits moyens de mémoire (98a). Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 10, dans lequel au moins un desdits points échantillons de température s'inscrit dans une plage de températures qui s'étend entre approximativement 700 K et 2500 K. Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 1, comprenant en outre un filtre passe-bas (5b, 5c, 104a), moyennant quoi ledit bruit blanc est filtré par passe-bas à une fréquence de M/2. Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 13, dans lequel ledit bruit blanc filtré par passe-bas comprend une valeur uniforme 2/M entre zéro et M/2, et ladite valeur est approximativement zéro à d'autres fréquences. Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 1, dans lequel un niveau fixe de EN(f) est utilisé pour indiquer la présence d'un incendie. Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 1, dans lequel une densité ER(f) spectrale de puissance ramenée à un rapport est calculée en accord avec E R ( f ) = f 1 L f 1 H E ( f ) d f f 2 L f 2 H E ( f ) d f

où f1L est une première fréquence basse allant de 0 à 50 Hz, f1H est une première fréquence haute supérieure à f1L, f2L est une seconde fréquence basse allant de 0 à 50 Hz, et f2H est une seconde fréquence haute supérieure à f2L.
Détecteur de fumée et de flammes (4, 4a, 110, 900, 1304) selon la revendication 16, dans lequel la valeur de ER(f) indique la présence d'un incendie. Procédé pour détecter des flammes comprenant les étapes consistant à : enregistrer un niveau de radiation environnante ; détecter au moins une source de radiation ayant une fréquence dans le spectre du proche infrarouge ; échantillonner la radiation détectée sur une période prédéterminée ; caractérisé en ce que le procédé comprend les étapes consistant à : calculer une série de températures de radiation en temps réel pour déterminer un champ de radiation incident ; générer une fonction de densité de probabilité (PDF) pour un parmi un champ de radiation incident, une température et un niveau de tension ; calculer une densité de puissance pour ledit PDF ; comparer la radiation environnante enregistrée avec la densité de puissance calculée pour produire une valeur ; et fournir une indication d'alerte quand ladite valeur dépasse un niveau prédéterminé.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com