PatentDe  


Dokumentenidentifikation DE10195244B4 21.09.2006
Titel Mit Stickstoff dotierte, gesinterte Tantal- und Niob-Kondensatorpellets und Verfahren zur Herstellung derselben
Anmelder Vishay Sprague, Inc., Sanford, Me., US
Erfinder PozdeevFreeman, Yuril L., Sanford, Me., US
Vertreter Hofstetter, Schurack & Skora, 81541 München
DE-Anmeldedatum 04.12.2000
DE-Aktenzeichen 10195244
WO-Anmeldetag 04.12.2000
PCT-Aktenzeichen PCT/US00/32840
WO-Veröffentlichungsnummer 2002045109
WO-Veröffentlichungsdatum 06.06.2002
Date of publication of WO application in German translation 28.08.2003
Veröffentlichungstag der Patenterteilung 21.09.2006
Veröffentlichungstag im Patentblatt 21.09.2006
IPC-Hauptklasse H01G 9/052(2006.01)A, F, I, 20051017, B, H, DE
IPC-Nebenklasse B22F 1/00(2006.01)A, L, I, 20051017, B, H, DE   

Beschreibung[de]
GEBIET DER ERFINDUNG

Die vorliegende Erfindung betrifft Tantal- und Niobpellets, die bei der Herstellung von Tantal- und Niob-Kondensatoren verwendet werden. Insbesondere ist die Erfindung ein verbessertes Verfahren zur Sinterung, Desoxidation und Dotierung von Tantal- und Niobpellets mit Stickstoff. Anschließend bedeutet der Ausdruck "Tantal (Niob)" "Tantal oder Niob".

HINTERGRUND DER ERFINDUNG

Diese Erfindung betrifft ein verbessertes Verfahren zur Herstellung von Tantal- und Niobpellets und insbesondere die Herstellung solcher Pellets zur Verwendung in Elektrolytkondensatoren.

Beispiele für Tantal- und Niobkondensatoren und Methoden zu deren Herstellung sind in den Dokumenten EP 0 984 469, DE 695 16 556 und US 5,448,447 offenbart. In der EP 0 984 469 ist eine Methode zur Sinterung und anschließenden Dotierung von Tantal- und Niob-Pellets mit Stickstoff beschrieben. Die Sinterung und Dotierung wird in einer erhitzbaren Vakuumkammer durchgeführt. In der DE 695 16 556 ist eine Methode zur Reduzierung des Sauerstoffgehalts von Tantalpulver durch Erwärmen von angehäuftem Tantalpulver mit Magnesium offenbart. In dem Dokument US 5,448,447 ist ein Verfahren offenbart mit dem Tantal- und Niobpulver in einem Vakuumbehälter bei 950° C durch die Zugabe von Magnesium desoxygeniert werden können. Nach Waschen und Trocknen des Pulvers außerhalb des Behälters kann er in dem offenbarten Verfahren erneut in den Behälter eingebracht werden und einer Stickstoffbehandlung bei 50° C unterzogen werden. Weitere Erklärungen zu diesen Stand-der-Technik-Dokumenten sind in der folgenden Beschreibung des allgemeinen Stands der Technik zu finden.

Das gewöhnliche Verfahren zur Herstellung von Tantal- (Niob-) Pellets zur Verwendung in Tantal- und Niob-Kondensatoren umfaßt Schritte, in denen Tantal- (Niob-) Pulver zuerst zu Pellets gepreßt oder verdichtet wird. Die resultierenden gepreßten Pellets werden dann einem Sinterprozeß unterzogen, bei dem die Pellets in einem Vakuum erhitzt werden. Das Erhitzen ermöglicht, daß die Tantal- (Niob-) Teilchen zusammenkleben, was dem Pellet mechanische Festigkeit und elektrische Leitfähigkeit verleiht.

Die Zuleitungs-"Drähte" aus Tantal (Niob) können während des Preßprozesses in die Pellets eingebettet werden. Während des Sinterns kleben die Tantal- (Niob-) Teilchen an den Zuleitungsdraht, was eine starke Befestigung der Zuleitung am Pellet vorsieht. Solche Pellets werden hierin als "Pellets vom eingebetteten Typ" bezeichnet. Die Tantal- (Niob-) Pellets können auch ohne Zuleitungsdrähte gepreßt werden. In diesem Fall werden die gepreßten Pellets einer anfänglichen Sinterung, gefolgt von einem Schweißen des Zuleitungsdrahts an das Pellet unterzogen. Solche Pellets werden hier als "Pellets vom geschweißten Typ" bezeichnet. Um die Schweißzone zu reinigen, werden die geschweißten Pellets einem zweiten Sinterprozeß unterzogen, bei dem die Pellets mit dem geschweißten Zuleitungsdraht im Vakuum erhitzt werden. Dieses Erhitzen entfernt eine Verunreinigung von der Schweißzone entweder durch Verdampfung der Verunreinigungen oder durch Umverteilung der Verunreinigungen durch das ganze Pellet.

Im Anschluß an den Sinterprozeß werden die Tantal- (Niob-) Pellets in einer Säurelösung elektrisch anodisiert, um eine dielektrische Schicht auf der Außenfläche der Metallteilchen zu bilden, die typischerweise Tantal- (Niob-) Pentoxid ist. Das Pellet wird anschließend entweder mit verschiedenen Metall enthaltenden Materialien (typischerweise Mangandioxid) oder leitenden Polymeren beschichtet, die die Kathodenschicht des Kondensators bilden.

Für Elektrolytkondensatoren ist die Sauerstoffkonzentration in den gesinterten Tantal- (Niob-) Pellets entscheidend, insbesondere wenn sich diese Konzentration der Löslichkeitsgrenze von Sauerstoff im Metall nähert. Oxidphasenniederschläge auf der Oberfläche der Tantal- (Niob-) Pellets wirken als effiziente Kristallisationskeime in der Schicht aus amorphem Tantal- (Niob-) Pentoxid, die durch Anodisierung ausgebildet wird. Das Wachstum dieser Keime in der amorphen Matrix der Tantal- (Niob-) Oxidschichten führt zu Unterbrechungen in der Schicht, die eine Verschlechterung und ein Versagen in den Elektrolytkondensatoren verursachen. Die Verschlechterungsrate ist in Niob-Kondensatoren höher als in Tantal-Kondensatoren, da das amorphe Pentoxid von Niob für Kristallisation anfälliger ist als das amorphe Pentoxid von Tantal.

Neben der Kristallisation verursachen hohe Sauerstoffkonzentrationen in gesinterten Pellets eine Versprödung des Zuleitungsdrahts in der Nähe des gesinterten Pellets. Dies liegt an der Sauerstoffdiffusion vom Pellet in den Zuleitungsdraht; hauptsächlich in seine kristallinen Korngrenzen. Der spröde Zuleitungsdraht kann bei der Montage eingerissen oder zerbrochen werden, was die Kondensatorausbeuten und -zuverlässigkeit beeinträchtigt.

Tantal- (Niob-) Pulver weisen eine starke Affinität für Sauerstoff auf und sie können während des Sinterns signifikant mit Sauerstoff verunreinigt werden. Die Hauptquelle für Sauerstoff ist die natürliche Oxidschicht, die immer auf der Oberfläche der Tantal- (Niob-) Pellets existiert, wenn sie der Luft ausgesetzt werden. Während des Erhitzens im Vakuum löst sich der Sauerstoff vom Oberflächenoxid in der Masse der Tantal- (Niob-) Teilchen, was zu einer erhöhten Konzentration von Sauerstoff in den gesinterten Pellets führt.

Die Verunreinigung mit Sauerstoff ist eine Hauptbarriere für die Verwendung von Pulvern mit hoher CV für Tantal- (Niob-) Kondensatoren. Dies ist auch der Hauptgrund für die Verringerung der Nennspannungen in Kondensatoren mit hoher CV. Je höher die Nennspannung ist, desto dicker ist die Schicht aus amorphem Tantal- (Niob-) Pentoxid und daher ist die Schicht für Kristallisation anfälliger.

Ein Verfahren des Standes der Technik zum Verringern der Sauerstoffkonzentration in gesinterten Tantal- (Niob-) Pellets umfaßt die Zugabe von sauerstoffaktiven Metallen (vorzugsweise Magnesium) zu den gesinterten Pellets und das Erhitzen auf Temperaturen oberhalb des Schmelzpunkts des sauerstoffaktiven Metalls und unterhalb der Temperaturen, die üblicherweise zum Sintern der Tantal- (Niob-) Pellets verwendet werden. Während des Erhitzens reagieren Atome des sauerstoffaktiven Metalls mit Sauerstoff in dem Tantal (Niob), was Metalloxidmoleküle bildet, die aus den Pellets verdampfen. Dies verringert die Sauerstoffkonzentration in den Tantal- (Niob-) Pellets.

Der obige Desoxidationsprozeß wurde für Pellets vom geschweißten Typ nach ihrem anfänglichen Sintern verwendet. Aufgrund dieses Prozesses kehrt die Sauerstoffkonzentration in den anfänglich gesinterten Tantal- (Niob-) Pellets auf das niedrige Niveau zurück, das im Tantal- (Niob-) Pulver vor dem Sintern zugehörig ist. Beim anschließenden Sintern nimmt jedoch die Sauerstoffkonzentration in den Tantal- (Niob-) Pellets wieder zu. Dies liegt am Lösen des natürlichen Oxids, das sich auf der Tantal- (Niob-) Oberfläche bildet, wenn die Pellets im Anschluß an den Desoxidationsprozeß der Luft ausgesetzt werden. Je höher die Pulver-CV (Oberfläche) ist, desto größer ist die Sauerstoffkonzentration in den letztlich gesinterten Pellets.

Der obige Desoxidationsprozeß wird nicht für Pellets vom eingebetteten Typ verwendet, da er zum Lösen des Zuleitungsdrahts vom Pellet führt. Die Herausziehfestigkeit für den Zuleitungsdraht fällt von 2–4 kg nach dem Sintern auf 0,1–0,2 kg nach der Desoxidation. Der elektrische Widerstand der Verbindungsstelle von der Zuleitung mit dem Pellet nimmt scharf zu, was die Anodisierung solcher Pellets unmöglich macht. Wenn die Desoxidation nicht verwendet werden kann, sind gesinterte Pellets vom eingebetteten Typ, insbesondere Pellets mit sehr hoher CV, durch eine hohe Sauerstoffkonzentration gekennzeichnet.

Ein weiteres Verfahren des Standes der Technik zum Verringern der Sauerstoffkonzentration in Tantal- (Niob-) Pellets beinhaltet die Stickstoffdotierung von gesinterten Pellets durch Erhitzen in einer Stickstoff enthaltenden Atmosphäre (vorzugsweise Stickstoffgas), so daß eine Diffusion von Stickstoff in die Tantal- (Niob-) Teilchen auftritt. Die Stickstoffdotierung verhindert eine Diffusion von Sauerstoff von der Umgebungsatmosphäre und von der anodischen Oxidschicht in die Tantal- (Niob-) Teilchen, was zur Stabilisierung der amorphen Struktur und der chemischen Zusammensetzung der dielektrischen Schicht führt. Folglich weisen aus solchen Pellets bestehende Tantal- (Niob-) Kondensatoren eine niedrige und stabile Gleichstromableitung (DCL) und eine hohe Zuverlässigkeit auf.

Die Stickstoffdotierung von Tantal- (Niob-) Pellets erfordert eine niedrige Sauerstoffkonzentration in den gesinterten Pellets. Beide Verunreinigungen (Stickstoff und Sauerstoff) belegen dieselben Positionen im Kristallgitter von Tantal (Niob). Wenn diese Positionen durch Sauerstoff belegt wurden, wird die Diffusion von Stickstoff in das Ta (Nb) nahezu unmöglich. Aus diesem Grund können gesinterte Tantal- (Niob-) Pellets mit hohem Sauerstoffgehalt nicht korrekt mit Stickstoff dotiert werden.

Es ist daher Aufgabe dieser Erfindung, einen Prozeß zum kontinuierlichen Erzeugen von Kondensatorpellets innerhalb einer sauerstofffreien Umgebung durchzuführen.

Es ist ein weiterer Aspekt der vorliegenden Erfindung, ein Verfahren zum Verringern des Sauerstoffgehalts von gesinterten Tantal- (Niob-) Pellets bereitzustellen.

Es ist ein weiterer Aspekt der vorliegenden Erfindung, ein Verfahren zur Herstellung von biegsamen Zuleitungsdrähten mit starker Befestigung am gesinterten Pellet bereitzustellen.

Es ist ein weiterer Aspekt der vorliegenden Erfindung, ein Verfahren zum Dotieren von gesinterten Tantal- (Niob-) Pellets mit Stickstoff bereitzustellen.

Es ist noch ein weiterer Aspekt der vorliegenden Erfindung, eine niedrige und stabile (DCL), eine hohe CV, einen erweiterten Bereich von Nennspannungen und eine hohe Zuverlässigkeit der Tantal- (Niob-) Elektrolytkondensatoren bereitzustellen, die aus Tantal- (Niob-) Pellets hergestellt werden, welche gemäß dieser Erfindung gesintert werden.

Diese und weitere Aufgaben sind für Fachleute ersichtlich.

ZUSAMMENFASSUNG DER ERFINDUNG

Diese Erfindung stellt einen Prozeß bereit, durch den gesinterte Tantal- (Niob-) Pellets mit niedrigem Sauerstoffgehalt, biegsamen Zuleitungsdrähten mit starker Befestigung an den Pellets hergestellt werden, und mit Stickstoff dotiert werden. Vor der Anwendung dieses Prozesses wird Tantal- (Niob-) Pulver mit eingebetteten Zuleitungsdrähten oder ohne Zuleitungsdrähte zu den Pellets gepreßt. Im letzten Fall werden die gepreßten Pellets einer anfänglichen Sinterung im Vakuum und einem Schweißen des Zuleitungsdrahts an das Pellet unterzogen. Der neue Prozeß umfaßt drei Schritte, die nacheinander und ohne, daß die Pellets einer Sauerstoff enthaltenden Umgebung ausgesetzt werden, ablaufen. Der erste Schritt ist die Desoxidierung des Tantal- (Niob-) Pellets durch ein sauerstoffaktives Metall (vorzugsweise Magnesium), das vorher zu den Pellets gegeben wird. Der zweite Schritt ist das Ausheilen der Pellets entweder in einem Inertgas oder im Vakuum im Temperaturbereich von jener, die üblicherweise zur Desoxidierung verwendet wird, bis zu jener, die üblicherweise zum Sintern verwendet wird. Dieser Prozeßschritt sieht entweder das Sintern der eingebetteten Pellets oder die Reinigung der Schweißzone in den geschweißten Pellets vor. Der dritte Schritt ist die Dotierung der gesinterten Pellets mit Stickstoff durch Erhitzen in einer Stickstoff enthaltenden Atmosphäre (vorzugsweise Stickstoffgas) bei Temperaturen, die niedriger sind als die Ausheilungstemperatur. Die Verwendung von Tantal- (Niob-) Pellets, die kontinuierlich innerhalb einer sauerstofffreien Umgebung gemäß dieser Erfindung verarbeitet werden, ermöglicht einem, Tantal- und Niob-Kondensatoren mit hoher CV, einem erweiterten Bereich von Nennspannungen, niedriger und stabiler DCL und hoher Zuverlässigkeit herzustellen.

KURZBESCHREIBUNG DER ZEICHNUNGEN

1 und 2 sind Kurvenbilder, die eine DCL-Verteilung vor bzw. nach einem Lebensdauertest von 2000 h für Versuchs- und Kontrollpellets zeigen; 3 ist eine Querschnittsansicht eines Pellets mit einem darin eingebetteten Zuleitungselement; 4 ist eine Querschnittsansicht eines Pellets mit einem darin geschweißten Zuleitungselement; und 5 ist ein fertiggestellter Kondensator mit dem Pellet von 3.

AUSFÜHRLICHE BESCHREIBUNG DES BEVORZUGTEN AUSFÜHRUNGSBEISPIELS

Die vorliegende Erfindung betrifft im allgemeinen Tantal- und Niob-Elektrolytkatalysatoren, die in vielen Arten von elektronischen Vorrichtungen verwendet werden. Die populäreren Verwendungen für Tantal- und Niob-Kondensatoren liegen in Personalcomputern, Plattenlaufwerken, Mobiltelefonen, Druckern, Kraftfahrzeugelektronik und Militärausrüstung.

In den Tantal- (Niob-) Kondensatoren 10 (5) sind die zwei Leiter das poröse Tantal- (Niob-) Pellet 12 und die Mangandioxid- oder leitende Polymerschicht 14. Die dielektrische Schicht 16 ist eine Tantal- (Niob-) Pentoxidschicht, die durch Anodisieren der Tantal- (Niob-) Pellets 12 ausgebildet wird. Wenn der Kondensator 10 in Gebrauch ist, ist das Tantal (Niob) positiv geladen und wirkt als Anode, das Mangandioxid oder leitende Polymer 14 ist negativ geladen und wirkt als Kathode. Der Kondensator 10 umfaßt auch einen Tantal- (Niob-) Anoden-Zuleitungsdraht 18 oder 18A als positiven Abschluß, und Schichten 20 aus Kohlenstoff und Silber auf der Außenfläche der Kathode dienen als negativer Abschluß.

Beim Prozeß der vorliegenden Erfindung wird zuerst Tantal- (Niob-) Metallpulver zu den porösen Pellets 12 zusammengepreßt. Ein Zuleitungsdraht 18 aus demselben Material wie das Pulver wird während des Pressens in das Pellet (3) eingebettet, oder die Pellets können auch ohne einen Zuleitungsdraht gepreßt werden. Im zweiten Fall werden die gepreßten Pellets 12 anfänglich im Vakuum gesintert und dann wird der Zuleitungsdraht 18A durch Schweißung 22 in der Schweißzone 24 (4) an die Pellets 12 geschweißt. Die Schweißung 22 ist ein geschmolzener Teil des Drahts 18, der erzeugt wird, wenn Strom durch den Draht 18 geleitet wird. Alle diese herkömmlichen Verfahren sind auf dem Fachgebiet gut bekannt. Die Wahl zwischen Pellets vom eingebetteten und vom geschweißten Typ hängt von der Pelletgröße und -form sowie von der Fertigungsstückzahl ab. Eingebettete Pellets sind für kleine Größen und niedrige Fertigungsstückzahlen bevorzugt, während geschweißte für größere Größen und höhere Fertigungsstückzahlen bevorzugt sind.

Sauerstoffaktives Metall (vorzugsweise Magnesium) wird mit den gepreßten Pellets mit eingebetteten Zuleitungsdrähten oder mit den anfänglich gesinterten Pellets mit geschweißten Zuleitungsdrähten vermischt. Die Konzentration von Magnesium beträgt 2–8 Gewichtsprozent für Tantal und 4–16 Gewichtsprozent für Niob. Die bevorzugte Konzentration beträgt 4–6 Gewichtsprozent für das Tantal und 8–10 Gewichtsprozent für das Niob. Magnesium kann als Pulver oder als Flocken zu den Tantal- (Niob-) Pellets zugegeben werden.

Tiegel mit Tantal- (Niob-) Pellets und Magnesium werden dann in eine Vakuumkammer gestellt und die Luft wird aus der Kammer ausgepumpt, alles bei Raumtemperatur. Danach wird die Kammer mit Inertgas gefüllt und die Temperatur wird auf 700°C–1200°C (vorzugsweise 800°C–1000°C) erhöht. Wenn die Bindungsenergie für das Magnesium-Sauerstoff-Paar höher ist als jene für Tantal-Sauerstoff (Niob-Sauerstoff), reagiert das Magnesium mit Sauerstoff in den Tantal- (Niob-) Pulverteilchen. Magnesiumoxidmoleküle werden gebildet, die aus den Pellets verdampfen. Der Prozeß dauert 1–10 Stunden (vorzugsweise 2–4 Stunden), um nahezu jeglichen Sauerstoff von der Oberfläche und aus der Masse der Tantal- (Niob-) Teilchen zu entfernen.

Nachdem die Desoxidierung vollständig ist, werden die Pellets entweder in einer inerten Atmosphäre oder im Vakuum bei einer Temperatur zwischen jenen, die üblicherweise für die Desoxidierung verwendet werden, und jenen, die üblicherweise für das Sintern verwendet werden, ausgeheilt (1200°C–1800°C). Die bevorzugte Ausheilungstemperatur ist 50°C–150°C niedriger als jene, die üblicherweise für das Sintern der Tantal- (Niob-) Pellets verwendet wird. Dieser Prozeßschritt sieht das Sintern der Pellets vom eingebetteten Typ und die Reinigung der Schweißzone in den Pellets vom geschweißten Typ vor. Da Sauerstoff ein Inhibitor des Sinterprozesses ist, sieht seine Entfernung im vorherigen Desoxidationsschritt ein wirksames Sintern der Pulverteilchen miteinander und der Teilchen mit dem Zuleitungsdraht bei Temperaturen, die niedriger sind als die üblicherweise für das Sintern verwendeten, vor. Deshalb ist die Befestigung der Zuleitung am Pellet in den Endpellets hoch (Ein Herausziehtest führt im allgemeinen zu einem gebrochenen Zuleitungsdraht und nicht zum Herausziehen des Zuleitungsdrahts aus dem Pellet). Der Zuleitungsdraht ist aufgrund des niedrigen Sauerstoffgehalts und der kleineren Kristallkorngröße biegsam.

Bei den geschweißten Pellets sieht die Ausheilung eine wirksame Reinigung der Schweißzone vor. Die Reinigung der Schweißzone umfaßt die Verdampfung von Restmetallen aus den Aufspannvorrichtungen, die beim Schweißvorgang verwendet werden, sowie die Umverteilung der beliebigen Niobspitze um die Schweißzone in den Tantalpellets. Eine kleine Menge an Niob liegt im Tantal immer als Substitutionsmischkristall vor. Da die Niobatome leichter sind als die Tantalatome, diffundieren sie unter dem Einfuß von hohen Stromimpulsen und eines hohen Temperaturgradienten während des Schweißens aus der Schweißzone. Das Niob konzentriert sich am Umfang der Schweißzone, wo die Temperatur scharf abfällt, was eine weitere Diffusion der Niobatome unmöglich macht. Während des Ausheilungsschritts wird diese Niobkonzentration im Tantalpellet gleichmäßig umverteilt. Wenn die Pellets von Sauerstoff frei sind, wird die Diffusionsaktivität von Verunreinigungen höher, was eine wirksame Reinigung der Schweißzone bei Temperaturen, die niedriger sind als die für das zweite Sintern im allgemeinen verwendeten, ermöglicht.

Der Endschritt ist die Dotierung der Tantal- (Niob-) Pellets mit Stickstoff. Stickstoffgas wird in die Kammer mit Pellets während ihrer Kühlung im Anschluß an den vorherigen Ausheilungsschritt eingelassen. Wenn die Pellets von Sauerstoff frei sind, diffundiert der Stickstoff leicht in die Tantal- (Niob-) Teilchen im Temperaturbereich zwischen der Ausheilungstemperatur und bis auf ungefähr 300°C, wenn die Diffusion von Stickstoff im Tantal (Niob) sehr langsam wird. Die bevorzugten Temperaturbereiche für die Nitrierung sind 1000–1200°C und 400–700°C. Der Temperaturbereich von 700–1000 ist weniger annehmbar für die Nitrierung, da eine TaN-Phase gebildet wird, die den anschließenden Anodisierungsprozeß an den Pellets beeinträchtigt. Eine optimale Stickstoffkonzentration in den gesinterten Tantal- (Niob-) Pellets verleiht den fertiggestellten Kondensatoren die minimale DCL und die maximale Zuverlässigkeit.

Pellets mit eingebettetem Draht und geschweißtem Draht, die gemäß dieser Erfindung gesintert werden, sind durch einen niedrigen Sauerstoffgehalt, biegsame Zuleitungsdrähte mit starker Befestigung am Pellet gekennzeichnet und sind mit Stickstoff dotiert. Die eingebetteten Pellets erfordern keine zusätzliche Sinterung, da dies durch den Ausheilungsschritt der vorliegenden Erfindung durchgeführt wurde. Die geschweißten Pellets erfordern keine zweite Sinterung, da ihre Wirkung beim Ausheilungsschritt der vorliegenden Erfindung erreicht wurde.

Die Verwendung der Tantalpellets, die gemäß dieser Erfindung gesintert werden, ermöglicht die Herstellung von Tantal-Kondensatoren mit einzigartigen Eigenschaften, die unter Verwendung des herkömmlichen Sinterprozesses nicht erreicht werden können. Dies beinhaltet Tantal-Kondensatoren mit höchster CV, erhöhte Nennspannungen für Kondensatoren mit hoher CV, eine niedrige DCL und eine hohe Zuverlässigkeit für die Tantal-Kondensatoren, einschließlich im hohen Temperaturbereich.

Die Verwendung von Niobpellets, die gemäß dieser Erfindung gesintert werden, ermöglicht die Herstellung von Niob-Kondensatoren mit hoher CV mit sowohl Polymer- als auch MnO2-Kathoden. Im letzten Fall weisen die Niob-Kondensatoren eine Leistung und Zuverlässigkeit gleich jener von herkömmlichen Tantal-Kondensatoren mit MnO2-Kathoden auf. Die Abscheidung des MnO2 erfordert eine Hochtemperaturbearbeitung, während die Polymerkathode nahe der Raumtemperatur abgeschieden wird. Das Niobpentoxid an den Pellets, die gemäß dieser Erfindung gesintert werden, hält der Wärmebeanspruchung während der Hochtemperaturbearbeitung, die zum Aufbringen des MnO2 erforderlich ist, stand. Herkömmliche Prozesse führen zu hoher DCL, niedriger Ausbeute und unzufriedenstellenden Lebensdauertesteigenschaften der letztlichen Niob-Kondensatoren. Deshalb können Niob-Kondensatoren mit hoher CV mit herkömmlichen MnO2-Kathoden nur gemäß dieser Erfindung hergestellt werden.

Die folgenden Beispiele werden nur für den Erläuterungszweck dargelegt und sind nicht vorgesehen, um die vorliegende Erfindung in irgendeiner Weise zu begrenzen.

BEISPIEL 1

Tantalpellets vom geschweißten Typ wurden aus Tantalpulver mit CV = 70000 uFV/g ohne Zuleitungsdrähte gepreßt und in einem Vakuum bei einer Temperatur von ungefähr 1300°C durch das herkömmliche Verfahren gesintert. Ein Tantal-Zuleitungsdraht wurde nach seinem anfänglichen Sintern durch Leiten eines Stroms durch den Zuleitungsdraht und das Pellet an jedes Pellet geschweißt. Da das Gewicht des Tantalpulvers in jedem Pellet bekannt ist; wurden 6 Gewichtsprozent Magnesium zu den anfänglich gesinterten Tantalpellets mit geschweißten Zuleitungsdrähten zugegeben. Danach wurde die Pelletpartie in Versuchs- und Kontrollteile aufgeteilt. Die Kontrollpellets durchliefen eine Desoxidierung in einem speziellen Ofen und dann eine zweite Sinterung in einer Vakuumkammer bei einer Temperatur von ungefähr 1300°C durch herkömmliche Verfahren.

Dann wurden gemäß dieser Erfindung Tiegel mit den Tantal-Versuchspellets, die Magnesium enthielten, in eine Vakuumkammer gestellt und die Luft wurde auf einen Druck von 1,33322 × 10–4 Pascal ausgepumpt. Dieser Schritt wurde bei Raumtemperatur durchgeführt. Danach wurde Argon in die Kammer eingelassen und die Temperatur wurde von Raumtemperatur auf etwa 1000°C für 2,5 Stunden erhöht. Während dieses Prozeßschritts reagierten Magnesiumatome mit Sauerstoff in den Tantalpulverteilchen, was Magnesiumoxidmoleküle bildete, die aus den Pellets verdampften. Dieser Prozeß stellte eine Desoxidierung des Tantalpulvers/der Tantalpellets bereit.

Danach wurde die Temperatur in der Vakuumkammer auf 1150°C erhöht und die Pellets wurden bei dieser Temperatur für 10 Minuten ausgeheilt. Die Ausheilung stellt die Reinigung der Schweißzone, einschließlich der Verdampfung der Restmetalle aus den Schweiß-Aufspannvorrichtungen und der Umverteilung des um die Schweißzone konzentrierten Niobs bereit.

Die Wirkung der Ausheilung ist für die Pellets vom eingebetteten Typ und vom geschweißten Typ unterschiedlich. Für die eingebetteten Pellets sieht die Ausheilung eine Sinterung (Zusammenkleben) der Pulverteilchen und Teilchen an den Zuleitungsdraht vor. Aufgrund der Sinterung weisen die Endpellets eine hohe mechanische Festigkeit und einen niedrigen elektrischen Widerstand auf. Der herkömmliche Sinterprozeß wird im Temperaturbereich von 1200°C–1800°C in Abhängigkeit von der Pulver-CV durchgeführt. Je höher die CV (kleinere Pulverteilchen) ist, desto niedriger ist die Sintertemperatur. Diese Korrelation (kleine Teilchen – niedrige Sintertemperatur) verhindert die übermäßige Schrumpfung der Pellets, die zu den Kapazitätsverlusten führt. Bei der vorliegenden Erfindung funktioniert die Ausheilung der eingebetteten Pellets in der gleichen Weise wie die herkömmliche Sinterung, die dem Endpellet eine hohe mechanische Festigkeit und einen niedrigen Widerstand verleiht. Die Ausheilungstemperatur ist jedoch 50°C–150°C niedriger als jene, die üblicherweise für das Sintern des Pulvers bei gegebener CV verwendet wird. Dies liegt an der Entfernung des Sauerstoffs (Sinterinhibitor) aus den Pellets im vorherigen Desoxidationsschritt.

Die Pellets vom geschweißten Typ sollten anfänglich ohne den Zuleitungsdraht vor dem Ablauf des erfundenen Prozesses gesintert werden. Das anfängliche Sintern verleiht dem Pellet mechanische Festigkeit, die das Schweißen des Zuleitungsdrahts an das Pellet ermöglicht. Nachdem das Schweißen vollendet ist, beginnt der erfundene Prozeß. Er umfaßt dieselben Prozeßschritte (Desoxidierung, Ausheilung und Nitrierung) wie im Fall der eingebetteten Pellets. In diesem Fall besteht jedoch die Hauptfunktion der Ausheilung darin, die Schweißzone von den während des Schweißprozesses angesammelten Verunreinigungen zu reinigen. Dies ist ähnlich der zweiten Sinterung, die üblicherweise für die Pellets vom geschweißten Typ nach dem Schweißen der Zuleitung an das Pellet durchgeführt wird.

Nach der Ausheilung wurde die Temperatur auf 450°C verringert und reines Stickstoffgas wurde für 5 min mit einer Durchflußrate von ungefähr 1000 cm3/min in die Kammer eingelassen. Dann wurde das Stickstoffgas aus der Kammer entfernt und die Tantalpellets wurden in Inertgas auf Raumtemperatur abgekühlt. Dann wurde Luft allmählich in die Kammer eingelassen, um jegliche Temperaturerhöhung aufgrund einer schnellen thermischen Oxidation der gesinterten Pellets zu verhindern.

Wenn Stickstoff in die Kammer mit den heißen Pellets eingeleitet wird, wird er von der Pelletoberfläche absorbiert (Tantal und Niob besitzen starke "Gettering"-Eigenschaften bei hoher Temperatur). Von der Oberfläche diffundieren Stickstoffatome in die Masse der Tantal (Niob-) Teilchen unter dem Einfluß des Konzentrationsgradienten. Wenn sie mit Stickstoff dotiert sind, verlieren die Tantal- und Niobpellets die Aktivität für die Absorption von Sauerstoff entweder aus der Umgebungsatmosphäre oder von der anodischen Oxidschicht nach ihrer Ausbildung. Die "Passivierung" aufgrund der Dotierung mit Stickstoff stellt eine Stabilisierung der Grenzfläche zwischen der Anode und der anodischen Oxidschicht bereit, die zu niedriger DCL, hoher DCL-Stabilität und hoher Zuverlässigkeit der Endkondensatoren führt. Die Nitrierung in den Temperaturbereichen von 1000°C–1200°C und 400°C–700°C ergibt hinsichtlich der DCL die besten Ergebnisse. Die Dotierung mit Stickstoff im Temperaturbereich von 700°C–1000°C verbessert die DCL nicht und führt manchmal sogar zur DCL-Erhöhung. Sie kann durch die Bildung der TaN-Phase auf der Pelletoberfläche verursacht werden, die keinen korrekten Anodisierungsprozeß ermöglicht.

Tabelle 1 zeigt die chemische Zusammensetzung des gesinterten Pulvers, die Herausziehfestigkeit und die Härte des Zuleitungsdrahts und Naßprüfungsergebnisse für sowohl die Versuchs- als auch die Kontrollpellets.

TABELLE 1

Tabelle 1 zeigt, daß die Versuchspellets durch geringen Sauerstoff gekennzeichnet sind und mit Stickstoff dotiert sind, ihr Zuleitungsdraht eine starke Befestigung am Pellet aufweist und biegsam ist (geringe Härte). Die Versuchspellets bestanden die Naßprüfung sowohl bei 50 V als auch bei 70 V, während die Kontrollpellets die Naßprüfung bei 50 V bestanden und bei 70 V versagten.

BEISPIEL 2

Niobpellets vom eingebetteten Typ wurden aus Niobpulver mit CV = 96000 uFV/g gepreßt. Niob-Zuleitungsdrähte wurden während des Pressens in die Pellets eingebettet. Das Gewicht des Niobpulvers in jedem Pellet ist bekannt. Nach dem Pressen wurde die Pelletpartie in Versuchspellets und Kontrollpellets aufgeteilt. Die zentralen Pellets wurden in einem Vakuum bei 1150°C durch ein herkömmliches Verfahren gesintert.

Zehn Gewichtsprozent Magnesium waren mit den Niob-Versuchspellets mit eingebetteten Zuleitungsdrähten vermischt worden. Die Tiegel mit den Niob-Versuchspellets, die Magnesium enthielten, wurden in eine Vakuumkammer gestellt und die Kammer wurde auf einen Druck von 1,33322 × 10–4 Pascal abgepumpt. Danach wurde Argon in die Kammer eingelassen und die Temperatur wurde für 1 Stunde von Raumtemperatur auf etwa 960°C erhöht. Wie in dem Beispiel 1 gezeigt, stellte dieser Prozeßschritt die Desoxidierung des Niobpulvers/der Niobpellets bereit.

Danach wurde die Temperatur in der Vakuumkammer auf 1050°C erhöht und die Pellets wurden bei dieser Temperatur für 10 Minuten ausgeheilt. Die Ausheilung stellte die Sinterung der Niob-Pulverteilchen aneinander und an den Zuleitungsdraht bereit.

Nach der Ausheilung wurde die Temperatur auf 350°C verringert und reines Stickstoffgas wurde für 3 min mit einer Durchflußrate von etwa 100 cm3/min in die Kammer eingelassen. Dann wurde der Stickstoff aus der Kammer entfernt und die Niobpellets wurden in einer inerten Atmosphäre auf Raumtemperatur gekühlt. Die Luft wurde allmählich in die Vakuumkammer eingelassen, um eine Temperaturerhöhung aufgrund einer scharfen thermischen Oxidation zu verhindern.

Tabelle 2 zeigt die chemische Zusammensetzung der gesinterten Niobpellets; die Herausziehfestigkeit und die Härte des Zuleitungsdrahts; und die Naßprüfungsergebnisse für die Versuchs- und die Kontrollpellets.

TABELLE 2

Tabelle 2 zeigt, daß die Versuchspellets durch geringen Sauerstoff gekennzeichnet sind und mit Stickstoff dotiert sind. Ihr Zuleitungsdraht weist eine starke Befestigung am Pellet auf und ist biegsam (geringe Härte). Sowohl die Versuchs- als auch die Kontrollpellets bestanden die Naßprüfung bei 30 V und wurden zur Herstellung der Niob-Kondensatoren mit einer Auslegung von 150 uF/6 V verwendet. Die Endteile wurden einem Standard-Lebensdauertest bei 85 V und einer Nennspannung unterzogen.

Tabelle 3 zeigt die Ausbeute und die Ergebnisse eines Lebensdauertests von 2000 Stunden für die Niob-Kondensatoren mit Versuchs- und Kontrollpellets:

TABELLE 3

Die gemäß der vorliegenden Erfindung hergestellten Versuchspellets sehen die hohe Zuverlässigkeit der Endteile vor, während Teile mit Kontrollpellets unzufriedenstellende Lebensdauereigenschaften demonstrieren. Neben Ausfällen besteht ein signifikanter Unterschied im Verhalten der Populationen der Kondensatoren mit den Versuchs- und Kontrollpellets während des Lebensdauertests. Die 1 und 2 zeigen die DCL-Verteilung vor bzw. nach einem Lebensdauertest von 2000 h für Versuchs- (a) und Kontroll- (b) Pellets.

Es ist aus den 1 und 2 ersichtlich, daß die Versuchspellets eine hohe DCL-Stabilität für jede Population der Kondensatoren vorsehen (alle Punkte befinden sich nahe der Diagonalen – 1), während im Fall von Kontrollpellets die DCL während des Lebensdauertests gegenüber dem Anfangszustand zunahm (die meisten der Punkte verschieben sich nach oben – 2). Daneben ist die Ausbeute für die Versuchspellets auch besser. Insbesondere liegt dies an dem biegsamen Zuleitungsdraht mit starker Befestigung am Pellet, die Beanstandungen aufgrund einer mechanischen Beschädigung des Zuleitungsdrahts während der Kondensatorherstellung verhindert.

BEISPIEL 3

Tantalpellets vom geschweißten Typ wurden aus Tantalpulver mit CV = 30000 uFV/g ohne Zuleitungsdrähte gepreßt und im Vakuum bei einer Temperatur von ungefähr 1400°C durch das herkömmliche Verfahren gesintert. Ein Tantal-Zuleitungsdraht wurde nach seinem anfänglichen Sintern an jedes Pellet geschweißt. Das Gewicht des Tantalpulvers in jedem Pellet ist bekannt. Vier Gewichtsprozent Magnesium wurden mit den anfänglich gesinterten Tantalpellets mit geschweißten Zuleitungsdrähten vermischt. Danach wurde die Pelletpartie in Versuchs- und Kontrollgruppen aufgeteilt.

Dann wurden gemäß dieser Erfindung Tiegel mit Tantal-Versuchspellets und Magnesium in die Vakuumkammer gestellt und diese auf einen Druck von 1,33322 × 10–4 Pascal abgepumpt. Danach wurde Argon in die Vakuumkammer eingelassen und die Temperatur wurde für 3 Stunden auf etwa 1000°C erhöht. Dieser Prozeß stellte eine Desoxidierung der Tantalpellets bereit.

Als nächstes wurde die Temperatur in der Vakuumkammer auf 1250°C erhöht und die Pellets wurden bei dieser Temperatur für 20 Minuten ausgeheilt. Diese Ausheilung stellte eine Reinigung der Schweißzone ähnlich der in Beispiel 1 gezeigten bereit.

Nach der Ausheilung wurde die Temperatur auf 1150°C verringert und reines Stickstoffgas wurde für 10 min mit der Durchflußrate von etwa 5000 cm3/min in die Vakuumkammer eingelassen. Schließlich wurden die Tantalpellets im Vakuum auf Raumtemperatur gekühlt und Luft wurde allmählich in die Vakuumkammer eingelassen.

Tabelle 4 zeigt die chemische Zusammensetzung des gesinterten Ta-Pulvers, die Zuleitungs-Herausziehfestigkeit und die Naßprüfungsergebnisse für sowohl Versuchs- als auch Kontrollpellets.

TABELLE 4

Tabelle 4 zeigt, daß die Versuchspellets geringen Sauerstoff aufweisen, mit Stickstoff dotiert sind und eine starke Befestigung des Zuleitungsdrahts an dem Pellet aufweisen. Sowohl Versuchs- als auch Kontrollpellets bestanden die Naßprüfung bei 70 V und wurden zur Herstellung von Tantal-Kondensatoren mit einer Auslegung von 33 uF/16 V verwendet. Die Endteile wurden einem beschleunigten Lebensdauertest bei 125°C und einer Nennspannung (RV) sowie bei 85°C und 1,25 RV unterzogen.

Tabelle 5 zeigt die Ausbeute und Ergebnisse eines beschleunigten Lebensdauertests von 2000 Stunden für die Tantal-Kondensatoren mit Versuchs- und Kontrollpellets:

TABELLE 5

Die Tantal-Kondensatoren mit den Versuchspellets, die gemäß der vorliegenden Erfindung hergestellt wurden, bestanden den beschleunigten Lebensdauertest, während die Kondensatoren mit den Kontrollpellets versagten. Dieses Beispiel demonstriert, daß die vorliegende Erfindung die Herstellung von Tantal-Kondensatoren mit hoher Zuverlässigkeit selbst bei beschleunigten Bedingungen, einschließlich erhöhten Temperaturen und angelegten Spannungen, ermöglicht.

Es ist daher zu sehen, daß diese Erfindung mindestens alle ihrer angegebenen Ziele erreicht.


Anspruch[de]
  1. Verfahren zur Herstellung von Pellets 12 zur Verwendung in Elektrolytkondensatoren 10, umfassend:

    – das Bereitstellen von Tantal- oder Niobpulver,

    – das Vermischen eines sauerstoffaktiven Metalls mit dem Pulver, um ein Pulvergemisch zu erzeugen,

    – das Pressen des Pulvergemischs zu separaten, in sich abgeschlossenen Pellets 12,

    – das Schweißen 22 eines Zuleitungsdrahts 18A an jedes der Pellets 12 oder das Einbetten eines Zuleitungsdrahts 18 in das Pulvergemisch vor dessen Pressen,

    – das Anordnen der Pellets 12 in einer sauerstofffreien Kammer eines abgedichteten Behälters bei Raumtemperatur,

    – das Erhöhen der Temperatur in der Kammer auf 700°C bis 1200°C, um zu bewirken, dass das sauerstoffaktive Metall mit Sauerstoff in den Tantal- oder Niob-Pellets 12 reagiert, um den Sauerstoff aus den Pellets 12 zu entfernen,

    – dann das Aussetzen der Pellets 12, um diese auszuheilen, in der Kammer einer Temperatur, die höher ist als 700°C bis 1200°C, aber 50°C bis 150°C niedriger als die Temperatur, die üblicherweise für das Sintern der Tantal- oder Niob-Pellets 12 verwendet wird;

    – dann das Kühlen der Pellets 12 auf eine Temperatur im Bereich von 1000°C bis 1200°C oder 400°C bis 700°C, die niedriger ist als die Ausheilungstemperatur;

    – dann das Einleiten von Stickstoff in die Kammer, so dass der Stickstoff in die Pellets 12 diffundiert, um den Pellets 12 einen minimalen Gleichspannungs-Leckstrom (engl. DCL) zu verleihen,

    – dann Kühlen der Kammer auf Raumtemperatur und Entnehmen der Pellets 12 aus der Kammer.
  2. Verfahren nach Anspruch 1, wobei das sauerstoffaktive Metall Magnesium ist.
  3. Verfahren nach Anspruch 1 oder 2, wobei die sauerstofffreie Kammer durch evakuieren derselbigen erzeugt wird.
  4. Verfahren nach Anspruch 1 oder 2, wobei die Pellets 12 in einer inerten Atmosphäre ausgeheilt werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Pulver Tantal ist.
  6. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Pulver Niob ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die Temperatur, bei der das sauerstoffaktive Metall mit Sauerstoff in den Tantal- oder Niob-Pellets 12 reagiert, ungefähr 900°C beträgt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Kammer auf einen Druck von ungefähr 1,3 × 10–4 Pascal (1 × 10–6 Torr) evakuiert wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Pellets 12 dem eingeleiteten Stickstoff für einen Zeitraum von 1–10 Stunden ausgesetzt werden.
  10. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Pellets 12 dem eingeleiteten Stickstoff für einen Zeitraum von 2–4 Stunden ausgesetzt werden.
  11. Pellets 12 zur Verwendung in Elektrolytkondensatoren 10, wobei die Pellets 12 nach einem Verfahren der Ansprüche 1 bis 10 hergestellt sind.
  12. Pellets 12 nach Anspruch 11, wobei die Pellets 12 eine Beschichtung aus einer leitenden Polymerschicht 14 mit einer darunter liegenden dielektrischen Schicht 16 aufweisen.
  13. Pellets 12 nach einem der Ansprüche 11 bis 12, wobei der Zuleitungsdraht 18, 18A aus demselben Material wie das Pulver besteht.
Es folgen 4 Blatt Zeichnungen






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com