PatentDe  


Dokumentenidentifikation EP1209794 14.09.2006
EP-Veröffentlichungsnummer 0001209794
Titel Stromversorgungsgeräte für tragbare elektrische Geräte
Anmelder Fujitsu Ltd., Kawasaki, Kanagawa, JP
Erfinder Matsuda, Fujitsu Limited, Kouichi, Kawasaki-shi, Kanagawa 211-8588, JP;
Ozawa, Fujitsu Limited, Hidekiyo, Kawasaki-shi, Kanagawa 211-8588, JP;
Yano, Fujitsu Limited, Hidetoshi, Kawasaki-shi, Kanagawa 211-8588, JP;
Obitsu, Fujitsu Limited, Toshiro, Kawasaki-shi, Kanagawa 211-8588, JP;
Yamamoto, Fujitsu Limited, Tetsuo, Kawasaki-shi, Kanagawa 211-8588, JP
Vertreter W. Seeger und Kollegen, 81369 München
DE-Aktenzeichen 69434815
Vertragsstaaten DE, FR, GB
Sprache des Dokument EN
EP-Anmeldetag 13.01.1994
EP-Aktenzeichen 020002457
EP-Offenlegungsdatum 29.05.2002
EP date of grant 02.08.2006
Veröffentlichungstag im Patentblatt 14.09.2006
IPC-Hauptklasse H02J 9/06(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse H02J 7/00(2006.01)A, L, I, 20051017, B, H, EP   G06F 1/26(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]

The invention relates to poser supplies for portable electrical devices, for example personal computers which are driven by battery power sources.

Since the use , and in particular outdoor use, of portable personal computers of the notebook type is increasing, it is required that such computers can be used for a long time even in a state in which there is no AC adapter or the like.

Conventionally, as a battery unit of a portable type personal computer, a combination of a main battery unit built into the personal computer main body and an auxiliary battery unit is used. The auxiliary battery unit, which is attachable to the outside of the personal computer, is a unit simply having a battery therein and enables the total battery capacity of the computer to be increased. In case of charging the auxiliary battery unit, the auxiliary battery unit is detached from the computer main body when completely exhausted, and is connected to an AC adapter, used to charge the exhausted battery unit exclusively, and is charged.

Therefore, when an auxiliary battery unit is used, in a state where there is no AC adapter, there is a problem in that operations requiring a capacity larger than the combined capacity of the battery unit built into the personal computer main body and one auxiliary battery unit cannot be performed. Also, it is difficult to achieve operation of the computer for a satisfactorily long period. Even if a plurality of auxiliary battery units are prepared, it is still troublesome to exchange the batteries during operation of the computer.

When charging, it is necessary to charge each auxiliary battery unit. When a plurality of units are to be charged, there is a problem that the exchange of the batteries for charging must be done many times.

Further, when a freshly-charged battery unit is connected, after the battery unit built into the computer main body has been completely exhausted, the computer is switched to receive power from the auxiliary battery unit attached to the outside. Due to this, even when the auxiliary battery unit becomes exhausted some time later, the power supply to the computer is completely stopped. Therefore, even if a plurality of auxiliary (spare) battery units are prepared, it is impossible to continuously use the computer while exchanging the spare battery units, and so there is a problem in that the use of the computer must be temporarily stopped each time the auxiliary battery unit is changed.

EP-A-0463593 discloses an auxiliary chargeable-dischargeable battery unit comprising one or more rechargeable batteries for supplying electrical power to a portable system main body, the battery unit being connectable with one or more such auxiliary battery units in a series and further comprising: a power source input terminal and a power source output terminal; a charging circuit for carrying out a charging operation on the rechargeable batteries; an output current detecting circuit for detecting an output current; and a charge control unit for controlling the charging operation in dependence on the output detected by the output current detecting circuit.

According to a first aspect of the invention there is provided an auxiliary chargeable-dischargeable battery unit for supplying electrical power to a portable system main body, the battery unit being connectable with one or more such auxiliary battery units in a series and further comprising: a power source input terminal and a power source output terminal; a charging circuit for carrying out a charging operation on the rechargeable batteries; an output current detecting circuit for detecting an output current; and a charge control unit for controlling the charging operation in dependence on the output detected by the output current detecting circuit; characterised in that DC current can be entered into the said power source input terminal from either an external power source or an auxiliary battery unit connected thereto; and in that the said power source output terminal can, upon discharging, output discharge current from an auxiliary battery unit connected to the power source input terminal, discharging of the or each auxiliary battery unit taking place sequentially starting with that auxiliary battery unit most distant from the said portable system main body, and, upon charging, bypass output DC current entered from an external power source into the power source input terminal when an auxiliary battery unit is connected to the power source output terminal, charging of the or each auxiliary battery unit taking place sequentially starting with that auxiliary battery unit closest to the said portable system main body.

According to a second aspect of the present invention there is provided a method of charging an auxiliary chargeable-dischargeable battery unit, the battery unit being connectable with one or more such auxiliary battery units in a series and comprising one or more rechargeable batteries for supplying electrical power to a portable system main body, a power source input terminal and a power source output terminal, the method comprising: carrying out a charging operation on the rechargeable batteries; detecting an output current; and inhibiting the charging operation in dependence on an output current value; characterised by entering DC current into the said power source input terminal from either an external power source or an auxiliary battery unit connected thereto;and by causing the power source output terminal, upon discharging, to output discharge current from an auxiliary battery unit connected to the power source input terminal, discharging of the or each auxiliary battery unit taking place sequentially starting with that auxiliary battery unit most distant from the said portable system main body; and by causing the power source output terminal, upon charging, to bypass output DC current entered from an external power source into the power source input terminal when an auxiliary battery unit is connected to the power source output terminal, charging of the or each auxiliary battery unit taking place sequentially starting with that auxiliary battery unit closest to the said portable system main body.

Such auxiliary (spare) chargeable-dischargeable battery units can be exchanged and charged whilst the computer remains in use and, further, the apparatus can be continuously used for a long time and can have a power source capacity which is proportional to the number of spare battery units.

Embodiments of the invention are applicable to the power source systems of any electrical device which can be powered using a battery.

Preferably, the battery circuit section of the spare battery unit has a battery pack therein and has an input terminal and an output terminal. An output terminal of the other auxiliary battery unit or an output terminal of the AC adapter for converting an AC power source to a DC power source and generating is connected to the input terminal. The output terminal is connected to an input terminal of the other auxiliary battery unit or an input terminal of the power source of the computer main body. An input power source voltage from the input terminal is detected by a voltage detecting section. The connection of an AC adapter or the connection of the other holding battery unit can be discriminated by the detected voltage. An output current to the output terminal is detected by a current detecting section. A first discharging switch to turn on or off the power source supply is provided for a power source line to the output terminal. A second discharging switch to turn on or off the power source supply is provided for an output line from a battery pack. Further, a charging switch to turn on or off the power source supply is provided for a charging line from the input terminal to the spare battery power source.

The charge control unit, which is realized by a microprocessor, detects the connection of the AC adapter from the detected voltage of the input terminal and only when the detected current to the output terminal is equal to or less than a predetermined value, the charging switch is turned on, thereby charging to the battery pack.

In the case where the connection of the AC adapter or another auxiliary battery unit is detected from the detected voltage of the input terminal, in one embodiment of the invention a discharge control section which is realized by a microcomputer turns on the first discharging switch and also turns off the second discharging switch and supplies an external power source to the front stage unit. In the case where no connection of the AC adapter or another auxiliary battery unit is detected from the detected voltage of the input terminal, the discharge control section both of the first and second discharging switches are turned on and a power source is supplied to the front stage from the self battery pack.

Preferably, the charging switch includes a high speed charging section to a supply a current which is close to the maximum allowable charging current of the battery pack and to thereby at a high speed, and a trickle charging section to supply an arbitrary current which is determined by a potential difference between the input power source voltage and the charge voltage of the battery pack and a specified resistance and to charge and connected in parallel to the charge switching section. When the detected current to the output terminal is equal to or less than a predetermined value in a state in which the connection of the AC adapter is detected, the charge control section makes the high speed charging section-operative, thereby charging at a high speed. When the detected current to the output terminal exceeds the predetermined value, the trickle charging section is made operative, thereby trickle charging.

In this embodiment, when any one of the following three conditions is obtained, the charge control section turns off the charge switch section, thereby stopping the charging:

  • I. when the elapsed time of a timer which is activated at the start of the charging reaches a predetermined time;
  • II. when the detected temperature by a temperature sensor provided for the spare battery power source exceeds a predetermined temperature;
  • III. the power source voltage of the spare battery power supply is observed, and when a change such that the voltage which is rising in association with the charging exceeds the peak voltage and decreases is detected.

Further, a display section to show a state of the spare battery unit and/or system may be provided for the spare battery unit. Advantageously, the display section displays at least an input state of the external power source voltage for the input terminal, a charging state, and a state of the battery voltage. The display section may display information only during the ON operation of the display switch.

The discharge control section detects a discharged current of the battery pack and turns off the second discharging switch and detaches the battery pack when the current becomes excessive. Alternatively, or in addition, when the discharged voltage of the battery pack is detected and is equal to or less than a specified voltage, the discharge control section turns off both of the first and second switches and shuts off the power source supply to the unit at the front stage.

In one embodiment the power source circuit section provided for the computer main body is substantially the same as the built-in circuit of the spare battery unit except that the first discharging switch is not provided.

Therefore, a plurality of auxiliary battery units can be connected and used and the computer can be driven for a long time according to the number of auxiliary battery units connected. When charging, it is also possible to sequentially charge from the unit on the computer side in a state in which a plurality of auxiliary battery units are connected, and it is possible to easily charge without detaching each unit. Further, when the computer is used, the discharging is sequentially executed from the spare battery unit which is located on the outside which is the farthest from the computer. Therefore, in case of detaching some of the auxiliary battery units, it is possible to easily detach the auxiliary battery unit from the auxiliary battery unit which becomes empty. Further, when the computer is used, by connecting the AC adapter, if there are some units which finished the battery packs, they can be charged sequentially from the unit on the computer main body side. In this case, if the computer is in a stand-by state in which current consumption is small, a high speed charging is executed. When the computer is in an operation state in which a current consumption is large, a trickle charging is executed.

Reference will now be made, by way of example, to the accompanying drawings, in which:

  • Fig. 1 is an explanatory diagram showing an embodiment of a first aspect of the invention in which a plurality of auxiliary battery units are connected to a computer;
  • Fig. 2 is an exploded diagram corresponding to Fig. 1;
  • Fig. 3 is a rear view of one of the auxiliary battery units;
  • Fig. 4 is a plan view of the auxiliary battery unit;
  • Fig. 5 is a front view of the auxiliary battery unit;
  • Fig. 6 is a left side view of the auxiliary battery unit;
  • Fig. 7 is a block diagram showing a power source system embodying the invention;
  • Fig. 8 is a block circuit diagram showing one example of the construction of a battery circuit section of a spare battery unit of the Fig. 7 system;
  • Fig. 9 is a flowchart showing a processing operation of the Fig. 8 battery circuit section;
  • Fig. 10 is a flowchart showing the details of a charging process shown in the Fig. 9 flowchart;
  • Fig. 11 is a block circuit diagram showing another example of the construction of a battery circuit section, in this case built into a computer;
  • Fig. 12 is a flowchart showing a processing operation of the Fig. 11 battery circuit section;
  • Fig. 13 is a flowchart showing the details of a charging process shown in the Fig. 12 flowchart;
  • Fig. 14 is an explanatory diagram showing an embodiment of a second aspect of the invention in which a single auxiliary battery unit is connected to a computer;
  • Fig. 15 is a block diagram showing one example of the construction of the Fig. 14 embodiment;
  • Fig. 16 is a circuit block diagram showing an embodiment of a battery circuit section of a spare battery unit;
  • Fig. 17 is a flowchart showing a processing operation of the Fig. 16 battery circuit section; and
  • Fig. 18 is a flowchart showing the details of a charging process shown in the Fig. 17 flowchart:

Fig. 1 shows a personal computer 10 in which a plurality of battery units embodying the present invention are used. In Fig. 1, a personal computer 10 comprises: a computer main body 12 having a key board; and a closable display section 14 provided as a cover for the computer main body 12. A liquid crystal display panel or the like is provided on the inside of the display section 14 (in the open state as shown in the diagram). For example, two auxiliary battery units 16-1 and 16-2 are attached behind the computer main body 12.

Fig. 2 shows the manner in which the battery units 16-1 and 16-2 are connected to the computer main body 12 in Fig. 1. First, a connector 24-1 at a tip of a cable 32-1 provided for the auxiliary battery unit 16-1 is connected to the external power source input terminal of the computer main body 12. The tips of screws 20-1 and 20-2 whose heads are projected to the back of the auxiliary battery unit 16-1 are positioned adjacent to screw holes 18-1 and 18-2 and are screwed and fixed.

Subsequently, the auxiliary battery unit 16-2 is attached. First, a connector 24-2 to which a cable 32-2 on the attaching surface side of the auxiliary battery unit 16-2 is connected is connected to the power source input terminal behind the auxiliary battery unit 16-1 which has already been attached. The screw portions at the tips of screws 22-1 and 22-2 of the battery unit 16-2 are positioned adjacent to the screws 20-1 and 20-2 of the auxiliary battery unit 16-1 which has already been attached. Screw holes are formed in the heads of the screws 20-1 and 20-2. Therefore, by screwing the screw portions at the tips of the screws 22-1 and 22-2 into the screw holes of the head portions of the screws 20-1 and 20-2, the auxiliary battery unit 16-2 can be fixed to the auxiliary battery unit 16-1.

A connector 26 of a cable 34 led out from the AC adapter which is used for charging is connected to the power source input terminal of the auxiliary battery unit 16-2 attached at the second time. By connecting the connector 26 from the AC adapter, the auxiliary battery units 16-1 and 16-2 and, further, a battery of the power source circuit section built in the personal computer 10 can be charged.

LED display sections 30-1 and 30-2 in which a plurality of light emitting diodes (LED) are arranged are provided in the upper portions of the auxiliary battery units 16-1 and 16-2. The LED display sections 30-1 and 30-2 execute the displaying operations for a period of time during which LED switches 28-1 and 28-2 provided at the sides of LED display sections 30-1 and 30-2 are depressed.

Fig. 3, 4, 5, and 6 show a rear view, a plan view, a front view, and a left side view respectively of the auxiliary battery unit 16-1 shown in Fig. 1. As will be apparent from the rear view of Fig. 3, a power source input terminal 36 is provided on the rear side of the auxiliary battery unit 16-1, and the screws 20-1 and 20-2 having screw holes in the heads are provided at two positions of the upper corners of the upper portion. As will be apparent from the plan view of Fig. 4, the LED display section 30-1 using five LEDs is provided in the upper portion of the auxiliary battery unit 16-1. The LED switch 28-1 is provided near the LED display section 30-1. A printed circuit board 40 on which a circuit unit has been installed and a battery pack 38 are provided in the auxiliary battery unit 16-1 as shown by a broken line. In the embodiment, eight NiCd cells are assembled in the battery pack 38 in a state in which they are connected in series. Since each NiCd cell has a nominal voltage of 1.2 V, the nominal output voltage of the battery pack 38 is equal to 9.6 V.

As shown in the front view of Fig. 5, the connector 24-1 connected to the cable 32-1 is enclosed in the concave portion at the left lower corner of the auxiliary battery unit 16-1. Further, as shown in the left side view of Fig. 6, the screw 20-1 passes through the interior of the battery unit 16-1 and the screw portion is projected to the tip. Four cells are enclosed in the battery pack 38 when it is seen from the side, and as shown in Fig. 4, since those cells are provided in two lines, it is known that total eight cells are enclosed.

Fig. 7 shows one example of the construction of a power source system in which two auxiliary battery units embodying the present invention are used (first embodiment). The personal computer 10 has a computer circuit 44 therein. A power source is supplied to the computer circuit 44 from a power source circuit section 46. A main battery pack is enclosed in the power source circuit section 46. A current consumption of the computer circuit 44 is, for example, equal to or larger than 160 mA in the operating mode, and is equal to or less than 1 mA in the stand-by mode. An input connector 48 is provided for the power source circuit section 46.

The auxiliary battery unit 16-1 has an input connector 50-1, a battery circuit section 52-1, and an output connector 54-1. Similarly, the battery unit 16-2 also has an input connector 50-2, a battery circuit section 52-2, and an output connector 54-2. An AC adapter 42 receives, for example, a commercially available voltage of AC 100 V and outputs a specified DC voltage. In the embodiment, the AC adapter 42 generates DC 15 V and has a current capacity equal to 1.33 A. The AC adapter 42 is connected whilst the personal computer 10 and the auxiliary battery units 16-1 and 16-2 are charged. It is also possible to use the personal computer 10 by connecting the AC adapter 42 when it is used at a location where the AC power source is obtained. However, since the personal computer 10 is fundamentally used as a portable type, it will be appreciated that the AC adapter 42 is not normally connected to the computer 10 during use thereof.

Fig. 8 shows one example of the circuit construction of the auxiliary battery unit which is used in the first embodiment. A noise filter 100 is provided to the output side of an input connector 50. A power source line from the noise filter 100 passes through a Zener diode 102, and a fuse 104 is connected to an analog switch 106 which operates as a first discharge switch. An output of the analog switch 106 is connected via a sense resister 108 (used to detect output current) to an output connector 52 through a noise filter 110. For example, a resistor of 1&OHgr; is used as a sense resister 108.

A battery pack 112 is formed by serially connecting eight NiCd cells 114. Since an output voltage at full charge of one NiCd cell 114 is nominally equal to 1.2 V, the battery pack 112 nominally generates 9.6 V in a state of full charge. A capacity of the battery pack 112 is equal to 1400 mA/h, for example. The battery pack 112 has therein a thermistor 164 to detect an internal temperature.

A charging system for the battery pack 112 is as follows. An output line of the noise filter 100 connected to the input connector 50 is branched and connected to a high speed charging circuit 122. An output of the high speed charging circuit 122 passes through a Zener diode 124 and is connected to a plus side of the battery pack 112. In parallel with the high speed charging circuit 122, a serial circuit, or trickle resistor 126, and an analog switch 128 is connected. A resistor of 470 &OHgr; is used as the trickle resistor 126..

A discharging system from the battery pack 112 will now be described. The plus side of the battery pack 112 is connected to an analog switch 118 through a sense resistor 116 used to detect a discharge current. The analog switch 118 operates as a second discharge switch. A resistor of 1 &OHgr; is used as a sense resistor 116. An output of the analog switch 118 is connected to a cathode side of the Zener diode 102 through a Zener diode 120. Due to this, both of the analog switches 118 and 106 must be turned on in order to discharge the battery pack 112.

A charge control and a discharge control for the battery pack 112 are executed by a microprocessor 130. Regulators 134 and 142 are provided as a power source section to produce a power source voltage of the whole circuit including the microprocessor 130. A voltage on the equipment side of the fuse 104 is applied to the regulator 134 through a switching circuit 132 and a fuse 105. The switching circuit 132 is turned on when an input voltage exceeds, for example, 4 V, and supplies a power source voltage to the regulator 134. The regulator 134 converts the input voltage into a predetermined output constant voltage Vcc1. For instance, 3.2 V is used as a power source voltage Vcc1. A reference voltage generating circuit 136 generates a reference voltage Vcc2, for example, 1.235 V on the basis of the output voltage Vcc1 provided by the regulator 134. The reference voltage is used by the AD convertor to supply data to the microprocessor 130.

The regulator 142 receives the input voltage when an analog switch 140 is turned on and generates a power source voltage Vcc3, for example, 3.0 V which is supplied to the microprocessor 130. The analog switch 140 is turned on in response to a control signal E9 when the microprocessor 130 detects that an AC adaptor is connected to the input connector 50. Therefore, in the case where the AC adapter is not connected to the input connector 50, the analog switch 140 is turned off and the power source voltage Vcc3 from the regulator 142 is cut off. The power source voltage Vcc3 from the regulator 142 is mainly used as a power source voltage of a charging circuit system. Due to this, during discharge control when no AC adapter is connected, the regulator 142 is cut off, thereby preventing electric power consumption due to the charging circuit system.

A resetting circuit 138 operates when the power source voltage Vcc1 from the regulator 134 is obtained and generates a power-on reset signal E1 to the microprocessor 130. In response to the power-on reset signal E1, the microprocessor 130 executes an initial reset.

The microprocessor 130 has a charge control section 182, a discharge control section 184, and a display control section 186 which are realized by a program control.

When the charge control section 182 detects the connection of the AC adapter, the charge control section 182 makes the high speed charging circuit 122 operative on the basis of a detection signal E3 (output current measure) produced by an output current detecting circuit 150 in this instance, thereby allowing the charging operation of the battery pack 112 to be executed. Explaining in detail, a check is first made to see if the AC adapter is connected to the input connector 50 or not on the basis of a voltage detection signal E2 obtained from a voltage divider arrangement comprising resistors 146 and 148 which form a voltage detecting circuit 144. An input voltage from the input connector 50 is equal to DC 15 V in the case where the AC adapter is connected, DC 9.6 V in the case where another auxiliary battery unit is connected, and DC 0 V in the case in which neither the AC adapter nor any other auxiliary battery unit is connected. Therefore, the charge control section 182 of the microprocessor 130 can recognize the connection of the AC adapter by a voltage detection of DC 15 V on the basis of the voltage detection signal E2 from the voltage detecting circuit 144. When the connection of the AC adapter is detected, the charge control operation by the charge control section 182 is started. The charge control operation is executed according to the magnitude of the current detection signal E3 from the output current detecting circuit 150. For example, Ith = 1 mA is first set as a threshold current Ith of the output current. The charge control section 182 makes the high speed charging circuit 122 operative when the detected output current is equal to or less than the threshold current Ith = 1 mA, thereby causing the battery pack 112 to be charged and causing maximum value of the charging current to be set to 1.2 A. The charging time of the battery pack 112 by high speed charging is, for example, 1.2 hours. When the output current detected by the output current detecting circuit 150 is equal to or larger than the threshold current Ith = 1 mA, the charge control section 182 stops the operation of the high speed charging circuit 122 and turns on the analog switch 128 and switches to the trickle charging by the trickle resistor 126. The trickle charging is executed while the personal computer is operating.

The high speed charging circuit 122 and the analog switch 128 for trickle charging are controlled by control signals E12 and E13 from the microprocessor 130. When the charge control section 182 detects the connection of the AC adapter, the control signal E12 is made active. The high speed charging circuit 122 operates by negative logic on the basis of the control signals E12 and E13. Therefore, upon the detection of the AC adapter, the control signal E12 is set to the low level. The control signal E13 becomes active when the output current is equal to or less than the threshold current Ith = 1 mA. That is, since it is a negative logic signal, the control signal E13 is set to the low level. The high speed charging circuit 122 operates when both of the control signals E12 and E13 are set to the low level, thereby executing the charging at a high speed. The high speed charging circuit 122 has an NAND gate to which the control signals E12 and E13 are supplied, a transistor switch which is turned on/off by an output of the NAND gate, and a current limiting circuit to limit the charge current to a predetermined high speed charging current value in the ON state of the transistor switch.

The analog switch 128 operates by positive logic. When the output current detected by the output current detecting circuit 150 exceeds the threshold current Ith = 1 mA, the control signal E13 changes from the low level to the high level. Due to this, the operation of the high speed charging circuit 122 is stopped, the analog switch 128 is turned on at the same time, and the trickle charging of the battery pack 112 via the trickle resistor 126 is started. During trickle charging the charge current is determined by a resistance value of 470 &OHgr; of the trickle resistor 126 according to the voltage difference between the input voltage from the AC adapter and the present charging voltage of the battery pack 112.

The charging operation of the charge control section 182 is stopped in either one of the following cases: namely, when a predetermined time, measured by a timer activated at the start of the charging, for example, 1.2 hours of the high speed charging elapses; when an abnormal temperature is detected by the thermistor 164 provided for the battery pack 112; and further, when the full charging is detected on the basis of a change in charging voltage of the battery pack 112.

In order for the microprocessor 130 to recognize such a state of the battery pack, an AD converter 156 to detect a battery current, an AD converter 158 to detect a temperature, an AD converter 160 to detect a battery voltage, and an AD converter 162 to detect the presence or absence of the battery are provided. The AD converter 156 to detect the battery current receives a voltage across the sense resistor 116 provided for the discharge circuit and converts the received voltage into a digital voltage detection signal E4 which is supplied to the microprocessor 130. The AD converter 158 to detect the temperature supplies a temperature detection signal E5, based on the thermistor 164 built into the battery pack 112,to the microprocessor 130. The AD converter 160 to detect the battery voltage supplies a voltage detection signal E6, obtained by converting the charging voltage of the battery pack 112, to the microprocessor 130. Further, the AD converter 162 to detect the presence or absence of the battery supplies a detection signal E7 indicative of the presence or absence of the connection of the battery pack 112 to the microprocessor 130

Further, a signal line which is pulled up by a resistor 166 to the power source voltage +Vcc1 passes into the battery pack 112 as shown by a broken line, and provides the microprocessor 130 with a detection signal E8 in the event of a leakage of the battery pack 112. For example, when moisture or water enters the battery pack 112, a shorting current flows through the resistor 166 and the leak detection signal E8 drops to 0 V. Therefore, the microprocessor 130 can detect a short-circuit of the battery pack 112 by such a voltage drop.

The display control section 186 provided in the microprocessor 130 executes a display control of the LED display section 30. Five LEDs 170, 172, 174, 176, and 178 are provided in the LED display section 30 and are driven by control signals E15, E16, E17, E18, and E19. The display control section 186 operates and drives the display section 30 when an LED switch 28 is in the ON position. The LED switch 28 is pulled up to the power source Vcc1 through a resistor 168. When the LED switch 28 is in the OFF position, a switch signal E14 is at the high level because it is pulled up to the power source voltage Vcc1. When the LED switch 28 is turned on, the switch signal E14 is set to the low level, so that the display control section 186 operates. The LED 170 is lit on by the control signal E15 when the input of DC 15 V by the AC adapter is detected. The LEDs 172, 174, and 176 are sequentially lit on by the control signals E16 to E18 in accordance with the magnitude of the charging voltage of the battery pack 112. For example, the three LEDs 172, 174, and 176 are lit on by the full charge of the battery pack 112, the two LEDs 174 and 176 are lit on when the voltage is low. Only the LED 176 is lit on when the voltage is even lower. Further, the LED 178 flickers in accordance with the control signal E19 when a decrease in the battery voltage is detected. Therefore, when the LED 178 flickers while the LED switch 28 is ON, it will be understood that it is necessary to charge.

The microprocessor 130 operates using clocks of 1.8 MHz and 32 KHz from quartz oscillators 152 and 154 provided externally of the microprocessor. For example, a four bit microprocessor is used as a microprocessor 130.

The flowchart of Fig. 9 shows a processing operation by the microprocessor 130 provided in Fig. 8.

When a power source voltage exceeding 4 V is supplied, the switching circuit 132 is turned on and supplies the power source voltage to the regulator 134. In response to the power-on reset signal E1 from the resetting circuit 138, the microprocessor 130 executes an initialization in step S1. Subsequently, a check is made to see if the battery pack 112 is connected or not in step S2. If the battery pack 112 is not connected, an alarm is generated in step S8 and the processing routine is finished as an abnormal state. When the battery pack 112 is normally connected, step S3 follows and a check is made if an AC adapter has been connected or not. Specifically speaking, it is judged that the AC adapter is connected when the input voltage is equal to DC 15 V due to the voltage detection signal E2 from the voltage detecting circuit 144. When the AC adapter is connected, step S9 follows. The analog switch 106, serving as a first discharge switch, is turned on and the analog switch 118, serving as a second discharge switch, is turned off. The processing routine advances to a charging process in step S10. The details of the charging process in step S10 are shown as a subroutine in Fig. 10.

In the case where it is judged that no AC adapter is connected in step S3, step S4 follows and a check is made to see if another auxiliary battery unit has been connected or not. When another auxiliary battery unit is connected, the input detection voltage by the voltage detecting circuit 144 is equal to DC 9.6 V. When the connection of another auxiliary battery unit is judged, in step S11 the analog switch 106 serving as the first discharging switch is turned on in a manner similar to the case in step S9, the analog switch 118 serving as the second discharging switch is turned off, and the supplied voltage from the connected auxiliary battery unit, received via the input connector 50, is supplied directly to the output connector 52 by the analog switch 106 which is in the ON state.

When another battery unit is not connected in step S4, namely when the input detection voltage is equal to 0 V, step S5 follows. The analog switches 118 and 106 (first and second discharging switches respectively) are each turned on. Due to this, a discharging circuit from the battery pack 112 to the output connector 52 is formed and a discharging state using the units own battery pack 112 is obtained.

When the discharging state is established in step S5, a drop in the battery voltage is discriminated in step S6 and an overcurrent is detected in step S7. When such drop in the battery voltage or such an overcurrent is detected, step S12 follows and the analog switch 118 (second discharging switch) is turned off and the discharging operation of the battery pack 112 is stopped. As for stopping the discharging due to the drop in the battery voltage in step S6, in addition to the process of the microprocessor 130, when the input voltage of the switching circuit 132 provided in the power source circuit section is equal to or less than 4 V, the power supply to the regulator 134 is cut off. Due to this, the operation of the whole circuit section including the microprocessor 130 is stopped, the discharging of the battery pack 112 is substantially stopped, thereby preventing a damage of the battery pack 112 by the excessive discharge.

Fig. 10 shows details of the charging process shown in step S10 in Fig. 9 as a subroutine. When the microprocessor 130 detects the connection of the AC adapter, the charging process in Fig. 10 is started. In step S1 a check is first made to see if the output current detected by the output current detecting circuit 150 is equal to or less than the threshold current Ith or not. For example, when Ith = 1 mA and the output current is equal to or less than 1 mA, step S2 follows and the high speed charging circuit 122 is operated and the high speed charging process is started. During the high speed charging, in step S3 a check is made to see if the charging has been completed or not by discriminating whether the timer activated by the start of the charging has reached a set time, for example, 1.2 hours or not. In step S4, a completion of the charging is judged on the basis of the battery voltage. In case of using an NiCd cells 114 as a battery pack 112, the charging voltage increases in association with the elapse of time and it starts to drop when it is fully charged. Therefore, in step S4, it is judged that the charging has been completed when the value of a negative time change ratio due to a decrease in charging voltage exceeds a predetermined threshold value. Further in step S5, a check is made to see if the detection temperature measured by the thermistor 164 provided in the battery pack 112 is equal to or higher than a specified value or not. Since there is a fear that, when the charging of the battery pack 112 is suddenly executed the internal temperature rises and the NiCd cell itself is damaged, the charging is stopped when the detection temperature is equal to or higher than the specified value. When one of the results of the judgment in steps S3, S4, and S5 is obtained, step S6 follows and a charge stopping process to stop the operation of the high speed charging circuit 122 is executed. Such a high speed charging process is executed in a stand-by mode in which the personal computer 10 is not used.

On the other hand, when the personal computer 10 is used, the output current exceeds the threshold value Ith. In this case, the processing routine advances from step S1 to step S7 and a trickle charging process is executed. That is, the operation of the high seed charging circuit 122 is stopped and at the same time, the analog switch 128 is turned on. During trickle charging the charging current depends on the resistance value (470 &OHgr;) of the trickle resistor 126 and a voltage difference between the supply voltage of the AC adapter at that time and the charging voltage of the battery pack 112. With respect to the trickle charge, a check is also made to see if there is any abnormality due to the completion of the charging by the battery voltage in step S4 or the increase in battery temperature in step S5. When one of the above conditions is judged, a charge stopping process is executed in step S6.

Fig. 11 shows the power source circuit section 46 provided in the personal computer 10 shown in Fig. 7. The power source circuit section 46 which is provided in the personal computer is a circuit from which the analog switch 106 as a first discharge switch provided in the battery circuit section of the auxiliary battery unit shown in Fig. 8 is eliminated but otherwise the remaining circuit construction is substantially the same. Therefore, in Fig. 11, the same component elements as those shown in Fig. 8 are designated by substantially the same reference numerals with respect to the "unit" digit and the "tens" digit but the "hundreds" digit is changed from "1" to "2". For example, the noise filter 100 provided subsequently to the input connector 50 in Fig. 8 is shown as a noise filter 200 in Fig. 11.

Fig. 12 is a flowchart showing the processing operation of the power source circuit section provided in the personal computer in Fig. 11. The flowchart of Fig. 12 corresponds to the flowchart of Fig. 9 relating to the auxiliary battery unit. The processes in steps 9 to 11 in Fig. 9 are eliminated and the ON operations of the first and second discharge switches in step S5 is changed to the ON operation of a single discharge switch. That is, the power source circuit section in Fig. 11 provided in the personal computer executes the discharge control using only an analog switch 218 provided in the discharging line of the battery pack 212. Due to this, in the case where the input voltage from the input connector 48 is set to DC 15 V and a connecting state of the AC adapter is judged or the input voltage is set to DC 9.6 V and it is judged as a supplied voltage from an auxiliary battery unit, the analog switch 218 is turned off and the discharging of the computer's own battery pack 212 is stopped. When the input voltage from the input connector 48 is equal to O V, the analog switch 218 is turned on, thereby enabling discharging from the computer's own battery pack 212.

Fig. 13 shows the charging process by the power source circuit section provided in the personal computer shown in step S9 in Fig. 12 as a subroutine. The charging process is substantially the same process as that in the case of the auxiliary battery unit shown in Fig. 10.

The charging operation and discharging operation as a whole system when the two auxiliary battery units 16-1 and 16-2 are connected to the personal computer 10 as shown in Fig. 7 will now be described. The charging operation is executed by connecting the AC adapter 42 to the last auxiliary battery unit 16-2. The AC adapter 42 generates DC 15 V, the battery circuit sections 52-2 and 52-1 of the auxiliary battery units 16-1 and 16-2 detect the connection of the AC adapter 42 from their respective input voltages of DC 15 V, and the respective charging control sections of the units 16-1 and 16-2 are set into the operating mode. Similarly, the power source circuit section 46 of the personal computer 10 also recognizes the connection of the AC adapter 42 from its input voltage of DC 15 V and sets its charging control section into the operating mode. If it is now assumed that the computer circuit 44 is in a stand-by mode, the high speed charging is executed first to the battery pack 212 of the power source circuit section 46 provided in the personal computer 10 by the charging control of each of the power source circuit section 46 and the battery circuit sections 52-1 and 52-2. The current due to the high speed charging is detected by the auxiliary battery units 16-1 and 16-2, and since the current exceeds the threshold current Ith, the trickle charging state is obtained. That is, the high speed charging is started from the power source circuit section 46 of the personal computer 10.

When the high speed charging of the computer's own battery pack by the power source circuit section 46 of the personal computer 10 is completed, the output current flowing in the auxiliary battery units 16-1 and 16-2 becomes the stand-by current of the personal computer 10 again. Each of those units starts the charging operation again. However, the output current flowing by the charging start of the auxiliary battery unit 16-1 locating nearest to the personal computer 10 is detected by the other auxiliary battery unit 16-2 and the charging mode thereof is switched to trickle charging. Due to this, when the high speed charging of the personal computer 10 is completed, the high speed charging of the auxiliary battery unit 16-1 is started subsequently. When the high speed charging of the auxiliary battery unit 16-1 is finished, the charging mode is finally switched to the high speed charging of the auxiliary battery unit 16-2.

When the personal computer 10 enters the operating mode and the output current increases during the high speed charging in either one of the personal computer 10 and the auxiliary battery units 16-1 and 16-2, the charging mode is switched from the high speed charging to the trickle charging at that time point. Therefore, each of the charging operations can be sequentially executed while using the personal computer 10.

The discharge control in a state in which the AC adapter 42 is detached will now be described. In a state in which the AC adapter 42 is detached, the input voltage of the input connector 50-2 of the auxiliary battery unit 16-2 furthest from the computer is equal to O V. Due to this, the battery circuit section 52-2 allows its unit's own battery pack to be discharged. In the auxiliary battery unit 16-1 nearest to the personal computer, since the input voltage of the input connector 50-1 is equal to DC 9.6 V by the connection of the auxiliary battery unit 16-2, the battery circuit section 52-1 detaches its unit's own battery pack and the battery voltage of 9.6 V from the auxiliary battery unit 16-2 is supplied directly to the personal computer 10. In the power source circuit section 46 provided in the personal computer 10, since the input voltage of the input connector 48 is equal to DC 9.6 V, the power source circuit section 46 detaches the computer's own battery pack 212 and supplies 9.6 V, received from outside, directly to the computer circuit 44 as a power source voltage.

When the discharging of the auxiliary battery unit 16-2 is finished, specifically speaking, when the battery voltage in that unit drops to 4 V or less, the input voltage to the input connector 50-1 of the auxiliary battery unit 16-1 becomes 0 V due to the detachment of the battery pack. Therefore, the battery circuit section 52-1 commences discharging and connects its unit's own battery pack, thereby supplying DC 9.6 V to the personal computer 10. The power source circuit section 46 of the personal computer 10 is still in a state in which the discharging of the computer's own battery pack is prevented.

When the discharging of the auxiliary battery unit 16-1 is finished, specifically speaking, when the discharging voltage is lower than 4 V, the input voltage of the input connector 48 of the personal computer 10 is equal to 0 V due to the detachment of the battery unit. Therefore, the discharging operation of the power source circuit section 46 is executed, the computer's own battery pack is connected to the discharging line and the discharging to supply a power source to the computer circuit 44 is started. As mentioned above, the discharging operation is executed sequentially, starting from the auxiliary battery unit 16-2 connected furthest in the series from the personal computer 10.

The maximum value (n) of the auxiliary battery units which can be connected to the personal computer 10 is set to the maximum value (n) which satisfies the following equation since when the power source is lower than the necessary power source voltage, the personal computer 10 is stopped. V A C V F × n > V d d

Where, Vac denotes an output voltage of the AC adapter, VF denotes a drop voltage by the auxiliary battery unit, and Vdd indicates an input power source voltage which is necessary for the personal computer 10. For instance, when it is now assumed that VAC = 15 V, VF = 1V, and Vdd = 9V, n < 6 is obtained. Thus, in this instance a maximum of six auxiliary battery units can be connected.

Fig. 14 shows a modified embodiment of the invention. In the embodiment of Fig. 14, only one auxiliary battery unit 16 is provided for the personal computer 10. The auxiliary battery unit 16 has the same structure as that of one of the auxiliary battery units shown in Fig. 1.

Fig. 15 shows a system construction in the modified invention of Fig. 14. The personal computer 10 has the computer circuit 44, power source circuit section 46, and input connector 48 in a manner similar to Fig. 7. The auxiliary battery unit 16 has the input connector 50, battery circuit section 52, and output connector 54. When charging, the AC adapter 42 is connected to the input connector 50 of the auxiliary battery unit 16. The battery circuit section 52 of the auxiliary battery unit 16 has a circuit construction shown in Fig. 16.

In the single auxiliary battery unit shown in Fig. 16, the analog switch 118, which was provided in the discharging line of the battery pack 112 in the auxiliary battery unit in the case where a plurality of auxiliary battery units are connected, is eliminated. The discharging control is executed only by the analog switch 106 provided between the input connectors 50 and 52. Since the other circuit construction is similar to that in the embodiment of Fig. 8, the same component elements are designated by the same reference numerals. A charge control section 382, a discharge control section 384, and a display control section 386 which are realized by a program control are provided for the microprocessor 130.

When the circuit of only one auxiliary battery unit provided for the personal computer 10 in Fig. 16 is compared with the power source circuit section provided in the personal computer 10 shown in Fig. 11, each circuit has only the single analog switch 106 or the single analog switch 218, as the case may be, as a discharging switch, and the processes of the charge control sections 282 and 382 are almost the same although the positions of the analog switches 106 and 218 are different in the two circuits.

Fig. 17 shows the processing operation in the auxiliary battery unit in Fig. 16. The processing operation itself is substantially the same as that of Fig. 12 except that the discharging switch in each of steps S5 and S10 is the analog switch 106 in the case of Fig. 16 rather than the analog switch 218 as in the case of Fig. 11. With respect to Fig. 18 in which the charging process in step S9 in Fig. 17 is shown as a subroutine, the process is almost the same as that shown in Fig. 13.

In the operation of a whole system shown in Fig. 15, the battery pack of the power source circuit section 46 of the personal computer 10 is first charged and the battery pack of the battery circuit section 52 of the auxiliary battery unit 16 is subsequently charged. On the other hand, the discharging operation is started from the battery pack of the auxiliary battery unit 16 and when discharging of the auxiliary battery unit 16 is finished, the discharging mode is switched to the discharging from the battery unit of the power source circuit section 46. That is, with respect to the charging and discharging as well, the charging and discharging operations are executed in accordance with almost the same order as that in case of a plurality of auxiliary battery units which can be connected as mentioned above.

Although the above embodiment has been described with respect to the case where the NiCd cells are used in the battery pack as an example, it is also possible to use other chargeable battery cells.

As a way of judging full charging based on the charging voltage in the charge control, a phenomenon which is peculiar to the NiCd cell is exploited, namely that the charging voltage which has risen is decreased by the completion of the charging is captured and judged. With respect to other kinds of battery cells, it is sufficient to judge the full charging from a change in charging voltage according to charging characteristics which are peculiar to such cells.

Further, the invention is not limited by the numerical values shown in the above embodiments.

As described above, an embodiment of the present invention can provide a power source system of a portable information processing system using a battery which enables operation over long periods of time by connecting and fixing an auxiliary battery unit to the system main body.

As described above, one embodiment of the present invention can provide apparatus comprising a portable electrical device and respective first and second battery units, each including one or more rechargeable batteries, for supplying electrical power to circuitry of the device. Each of the battery units has an input for receiving electrical power for charging its said one or more batteries and an output for delivering electrical power from its said one or more batteries such that, when the apparatus is in use, the output of the first battery unit can be connected to the said circuitry whilst the input of that battery unit is connected to the output of the second battery unit. Each of the battery units also has control means which co-operate, when a battery charger is connected to the input of the said second battery unit, to cause the said first battery unit to be charged first and then to cause the said second battery unit to be charged, and which also co-operate, when no such battery charger is connected, to cause the said circuitry to be powered first by the said second battery unit, until that unit is discharged, and then by the said first battery unit.

In one constitution of the apparatus the said first battery unit is contained within the housing of the said device, and the said second battery unit is contained in its own housing which can be connected physically to the device housing when the apparatus is in use.

In another constitution the said device also has a further such battery unit, contained within the device housing, the input of which further battery unit is connected to the output of the said first battery unit when the apparatus is in use and the output of which further battery unit is connected to the said circuitry, the said further battery unit having control means which cooperate with the control means of the said first and second battery units, when such a battery charger is connected to the input of the said second battery charger, to cause the said further battery unit to be charged before the said first battery unit is charged, and which also co-operate, when no such battery charger is connected, to cause the said circuitry to be powered by the said further battery unit after the said first battery unit has become discharged. The said first and second battery units may be contained in respective housings external to the housing of the said device.


Anspruch[de]
Ladbare/Entladbare Hilfs-Batterieeinheit mit einer oder mehreren wiederaufladbaren Batterien (114), um elektrische Leistung einem tragbaren Systemhauptkörper (10) zuzuführen, welche Batterieeinheit mit einer oder mehreren solchen Batterieeinheiten in Reihe verbindbar ist und ferner umfassend: einen Energiequelleneingangsanschluss (50) und einen Energiequellenausgangsanschluss (52); eine Ladeschaltung (122) zum Durchführen einer Ladeoperation an den wiederaufladbaren Batterien; eine Ausgangsstromdetektionsschaltung (150) zum Detektieren eines Ausgangsstromes; und eine Ladesteuereinheit (182) zum Steuern der Ladeoperation, abhängig von dem durch die Ausgangsstromdetektionsschaltung (150) detektierten Ausgang; dadurch gekennzeichnet, dass Gleichstrom (DC) über den Energiequelleneingangsanschluss (50) entweder von einer externen Energiequelle (42) oder einer mit ihm verbundenen Hilfsbatterieeinheit zugeführt werden kann; und dass der Energiequellenausgangsanschluss (52), beim Entladen, einen Entladestrom von einer Hilfsbatterieeinheit, die mit dem Energiequelleneingangsanschluss (50) verbunden ist, ausgeben kann, wobei das Entladen von der oder jeder Hilfsbatterieeinheit sequenziell stattfindet, beginnend mit der Hilfsbatterieeinheit, die von dem portablen Systemhauptkörper (10) am weitesten entfernt ist, und beim Laden, den Ausgangsgleichstrom umgehen kann, der von einer externen Energiequelle (42) in den Energiequelleneingangsanschluss (50) eingegeben wird, wenn eine Hilfsbatterieeinheit mit dem Energiequellenausgangsanschluss (50) verbunden ist, wobei das Laden von jeder Hilfsbatterieeinheit sequenziell stattfindet, beginnend mit der Hilfsbatterieeinheit, welche dem portablen Systemhauptkörper (10) am nächsten ist. Einheit nach Anspruch 1, bei der die Ladesteuerschaltung (182) eine Schnellladeoperation durchführt, wenn der Ausgangsstrom unter einem vorbestimmten Wert ist, und eine Pufferladeoperation, wenn der Ausgangsstrom oberhalb eines vorbestimmten Wertes ist. Einheit nach Anspruch 1 oder 2, bei der die Einheit ein Batteriepack (112) umfasst, in dem eine Vielzahl von Batteriezellen in Reihe verbunden eingeschlossen sind. Einheit nach irgendeinem der vorhergehenden Ansprüche, mit: einem Spannungsdetektionsmittel (144) zum Detektieren einer eingegebenen Energiequellenspannung von dem Eingangsanschluss (50); ersten Entladeschaltungsmitteln (106) zum Ein/Aus-Schalten der elektrischen Verbindung mit dem Ausgangsanschluss (54); zweiten Entladeschaltungsmitteln (118) zum Ein/Aus-Schalten der elektrischen Verbindung von den wiederaufladbaren Batterien; Ladeschaltmitteln (122) zum Ein/Aus-Schalten der elektrischen Verbindung von dem Eingangsanschluss zu den wiederaufladbaren Batterien, wobei die Ladesteuermittel (182) betreibbar sind, um die elektrische Verbindung eines Wechselstromadaptermittels mit dem Eingangsanschluss aus der Detektionsspannung des Spannungsdetektormittels zu detektieren, und zum Einschalten der Ladeschaltmittel; und Entladesteuermittel (184) zum Einschalten der ersten Entladeschaltmittel (106) und zum Ausschalten der zweiten Entladeschaltmittel (118) und zum Zuführen externer Energie zu dem Ausgangsanschluss, wenn die elektrische Verbindung des Wechselstromadaptermittels oder einer zweiten Hilfsbatterieeinheit aufgrund der Detektionsspannung von dem Spannungsdetektionsmittel detektiert wird, und zum Einschalten der ersten und der zweiten Entladeschaltmittel und zum Zuführen von Energie von den wiederaufladbaren Batterien zu dem Ausgangsanschluss, wenn keine elektrische Verbindung des Wechselstromadaptermittels oder der zweiten Hilfsbatterieeinheit aus der Detektionsspannung des Spannungsdetektionsmittels detektiert wird. Einheit nach Anspruch 4, bei der das Entladesteuermittel (184) das zweite Entladeschaltmittel (118) abschaltet und die wiederaufladbaren Batterien in dem Fall trennt, in dem der Entladestrom der wiederaufladbaren Batterien detektiert wird und gleich einem überstrom ist. Einheit nach Anspruch 4 oder 5, bei der das Entladesteuermittel (184) das erste und das zweite Entladungsschaltmittel (106, 118) abschaltet und die Energieversorgung zu der Einheit in der vorderen Stufe in dem Fall abschaltet, wo die Entladespannung des Batteriepack (112) detektiert wird und gleich oder geringer als eine spezifizierte Spannung ist. Einheit nach irgendeinem der vorhergehenden Ansprüche, bei der die Ladeschaltung umfasst: ein Hochgeschwindigkeitslademittel (122), um einen Strom nahe einem maximal zulässigem Ladestrom der wiederaufladbaren Batterien zu liefern und sie mit einer hohen Geschwindigkeit zu laden; und ein Pufferlademittel (126), das elektrisch parallel zu dem Hochgeschwindigkeitslademittel angeschlossen ist, um einen willkürlichen Strom zuzuführen, der bestimmt ist durch eine Spannungsdifferenz zwischen einer Eingangsleistungsspannung und der Ladespannung der wiederaufladbaren Batterie und einem spezifischen Widerstandswert, wobei die Ladesteuereinheit (182) die Hochgeschwindigkeitslademittel in Operation versetzt, wenn der detektierte Ausgangsstrom gleich oder geringer als ein vorbestimmter Wert ist, wodurch mit hoher Geschwindigkeit geladen wird, und ein Pufferlademittel in Betrieb setzt, wenn der detektierte Strom den vorbestimmten Wert überschreitet, wodurch eine Pufferladung stattfindet. Einheit nach irgendeinem der vorhergehenden Ansprüche, bei der die Ladesteuereinheit (182) die Ladeschaltung ausschaltet und das Laden beendet, wenn eine verstrichene Zeit eines Zeitgebers, der zu Beginn der Ladung aktiviert wurde, einen vorbestimmten Zeitwert erreicht. Einheit nach irgendeinem der vorhergehenden Ansprüche, bei der die Ladesteuereinheit (182) die Ladeschaltung abschaltet und das Laden beendet, wenn durch die Temperaturdetektionseinheit (164, 158), die für die genannte Einheit vorgesehen ist, eine Temperatur detektiert, die einen vorbestimmten Temperaturwert überschreitet. Einheit nach irgendeinem der vorhergehenden Ansprüche, bei der die Ladesteuereinheit (182) die Energiequellenspannung der wiederaufladbaren Batterien überwacht und in einem Fall, in dem solch eine Änderung detektiert wird, dass die Spannung, die im Zusammenhang mit dem Laden ansteigt, eine Spitzenspannung überschreitet und dann wieder abfällt, die Ladesteuereinheit (182) die Ladeschaltung abschaltet und das Laden beendet. Einheit nach irgendeinem der vorhergehenden Ansprüche, ferner mit einem Anzeigemittel (30) zum Anzeigen eines Zustands der Hilfsbatterieeinheit. Einheit nach Anspruch 11, bei der das Anzeigemittel (30) wenigstens einen Eingabezustand der externen Energiequelle für den Eingangsanschluss, einen Ladezustand und einen Zustand der Batteriespannung anzeigt. Einheit nach Anspruch 11 oder 12, bei der das Anzeigemittel (30) ein Anzeigeschaltmittel (28) hat, um Information nur während der AN-Operation anzuzeigen. Energiequellensystem eines Informationsverarbeitungssystems, umfassend: einen portablen Systemhauptkörper (10), der ein Energiequellenschaltmittel (46) hat; und eine Vielzahl von Hilfsbatterieeinheiten (16-1, 16-2) gemäß irgendeinem der vorhergehenden Ansprüche, welche in Reihe mit einem Energiequelleneingangsanschluss (48) des Energiequellenschaltungsmittels verbunden sind, so dass das Laden von jeder der Hilfsbatterieeinheiten sequenziell stattfindet, beginnend von der Hilfsbatterieeinheit (16-1), die auf der Seite des Systemhauptkörpers angeordnet ist. System nach Anspruch 14, ferner mit einem Batterieschaltungsmittel (52-1, 52-2) zum sequenziellen Entladen von jeder der Hilfsbatterieeinheiten, beginnend von der Hilfsbatterieeinheit (16-2), die auf der von dem Systemhauptkörper entferntesten Seite ist. Verfahren zum Laden einer ladbaren/entladbaren Hilfsbatterieeinheit, welche Batterieeinheit verbindbar ist mit einer oder mehreren Hilfsbatterieeinheiten, in einer Reihe, und eine oder mehrere wiederaufladbare Batterien (114) umfasst, um elektrische Energie zu einem portablen Systemhauptkörper (10) zuzuführen, einem Energiequelleneingangsanschluss (50) und einem Energiequellenausgangsanschluss (52), welches Verfahren umfasst: Ausführen einer Ladeoperation der wiederaufladbaren Batterien; Detektieren eines Ausgangsstromes; und Sperren der Ladeoperation abhängig von einem Ausgangsstromwert; gekennzeichnet durch Eingeben eines Gleichstroms in den genannten Energiequelleneingangsanschluss (50) entweder von einer externen Energiequelle (42) oder von einer Hilfsbatterieeinheit, die mit ihm verbunden ist; und Bewirken, dass der Energiequellenausgangsanschluss (52), beim Entladen, einen Entladestrom von einer Hilfsbatterieeinheit ausgibt, die mit dem Energiequelleneingangsanschluss (50) verbunden ist, wobei das Entladen von der oder jeder Hilfsbatterieeinheit sequenziell stattfindet, beginnend mit der Hilfsbatterieeinheit, die von dem portablen Systemhauptkörper (10) am weitesten entfernt ist; und Bewirken, dass der Energiequellenausgangsanschluss (52), beim Laden, den Ausgangs-Gleichstrom umgeht, der von einer externen Energiequelle (42) in den Energiequelleneingangsanschluss (50) eingegeben wird, wenn eine Hilfsbatterieeinheit mit dem Energiequellenausgangsanschluss verbunden ist, wobei das Laden von der oder jeder Hilfsbatterie sequenziell stattfindet, beginnend mit der Hilfsbatterieeinheit, die dem portablen Systemhauptkörper (10) am nächsten ist.
Anspruch[en]
An auxiliary chargeable-dischargeable battery unit comprising one or more rechargeable batteries (114) for supplying electrical power to a portable system main body (10), the battery unit being connectable with one or more such auxiliary battery units in a series and further comprising: a power source input terminal (50) and a power source output terminal (52); a charging circuit (122) for carrying out a charging operation on the rechargeable batteries; an output current detecting circuit (150) for detecting an output current; and a charge control unit (182) for controlling the charging operation in dependence on the output detected by the output current detecting circuit (150); characterised in that DC current can be entered into the said power source input terminal (50) from either an external power source (42) or an auxiliary battery unit connected thereto;

and in that the said power source output terminal (52) can, upon discharging, output discharge current from an auxiliary battery unit connected to the power source input terminal (50), discharging of the or each auxiliary battery unit taking place sequentially starting with that auxiliary battery unit most distant from the said portable system main body (10), and, upon charging, bypass output DC current entered from an external power source (42) into the power source input terminal (50) when an auxiliary battery unit is connected to the power source output terminal (50), charging of the or each auxiliary battery unit taking place sequentially starting with that auxiliary battery unit closest to the said portable system main body (10).
A unit according to claim 1 wherein the said charge control unit (182) performs a rapid charging operation when the output current is under a prescribed value, and a trickle charging operation when the output current is above a predetermined value. A unit according to claim 1 or 2, wherein the unit comprises a battery pack (112) in which a plurality of battery cells connected in series are enclosed. A unit according to any of the preceding claims further comprising: voltage detecting means (144) for detecting an input power source voltage from said input terminal (50) ; first discharge switching means (106) for turning on/off the electrical connection to said output terminal (54); second discharge switching means (118) for turning on/off the electrical connection from said rechargeable batteries; charge switching means (122) for turning on/off the electrical connection from said input terminal to said rechargeable batteries, the said charge control means (182) being operable to detect the electrical connection of an AC adaptor means to the input terminal from the detection voltage of said voltage detecting means and for turning on said charge switching means; and discharge control means (184) for turning on said first discharge switching means (106) and turning off said second discharge switching means (118) and supplying external power to the output terminal when the electrical connection of an AC adaptor means or a second auxiliary battery unit is detected from the detection voltage of said voltage detecting means, and for turning on said first and second discharge switching means and supplying power from said rechargeable batteries to the output terminal when non-electrical connection of said AC adaptor means or the second auxiliary battery unit is detected from the detection voltage of said voltage detecting means. A unit according to claim 4, wherein said discharge control means (184) turns off the second discharge switching means (118) and disconnects the rechargeable batteries in the case where the discharge current of the rechargeable batteries is detected and is equal to an overcurrent. A unit according to claim 4 or 5, wherein said discharge control means (184) turns off the first and second discharge switching means (106, 118) and shuts off the power supply to the unit at the front stage in the case where the discharge voltage of the battery pack (112) is detected and is equal to or less than a specified voltage. A unit according to any of the preceding claims, wherein said charging circuit comprises: high speed charging means (122) for supplying a current near a maximum allowable charge current of said rechargeable batteries and for charging at a high speed; and trickle charging means (126) electrically connected in parallel to said high speed charging means for supplying an arbitrary current which is determined by a voltage difference between said input power source voltage and the charging voltage of said rechargeable batteries and a specified resistance value, wherein said charge control unit (182) makes said high speed charging means operative when the detected output current is equal to or less than a predetermined value, thereby charging at a high speed, and makes said trickle charging means operative when the detected current exceeds the predetermined value, thereby trickle charging. A unit according to any of the preceding claims wherein said charge control unit (182) turns off said charging circuit and stops charging when an elapsed time of a timer which was activated at the start of the charging reaches a predetermined time. A unit according to any one of the preceding claims, wherein said charge control unit (182) turns off said charging circuit and stops charging when a detection temperature by temperature detecting means (164, 158) provided for said unit exceeds a predetermined temperature. A unit according to any one of the preceding claims wherein said charge control unit (182) monitors the power source voltage of the rechargeable batteries and in a case where a change such that the voltage which rises in association with the charging exceeds a peak voltage and decreases is detected, the charge control unit (182) turns off the charging circuit, and stops the charging. A unit according to any of the preceding claims, further comprising display means (30) for indicating a state of the auxiliary battery unit. A unit according to claim 11, wherein said display means (30) displays at least an inputting state of the external power source for the input terminal, a charging state, and a state of the battery voltage. A unit according to claim 11 or 12, wherein said display means (30) has display switching means (28) for displaying information only during an ON operation. A power source system of an information processing system, comprising: a portable system main body (10) having power source circuit means (46); and a plurality of auxiliary battery units (16-1, 16-2) according to any of the preceding claims which are connected in series to a power source input terminal (48) of said power source circuit means, such that charging of each of the auxiliary battery units takes place sequentially starting from the auxiliary battery unit (16-1) located on the system main body side. A system according to claim 14 further comprising battery circuit means (52-1, 52-2) for sequentially discharging each of said auxiliary battery units starting from the auxiliary battery unit (16-2) located on the side farthest from said system main body. A method of charging an auxiliary chargeable-dischargeable battery unit, the battery unit being connectable with one or more such auxiliary battery units in a series and comprising one or more rechargeable batteries (114) for supplying electrical power to a portable system main body (10), a power source input terminal (50) and a power source output terminal (52), the method comprising: carrying out a charging operation on the rechargeable batteries; detecting an output current; and inhibiting the charging operation in dependence on an output current value; characterised by entering DC current into the said power source input terminal (50) from either an external power source (42) or an auxiliary battery unit connected thereto; and by causing the power source output terminal (52), upon discharging, to output discharge current from an auxiliary battery unit connected to the power source input terminal (50), discharging of the or each auxiliary battery unit taking place sequentially starting with that auxiliary battery unit most distant from the said portable system main body (10); and by causing the power source output terminal (52), upon charging, to bypass output DC current entered from an external power source (42) into the power source input terminal (50) when an auxiliary battery unit is connected to the power source output terminal, charging of the or each auxiliary battery unit taking place sequentially starting with that auxiliary battery unit closest to the said portable system main body (10).
Anspruch[fr]
Unité de batterie chargeable et déchargeable auxiliaire comprenant une ou plusieurs batteries chargeables (114) permettant d'alimenter électriquement un corps principal (10) de système portable, l'unité de batterie étant raccordable en série avec une ou avec plusieurs unité(s) auxiliaire(s) de batterie, et comprenant en outre : une borne d'entrée d'alimentation (50) et une borne de sortie d'alimentation (52) ; un circuit de charge (122) permettant de réaliser une opération de charge sur les batteries chargeables ; un circuit de détection de courant de sortie (150) permettant de détecter un courant de sortie ; et une unité de contrôle de charge (182) permettant de contrôler l'opération de charge en fonction de la sortie détectée par le circuit de détection de courant de sortie (150) ; caractérisée en ce que du courant continu peut entrer dans ladite borne d'entrée d'alimentation (50) soit à partir d'une source d'alimentation externe (42) soit d'une unité de batterie auxiliaire qui y est connectée ; et en ce que ladite borne de sortie d'alimentation (52) peut, en cours de décharge, débiter un courant de décharge à partir d'une unité de batterie auxiliaire connectée à la borne d'entrée d'alimentation (50), la décharge de l'unité de batterie auxiliaire ou de chacune d'entre elles ayant lieu de façon séquentielle, en commençant par l'unité de batterie auxiliaire la plus éloignée dudit corps principal (10) du système portable, et en cours de charge, contourner le courant continu de sortie débité à partir d'une alimentation externe (42) vers la borne d'entrée d'alimentation (50) quand une unité de batterie auxiliaire est connectée à la borne d'entrée d'alimentation (50), la charge de l'unité de batterie auxiliaire ou de chacune d'entre elles ayant lieu de façon séquentielle, en commençant par l'unité de batterie auxiliaire la plus proche dudit corps principal (10) du système portable. Unité selon la revendication 1, dans laquelle ladite unité de contrôle de charge (182) réalise une opération de charge rapide quand le courant de sortie se situe sous une valeur prescrite, et une opération de charge lente quand le courant de sortie dépasse une valeur prédéterminée. Unité selon la revendication 1 ou 2, dans laquelle l'unité comprend un bloc de batterie (112) dans laquelle se trouve une pluralité de cellules de batterie connectées en série. Unité selon l'une quelconque des revendications précédentes, comprenant en outre : un moyen de détection de tension (144) permettant de détecter une tension d'entrée de source d'alimentation en provenance de ladite borne d'entrée (50) ; un premier moyen de commande de décharge (106) permettant d'activer/désactiver la connexion électrique vers ladite borne de sortie (54) ; un deuxième moyen de commande de décharge (118) permettant d'activer/désactiver la connexion électrique à partir desdites batterie rechargeables ; un moyen de commande de charge (122) permettant d'activer/désactiver la connexion électrique depuis ladite borne d'entrée vers lesdites batteries rechargeables, ledit moyen de contrôle de charge (182) pouvant servir à détecter la connexion électrique d'un moyen adaptateur de courant alternatif vers la borne d'entrée à partir de la tension de détection dudit moyen de détection de tension, et à activer ledit moyen de commande de charge ; et un moyen de contrôle de décharge (184) permettant d'activer ledit premier moyen de commande de décharge (106) et de désactiver ledit deuxième moyen de commande de décharge (118), et de fournir une alimentation externe à la borne de sortie lorsque la connexion électrique dudit moyen adaptateur de courant alternatif ou d'une deuxième unité de batterie auxiliaire est détectée à partir de la tension de détection dudit moyen de détection de tension, et permettant d'activer lesdits premiers et deuxièmes moyens de commande de décharge et de fournir du courant électrique en provenance desdites batteries rechargeables vers la borne de sortie lorsque l'absence de connexion électrique dudit moyen adaptateur de courant alternatif ou de la deuxième unité de batterie auxiliaire est détectée à partir de la tension de détection dudit moyen de détection de tension. Unité selon la revendication 4, dans laquelle ledit moyen de contrôle de décharge (184) désactive le deuxième moyen de commande de décharge (118) et déconnecte les batteries rechargeables dans le cas où le courant de décharge des batteries rechargeables est détecté et qu'il est égal à une surintensité. Unité selon la revendication 4 ou 5, dans laquelle ledit moyen de contrôle de décharge (184) désactive les premier et deuxième moyens de commande de décharge (106, 118) et arrête électriquement le bloc d'alimentation vers l'unité au niveau de l'étage avant, dans le cas où la tension de décharge du bloc de batterie (112) est détectée et qu'elle est inférieure ou égale à une tension particulière. Unité selon l'une quelconque des revendications précédentes, dans laquelle ledit circuit de charge comprend : un moyen de charge rapide (122) permettant de fournir un courant proche d'un courant de charge maximale admissible desdites batteries rechargeables et d'exécuter une charge rapide ; et un moyen de charge lente (126) connecté électriquement en parallèle audit moyen de charge rapide pour fournir un courant arbitraire, déterminé par une différence de tension entre ladite tension d'entrée de bloc d'alimentation et la tension de charge desdites batteries rechargeables, et une valeur particulière de résistance, dans laquelle ladite unité de contrôle de charge (182) rend opérationnel ledit moyen de charge rapide lorsque l'intensité détectée de sortie est inférieure ou égale à une valeur prédéterminée, auquel cas la charge est rapide, et rend opérationnel ledit moyen de charge lente lorsque l'intensité détectée dépasse la valeur prédéterminée, auquel cas la charge est lente. Unité selon l'une quelconque des revendications précédentes, dans laquelle ladite unité de contrôle de charge (182) désactive ledit circuit de charge et arrête la charge lorsqu'une durée écoulée, mesurée par une minuterie activée au début de la charge, atteint une valeur prédéterminée. Unité selon l'une quelconque des revendications précédentes, dans laquelle ladite unité de contrôle de charge (182) désactive ledit circuit de charge et arrête la charge lorsqu'une température, détectée par des moyens de détection de température (164, 158) prévus pour ladite unité, dépasse une température prédéterminée. Unité selon l'une quelconque des revendications précédentes, dans laquelle ladite unité de contrôle de charge (182) suit la tension de source d'alimentation des batteries rechargeables et, dans un cas où un changement, tel qu'une augmentation de tension à cause de la charge au-delà d'une tension de crête, ou une diminution de tension, est détecté, l'unité de contrôle de charge (182) désactive le circuit de charge, et arrête la charge. Unité selon l'une quelconque des revendications précédentes, comprenant en outre des moyens d'affichage (30) permettant d'indiquer un état de l'unité de batterie auxiliaire. Unité selon la revendication 11, dans laquelle lesdits moyens d'affichage (30) affichent au moins un état d'entrée de la source d'alimentation externe correspondant à la borne d'entrée, un état de charge et un état de la tension aux bornes de la batterie. Unité selon la revendication 11 ou 12, dans laquelle lesdits moyens d'affichage (30) sont pourvus de moyens de commande d'affichage (28) permettant d'afficher des informations uniquement pendant un fonctionnement « ON » (ACTIF). Système source d'alimentation d'un système de traitement d'informations, comprenant : un corps principal (10) de système portable doté de moyens de circuit de source d'alimentation (46) ; et une pluralité d'unités de batterie auxiliaires (16-1, 16-2) selon l'une quelconque des revendications précédentes, connectées en série à une borne d'entrée de source d'alimentation (48) desdits moyens de circuit de source d'alimentation, afin que la charge de chacune des unités de batterie auxiliaire ait lieu de façon séquentielle à partir de l'unité de batterie auxiliaire (16-1) située sur le côté du corps principal de système. Système selon la revendication 14, comprenant en outre des moyens de circuit de batterie (52-1, 52-2) permettant de décharger en séquence chacune desdites unités de batterie auxiliaires en commençant par l'unité de batterie auxiliaire (16-2) placée au niveau du côté le plus éloigné dudit corps principal de système. Procédé de charge d'une unité auxiliaire de batterie chargeable et déchargeable, l'unité de batterie pouvant être connectée en série à au moins une autre unité auxiliaire de batterie, et comprenant : au moins une batterie rechargeable (114) afin d'alimenter électriquement un corps principal (10) de système portable ; une borne d'entrée d'alimentation (50) et une borne de sortie d'alimentation (52) ; ce procédé comprenant les étapes suivantes : la réalisation d'une opération de charge sur les batteries rechargeables ; la détection d'un courant de sortie ; et le ralentissement de l'opération de charge en fonction d'une intensité de sortie ; caractérisé par l'entrée d'un courant continu dans ladite borne d'entrée d'alimentation (50) soit à partir d'une alimentation externe (42) soit d'une unité de batterie auxiliaire qui y est connectée ; et par le fait que la borne de sortie d'alimentation (52) peut, en cours de décharge, débiter un courant de décharge à partir d'une unité de batterie auxiliaire connectée à la borne d'entrée d'alimentation (50), la décharge de l'unité de batterie auxiliaire ou de chacune d'entre elles ayant lieu de façon séquentielle, en commençant par l'unité de batterie auxiliaire la plus éloignée dudit corps principal (10) du système portable ; et par le fait qu'en cours de charge, la borne de sortie d'alimentation (52) peut contourner le courant continu de sortie débité à partir d'une alimentation externe (42) vers la borne d'entrée d'alimentation (50) quand une unité de batterie auxiliaire est connectée à la borne d'entrée d'alimentation, la charge de l'unité de batterie auxiliaire ou de chacune d'entre elles ayant lieu de façon séquentielle, en commençant par l'unité de batterie auxiliaire la plus proche dudit corps principal (10) du système portable.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com