PatentDe  


Dokumentenidentifikation EP0690039 28.09.2006
EP-Veröffentlichungsnummer 0000690039
Titel Poly-perfluoroalkylsubstituierte Alkohole und Säuren, und deren Derivate
Anmelder Ciba Speciality Chemicals Holding Inc., Basel, CH
Erfinder Haniff, Marlon, West Orange, NJ 07052, US;
Falk, Robert Allan, New City, NY 10956, US;
Deisenroth, Ted, Carmel, NY 10512, US;
Mueller, Karl Friedrich, New York, NY 10024, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69535171
Vertragsstaaten BE, CH, DE, ES, FR, GB, IT, LI
Sprache des Dokument EN
EP-Anmeldetag 22.06.1995
EP-Aktenzeichen 958104242
EP-Offenlegungsdatum 03.01.1996
EP date of grant 16.08.2006
Veröffentlichungstag im Patentblatt 28.09.2006
IPC-Hauptklasse C07C 43/178(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse C07F 9/09(2006.01)A, L, I, 20051017, B, H, EP   C08G 18/67(2006.01)A, L, I, 20051017, B, H, EP   C07F 9/6574(2006.01)A, L, I, 20051017, B, H, EP   D21H 21/16(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]
Background of the Invention

Perfluoroalkyl-substituted polymers possess free surface energies even lower than that of polytetrafluoroethylene. They have therefore long been used to impart oil- and water repellency to a wide variety of substrates, especially textiles. Additionally, phosphate esters of perfluoroalkyl-substituted alcohols are being used as oil- and water-repellent paper sizing, for instance in paper plates and in food packaging products. For such applications, it is especially important that the paper sizing compound contain at least 2 RF- groups, where RF is a perfluoroalkyl group. When mono-RF-alcohols are used to esterify phosphoric acid, only the diesters are active oil- and water- repellents; the monoester is too water soluble and, even if retained on the cellulose fiber, reduces water repellency, and the triester is not substantive. Making phosphate diesters in high yield is, however, very difficult in practice; substantial amounts of mono- and triesters are always produced as by-products.

Typical fluorinated mono-alcohols are perfluoroalkyl-alkanols, such as 3-perfluoroalkyl-propene-2-ol. See J. Fluorine Chem., 20 (3), 313-27 (1982), DE 23 33 935 (1974), DE 22 55 672 (1973) and FR 1 473 451 (1967). Such monofunctional alcohols, while suitable for the preparation of acrylic and methacrylic oil- and water-repellent RF-polymers, are less suitable for the preparation of oil- and water-repellent phosphate esters for reasons given above. Likewise, it is also impossible to prepare oil- and water-repellent sulfuric acid half esters from mono-RF-alcohols since such esters are very water soluble anionic surfactants. For the preparation of oil- and water-repellent polyurethanes it is especially important that the diol contain more than one RF group.

Using di-RF-alcohols makes it possible to prepare oil- and water-repellent phosphate or sulfate monoester paper sizes, since even a monoester contains two RF-groups. Certain di-RF-diols are described in U.S. Patents 3,935,277 and 4,946,992. Said patents describe the synthesis of di-RF-alcohols and diols by reaction of RF-ethylenethiol with halogenated alcohols and diols.

Polyurethanes of di-RF-diols are described in U.S. Patents 3,968,066, 4,046,944, 4,054,592 and 4,098,742. Phosphate esters are described in U.S. Patents 5,091,550 and 5,132,445. Although the di-RF-phosphates show excellent performance, their synthesis involves many steps and costly intermediates. Similar compounds produced by a more straightforward synthesis route and preferably lacking the thermally unstable thioether linkage would be highly desirable.

It has now been discovered that di-, tri- and poly-perfluoroalkyl-substituted alcohols which fulfill these requirements can be prepared in high yields from perfluoroalkyliodides and di-, tri- or polyallyl alcohols or acids. These compounds have not previously been described. They are useful by themselves or as intermediates for making end products which impart outstanding oil and water repellency to textiles, paper, leather, wood and other substrates.

Sugar derived perfluoroalkenyl substituted polyols have been synthesized earlier, namely from xylitol, galactose, and glucose; see Bull. Soc. Chim. Fr., 872-8 (1989), J. Med. Chem., 33 (4), 1262 (1990) and U. S. Patent 4,985,550. Such polyols, with a hydroxyl functionality of three or more, are not suitable for preparing linear polymer compositions since crosslinking is likely to occur.

Detailed Disclosure

This invention describes di- tri- and oligoperfluoroalkyl-substituted mono- and dialcohols, mono- and diacids and derivatives thereof, and methods for making them. Other aspects of this invention relate to the reaction products of oligoperfluoroalkyl alcohols with isocyanates, epoxides, acids, acid chlorides, and anhydrides.

Another aspect of this invention relates to a substrate containing 0.01 to 10% by weight of an organofluorine-containing composition, at least part of said fluorine being provided by one or more units derived from an inventive oligoperfluoroalkyl substituted alcohol, acid, or a derivative thereof.

The novel oligo-perfluoroalkyl alcohols and acids are of the formulae



        (I)     (QF-CH2O)b-Y-(X)a



or



        (II)     Ze(-L-(U-OH)d)c



wherein

QF
is QF2,
QF2
is RFCH=CH-, and
RF
is a monovalent, perfluorinated, alkyl or alkenyl, straight, branched or cyclic organic radical having three to twenty fully fluorinated carbon atoms, which radical can be interrupted by divalent oxygen or sulfur atoms, with each RF radical being identical or different from the other RF radicals,
Y
is a trivalent or tetravalent organic linking group with from 1 to 20 carbon atoms, which can be interrupted by one or more polyvalent groups or hetero atoms selected from -O-, -S-, -N<, -NR1-, -CO-, -CONR1-, -NHCOO-, -CON<, -CO2-, -O2C-, -O2CO- and -SO2-, in which
R1
is hydrogen, C1-C20alkyl, di-C1-C2alkylamino-C2-C6alkylene, hydroxy-C1-C5alkylene, or C1-C5alkyl or hydroxy-C1-C5alkylene which is substituted by pyridyl, piperidyl or cyclohexyl,
X
is OH, O-CH2-COOH or COOH,
a
is 1 or 2,
b
is 2 or 3,
L
is O, S or NR',
R'
is C1-C20hydrocarbyl, hydroxy-C2-C5alkylene, carboxymethylene or U-OH,
U
is
Z
is H or a mono-, di-, tri- or tetravalent organic group of 1-40 carbon atoms which can be interrupted by one or more polyvalent groups or hetero atoms selected from -O-, -S-, -N<, -NR1-, -CO-, -CONR1-, -NHCOO-, -CON<, -CO2-, -O2C-, -O2CO- and -SO2-, and can also be substituted by hydroxyl, carboxyl, carboxyalkyl or sulfonate when L is S or NR',
r and q
are each, independently, 0 to 10,
c
is 1 to 4,
d
is 1 to 3, with the proviso that when c and d are both 1, Z is monovalent and r is > 0, and
e
is 0 or 1, with the proviso that when e is 0, d is 2 and L is S or NR'.

The alkyl and alkylene groups encompassed by Y, Z, R1 and R' can be linear, branched or carbocyclic, including phenylene. The term hydrocarbyl includes alkyl, alkenyl, aryl and alkaryl.

Preferred are compounds of the formulae (I) and (II) wherein

QF
is QF2 and
RF
is saturated, contains 6-18 carbon atoms, is fully fluorinated and contains at least one terminal perfluoromethyl group.

Most preferably, RF is a fully fluorinated, linear carbon chain with 6 to 14 carbon atoms.

Preferred compounds of the formula (I) are those wherein

Y
is a trivalent or tetravalent hydrocarbyl linking group with from 2 to 10 carbon atoms.

Preferred alcohols of the formula (I) (X = OH) of this invention are (QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2, (QF2CH2OCH2)3C-CH2OH and (QF2CH2OCH2)2C(C2H5)CH2OH.

The last two are especially preferred.

Typical examples of acids of the formula (I) (X = COOH) of this invention include and



        H3C-C(COOH)(CH2OCH2QF)2.



Also useful are amino acids obtained by reaction of mono- or diamino acids with allyl chloride or allyl bromide, for example the compound of formula where

QF
is as defined above, which is obtained by reaction of ethylenediamine diacetic acid (EDDA) with allyl chloride.

Preferred compounds of the formula (II) are those wherein

QF
is QF2 and
RF
is saturated, contains 6-18 carbon atoms, is fully fluorinated and contains at least one terminal perfluoromethyl group,
r
is equal to or greater than q and the sum of r plus q is 0 to 10.

Most preferably

RF
is a fully fluorinated, linear carbon chain with 6 to 14 carbon atoms,
r
is is equal to or greater than q and is 0 to 5 and
q
is 0 to 3.

In one preferred embodiment, L is O, c and d are 1 and Z is phenyl, carboxyphenyl, p-n-C1-C10alkylphenyl, a monovalent alkyl or alkenyl radical with 1-20 carbon atoms which may be interrupted by -O-, -S- or -NR1- groups, and may be substituted by one or two carboxyl groups, or is hydroxy-C2-C5alkylene, such as the monoradical residue (minus 1 OH group) of ethanol, propanol, butanol, isopropanol, decanol, 10,11-undecenol, ethylene glycol, N,N-dimethylaminopropanol, p-hydroxybenzoic acid, phenol or p-octylphenol.

In another preferred embodiment, L is O, c is 2, d is 1 and Z is 1,4-phenylene or a divalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups and substituted by one or two carboxyl groups. Typical examples of Z are the radical residues of glycols or polyols (minus 2 OH groups) such as those of ethylene glycol, propylene glycol, hexylene glycol, polyoxyethylene glycols, i.e. -(CH2CH2O)nCH2CH2- where n is 2-20, hydroquinone, glycerol, trimethylolpropane, 2,2-bishydroxymethylpropionic acid methyl ester, N-methyldiethanolamine, triethanolamine, 3-(diethylamino)-1,2-propanediol and of alkoxylated and polyalkoxylated primary or bis-secondary amines, with -CH2CH2- and CH3N(CH2CH2-)2 being preferred.

In another preferred embodiment, L is O, c is 3, d is 1 and Z is a trivalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups. Examples are the triradical residue of a polyol (minus 3 OH groups), such as CH3CH2C(CH2-)3 (from trimethylpropane) or -CH(CH2-)2 (from glycerol), and of alkoxylated and polyalkoxylated primary aminoalkanols.

In another preferred embodiment, L is O, c is 4, d is 1 and Z is a tetravalent residue of a polyol (minus 4 OH groups), such as from pentaerythritol, i.e. C(CH2-)4, N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine, N,N,N'N'-tetrakis(2-hydroxyethyl)ethylenediamine or polyalkoxylated diprimary diamines.

In another preferred embodiment, L is S, d is 2 and Z is either a direct bond if e is 1 or e is 0.

In another preferred embodiment, L is S, d and c are 1 and Z is a monovalent linear or branched alkyl radical with 1-20 carbon atoms, hydroxy-C2-C5alkylene, carboxy-C2-C4alkylene or -CH(COOH)CH2COOH, with -CH2CHOHCH2OH, -CH2CH2COOH and -CH(COOH)CH2COOH being preferred.

In another preferred embodiment, L is S, d is 1, c is 2 and Z is a divalent C2-C20alkylene radical which may be interrupted by -O- or -NR1-.

Alcohols of formula (II) of this invention also include those wherein

L
is NR',
R'
is U-OH, C1-C5alkyl or carboxymethylene,
c, d and e
are each 1 and
Z
is monovalent.

When

L
is NR', in which
R'
is U-OH,
Z
is preferably a monovalent alkyl radical with 1-20 carbon atoms which may be interrupted by -O-, -S- or -NR1- groups or a phenyl radical, which radicals may be substituted by hydroxy, carboxy or sulfonate groups. Z is most preferably the radical residue (minus 1 NH2) of butylamine, aminoethanol, 1,1-dihydroxymethylaminopropane, tris(hydroxymethyl)aminomethane, glucamine, p-aminobenzoic acid, beta-alanine or HOOC-CH(NH2)-A, wherein A is the radical residue of an &agr;-amino acid such as glycine, alanine, aspartic acid, glutamic acid or taurine.

In alcohols of formula (II) wherein

L
is NR' and
R'
is U-OH,
Z
is HOOC-CH2CH2-, HOOC-CH2-, HOOC-CH(CH3)-, -CH2CH2SO3H, -CH(COOH)-(CH2)1-2COOH, -C(C2H5)(CH2OH)2 and (CH3)2N(CH2)3-
are most especially prefered.

When

L
is NR',
R'
is C1-C5alkyl or carboxymethylene,
Z
is most preferably the radical residue (minus 1 NHR1) of a secondary amine, such as diethanolamine, dibutylamine, N-methyltaurine or sarcosine.

In other embodiments,

L
is NR',
c
is 2 to 4,
d
is 2 and
R'
is U-OH, or
d
is 1 and
R'
is alkyl with 1-5 carbon atoms or a carboxymethylene group, and
Z
is a divalent alkylene radical with 2 to 12 carbon atoms which can be interrupted by -O-, -S- or -NR1- groups and substituted by hydroxy, carboxy or sulfonate groups.

Typical examples of Z are the diradical residues (minus 2 NH2 or NHR1 groups) of diprimary amines, disecondary amines or primary-secondary amines, such as those of 1,3-diaminopropane, 1,3-diamino-2-hydroxypropane, 2-(2-aminoethylamino)-ethanol, N,N'-bis(2-hydroxyethyl)-ethylenediamine, ethylenediamine diacetic acid and lysine, with N,N'-bis(2-hydroxyethyl)-ethylenediamine and ethylenediamine diacetic acid being preferred.

Preferred alcohols of the formula (II) of this invention include (QF2CH2OCH2CH(OH)CH2)2N-C(CH2OH)2C2H5, (QF2CH2OCH2CH(OH)CH2)2S, (QF2CH2OCH2CH(OCH2CH2OH)CH2S and QF2CH2OCH2CH(OH)CH(OH)CH2OCH2QF2.

The alcohols and diols of this invention can be used to make a variety of products such as esters, ether-alcohols, carbonates, carboxylic acids, phosphates, sulfates and urethanes, which are other objects of this invention. Preferred are derivatives of the alcohols and diols where QF is QF2.

Among the preferred esters are those of the formulae



        (Ia) (QF2CH2O)b-Y-(O2C-R3)a



and



        (IIa) Z(-L-(U-O2C-R3)d)c



wherein

QF2, Y, a, b, Z, L, U, d and c
are as defined above and
R3
is H or C1-C20hydrocarbyl, which may be substituted by one or more hydroxyl, thiol or carboxyl groups.

Typical examples of -O2C-R3 include the radicals of acetic, benzoic, hydroxybenzoic, terephthalic, phthalic, acrylic, methacrylic, citric, maleic, fumaric, itaconic, malonic, succinic, thioacetic, thiopropionic and thiosuccinic acids. Addition polymers may be derived from the acrylates, methacrylates or fumarates.

Preferred esters of the formula (Ia) are acrylates, methacrylates, maleates, fumarates, succinates and ortho- and terephthalates of the alcohols of the formulae (QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2, (QF2CH2OCH2)3C-CH2OH and (QF2CH2OCH2)2C(C2H5)CH2OH, wherein

QF2
is as defined above.

Also preferred are acrylates, methacrylates, maleates, fumarates, succinates and ortho- and terephthalates of diols of the formulae



        (IIb) Ze-N-(U-OH)2 or (IIc) Z,-(O-U-OH)2



wherein, in the definition of U,

r
is equal to or greater than q and is 0 to 5,
q
is 0 to 3 and, when e is 1,
Z
is a monovalent hydrocarbyl radical with 1-20 carbon atoms which may be interrupted by -O-, -S- or -NR1- and may be substituted by hydroxy or carboxy groups, or, when
e
is 2,
Z
is 1,4-phenylene or a divalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups, wherein
R1
is as defined above.

Most preferably, Z is a monovalent alkyl radical with 1-18 carbon atoms or is -CH2CH2-.

Also useful are polyesters of the formulae and



        (IId) -(U-L-Z-L-U-O2C-R4-CO2)n-



wherein

Y
is a tetravalent organic linking group with from 2 to 20 carbon atoms,
Z
is a divalent alkylene radical with 2 to 12 carbon atoms which can be interrupted by -O-, -S- or 1,4-phenylene and substituted by 1 or 2 carboxyl groups,
n
is an integer from 2 to 100, preferably 3 to 10,
Q
F2, U, and L are as defined above and
R4
is the divalent radical residue of a dicarboxylic acid of the formula HOOC-R4-COOH.

R4 is preferably a direct bond, an alkylene of 1-16 carbon atoms, an arylene of 6 to 14 carbon atoms or an alkarylene of 7 to 18 carbon atoms. Such acids include oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, sebacic, brassylic, octadecanedioic, dimer acid, 1,4-cyclohexanedicarboxylic, 4,4'-dicyclohexyl-1,1'-dicarboxylic, phthalic, isophthalic, terephthalic, methylphthalic, diphenyl-2,2'-dicarboxylic, diphenyl-4,4'-dicarboxylic, 1,4-naphthalene dicarboxylic, diphenylmethane-2,2'-dicarboxylic, diphenylmethane-3,3'-dicarboxylic, diphenylmethane-4,4'-dicarboxylic acid and the like. Also useful are compounds wherein R4 is substituted by one or two carboxy groups and is derived, for example, from pyromellitic anhydride or benzene tetracarboxylic acid dianhydride.

Especially preferred are polyesters of the formula (Id) wherein

Y
is -CH2(CH-)CH2-S-CH2(CH-)CH2- or -CH2(CH-)CH2-NR'-CH2(CH-)CH2- and
R4
is -CH=CH-, -(CH2)2-8- or 1,3- or 1,4-phenylene, and polyesters of the formula (IId) wherein
L
is O,
R4
is -CH=CH-, -(CH2)2-8- or phenylene,
Z
is a divalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups and, in the definition of U,
r
is equal to or greater than q and is 0 to 5 and
q
is 0 to 3.

Useful phosphates are the mono- and diphosphates and bis-monophosphates of alcohols and polyols of the formulae (I) and (II).

Preferred monophosphates of alcohols and polyols of the formula (I) are those from alcohols and diols of the formulae

(QF2CH2OCR2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2, (QF2CH2OCH2)3C-CH2OH and (QF2CH2OCH2)2C(C2H5)CH2OH, wherein QF2 is as defined above.

Especially preferred are phosphates of alcohols and polyols of the formula (I) wherein

Y
is -CH2(CH-)CH2-S-GH2(CH-)CH2- or -CH2(CH-)CH2-NR'-CH2(CH-)CH2- as well as phosphates of the formula
wherein
QF2
is as defined above.

Also preferred are monophosphates of diols of the formula (II) wherein, in the definition of U,

r
is equal to or greater than q and is 0 to 5 and
q
is 0 to 3.

Also preferred are monophosphates of diols of the formula (II) wherein

U
is as defined above,
L
is O and
Z
is phenyl, p-n-C1-C10alkylphenyl, a monovalent alkyl radical with 1-20 carbon atoms which may be interrupted by -O-, -S- or -NR1- groups, or is hydroxy-C2-C5alkylene.

Also preferred are monophosphates of diols of the formula (II) wherein

U
is as defined above,
L
is O and
Z
is 1,4-phenylene or a divalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups.

Also preferred are monophosphates of diols of the formula (II) wherein

U
is as defined above,
L
is O and
Z
is a trivalent alkylene radical which may be interrupted by -O-, -S- or -NR1-.

Also preferred are monophosphates of diols of the formula (II) wherein

U
is as defined above,
L
is S and
Z
is a direct bond or a divalent C2-C20alkylene radical which may be interrupted by -O- or -NR1-.

Also preferred are monophosphates of diols of the formula (II) wherein

U
is as defined above,
L
is NR',
R'
is U-OH and
Z
is a divalent alkylene radical with 2 to 12 carbon atoms which can be interrupted by -O-, -S- or -NR1- groups and substituted by hydroxy or carboxy groups.

Most preferred are monophosphates of diols of the formula (II) wherein

U
is as defined above,
L
is O and
Z
is -CH2CH2- or CH3CH2C(CH2-)3, and phosphates of the formula
wherein
QF2
is as defined above.

Useful sulfates are the mono- and disulfates of alcohols and polyols of the formulae (I) and (II). Preferred monosulfates of alcohols and polyols of the formula (I) are those from alcohols and diols of the formulae

(QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2, (QF2CH2OCH2)3C-CH2OH and (QF2CH2OCH2)2C(C2H5)CH2OH, wherein

QF2
is as defined above.

Also preferred are monosulfates of diols of the formula (II) wherein, in the definition of U,

r
is equal to or greater than q and is 0 to 5 and
q
is 0 to 3.

Also preferred are monosulfates of diols and polyols of the formula (II) wherein

U
is as defined above,
L
is O and
Z
is phenyl, p-n-C1-C10alkylphenyl, a monovalent alkyl radical with 1-20 carbon atoms which may be interrupted by -O-, -S- or -NR1- groups, or is hydroxy-C2-C5alkylene.

Also preferred are monosulfates of diols and polyols of the formula (II) wherein

U
is as defined above,
L
is O and
Z
is 1,4-phenylene or a divalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups.

Also preferred are monosulfates of diols and polyols of the formula (II) wherein

U
is as defined above,
L
is O and
Z
is a trivalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups.

Also preferred are monosulfates of diols and polyols of the formula (II) wherein

U
is as defined above,
L
is S and
Z
is a direct bond or a divalent C2-C20alkylene radical which may be in terrupted by -O- or -NR1-.

Also preferred are monosulfates of diols and polyols of the formula (II) wherein

U
is as defined above,
L
is NR',
R'
is U-OH and
Z
is a monovalent alkyl radical with 1 to 20 carbon atoms which be interrupted by -O-, -S- or -NR1- groups and substituted by hydroxy or carboxy groups.

The most preferred monosulfates of diols of the formula (II) are those wherein

U
is as defined above,
L
is O and
Z
is -CH2CH2-, and those of the formulae



        CH3CH2-C-(CH2OCH2CH(OH)CH2OCH2QF2)3



and



        (HOCH2)2(C2H5)-C-N(CH2OCH2CH(OH)CH2OCH2QF2)2.



Useful polyurethanes consist of or contain units of the formulae and



        (IIe) -(U-L-Z-L-U-O2CHN-R5-NHCO2)-



wherein

Y, U and L
are as defined as above,
Z
is a divalent radical as defined above and
R5
is the diradical residue of a diisocyanate of the formula OCN-R5-NCO.

Useful aromatic diisocyanates of the formula OCN-R5-NCO include toluene diisocyanate (TDI) (all isomers), 4,4'-diphenylmethane diisocyanate (MDI), tolidine diisocyanate, dianisidine diisocyanate, m-xylylene diisocyanate, p-phenylene diisocyanate, m-phenylene diisocyanate, 1-chloro-2,4-phenylene diisocyanate, 3,3'-dimethyl-4,4'-bisphenylene diisocyanate, 4,4'-bis(2-methylisocyanatophenyl)methane, 4,4'-bisphenylene diisocyanate, 4,4'-bis(2-methoxyisocyanatophenyl)methane, 1-nitrophenyl-3,5-diisocyanate, 4,4'-diisocyanatodiphenyl ether, 3,3'-dichloro-4,4'-diisocyanatodiphenyl ether, 3,3'-dichloro-4,4'-diisocyanatodiphenyl methane, 4,4'-diisocyanatodibenzyl, 3,3'-dimethoxy-4,4'-diisocyanatodiphenyl, 2,2'-dimethyl-4,4'-diisocyanatodiphenyl, 2,2'-dichloro-5,5'-dimethoxy-4,4'-diisocyanatodiphenyl, 3,3'-dichloro-4,4'-diisocyanatodiphenyl, 1,2-naphthalene diisocyanate, 4-chloro-1,2-naphthalene diisocyanate, 4-methyl-1,2-naphthalene diisocyanate, 1,5-naphthalene diisocyanate, 1,6-naphthalene diisocyanate, 1,7-naphthalene diisocyanate, 1,8-naphthalene diisocyanate, 4-chloro-1,8-naphthalene diisocyanate, 2,3-naphthalene diisocyanate, 2,7-naphthalene diisocyanate, 1,8-dinitro-2,7-naphthalene diisocyanate, 1-methyl-2,4-naphthalene diisocyanate, 1-methyl-5,7-naphthalene diisocyanate, 6-methyl-1,3-naphthalene diisocyanate and 7-methyl-1,3-naphthalene diisocyanate.

Useful aliphatic or cycloaliphatic polyisocyanates include 1,2-ethane diisocyanate, 1,3-propane diisocyanate, 1,4-butane diisocyanate, 2-chloropropane-1,3-diisocyanate, pentamethylene diisocyanate, propylene-1,2-diisocyanate, 1,8-octane diisocyanate, 1,10-decane diisocyanate, 1,12-dodecane diisocyanate, 1,16-hexadecane diisocyanate and other aliphatic diisocyanates such as 1,3- and 1,4-cyclohexane diisocyanate.

Additionally, the following diisocyanates are particularly preferred because urethane compositions made therefrom tend to be non-yellowing: 1,6-hexamethylene diisocyanate (HDI), 2,2,4- and 2,4,4-trimethylhexamethylene diisocyanate (TMDI), dimer acid derived diisocyanate (DDI) obtained from dimerized fatty acids such as linoleic acid, 4,4'-dicyclohexylmethane diisocyanate (hydrogenated MDI), isophorone diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl diisocyanate, lysine methyl ester diisocyanate (LDIM), bis(2-isocyanatoethyl) fumarate (FDI), bis(2-isocyanatoethyl) carbonate and m-tetramethylxylylene diisocyanate (TMXDI).

Preferred are polyurethanes of 3,000 to 30,000 molecular weight of the formula (Ie) and containing repeating units of the formulae and/or wherein

R1
is C1-C5 alkyl,
R5
is is the diradical residue of isophorone diisocyanate, 2,2,4-(2,4,4)-trimethylhexamethylene diisocyanate or 1,6-hexamethylene diisocyanate and
QF2
is as defined above.

Also preferred are polyurethanes of 3,000 to 30,000 molecular weight and containing repeating units of the formula (IIe) wherein, in the definition of U,

r
is equal to or greater than q and is 0 to 5,
q
is 0 to 3,
U
is as defined above,
L
is O,
Z
is -CH2CH2- and
R5
is the diradical residue of isophorone diisocyanate, 2,2,4-(2,4,4)-trimethylhexamethylene diisocyanate or 1,6-hexamethylene diisocyanate.

Also preferred are polyurethanes of 3,000 to 30,000 molecular weight and containing units of the formula (IIe) wherein

U
is as defined above,
L
is S and
Z
is a direct bond.

Also especially preferred are polyurethanes of 3,000 to 30,000 molecular weight and containing units of the formula (IIe) wherein

U
is as defined above,
L
is NR', wherein
R'
is C1-C5alkyl and
Z
is a divalent C2-C12alkylene radical.

Also especially preferred are polyurethanes of 3,000 to 30,000 molecular weight and containing units of the formula (IIe) wherein

U
is as defined above,
L
is NR',
R'
is U-OH and
Z
is a monovalent radical with 1 to 20 carbon atoms which be interrupted by -O-, -S- or -NR1- groups.

It is within the scope of this invention to further react these polyurethanes with diisocyanates and polyisocyanates, or to incorporate the novel RF-diols into polyurethane resin systems to make crosslinked polyurethanes, such as coatings or foams, as is known to those skilled in the art of polyurethane chemistry.

Ether derivatives of the formula



        (If)     (QF2CH2O)b-Y-(O-CH2CH(OH)R6)a



are also useful,

wherein

R6
is hydrogen, a hydrocarbon radical with 2 to 20 carbon atoms, or a polyethylene oxide radical -(OCH2CH2)u-R7,
R7
is OH or (QF*2CH2)b-Y-O-CH2CH(OH),
u
is an integer from 2 to 50 and
QF2, Y, a and b
are as defined above.

Especially useful are ether acids of the formula (I) wherein

X
is O-CH2-COOH and
Q
is QF2, and
QF2, Y, a and b
are as defined above.

It is understood that an RF group usually represents a mixture of perfluoroalkyl moieties. When the RF group is identified as having a certain number of carbon atoms, said RF group also usually concomitantly contains a small fraction of perfluoroalkyl groups with fewer carbon atoms and a small fraction of perfluoroalkyl groups with more carbon atoms. Commonly the perfluoroalkyl moiety is a mixture of C4F9, C6F13, C8F17, C10F21, C12F25, and C14F29 groups.

The novel RF-alcohols of this invention are obtained by the reaction of a perfluoroalkyl iodide with an allyloxy alcohol, to first yield an iodide compound, followed by dehydrohalogenation of the iodide with a base to yield an unsaturated alcohol with QF = QF2. Useful commercial allyloxy alcohols are pentaerythritol di- and triallyl ether and trimethylolpropane diallyl ether. Other alcohols can be synthesized as follows: polyallyl ethers by reaction of triols, tetraols and of polyols in general with allyl glycidyl ether, glycerol-1,3-diallyl ether by reaction of equimolar amounts of allyl alcohol and allyl glycidyl ether, diallyl alcohols or diols by reaction of allyl chloroformate with diamino alcohols or diols; thioether or tertiary amino group-containing diallyldiols by reaction of two moles of allyl glycidyl ether with one mole of sodium sulfide or an organic dithiol, or with a primary or di-secondary amine, as is shown in the Examples.

Similarly, the novel RF-acids can be prepared by the reaction of a perfluoroalkyl iodide and an allyloxy acid or its ester, to yield an iodide compound, followed by dehydrohalogenation with a base and, if the product is an ester, hydrolysis to the free acid. Useful allyloxy acids can be prepared advantageously from allyl glycidyl ether and mono- or diaminoacids, mercaptoacids and hydroxyacids, or from allyl chloride or bromide by reaction with ester-alcohols, followed by hydrolysis of the ester group. Also useful is the diallyl-diacid obtained by reaction of allyl chloride or allyl bromide with ethylenediamine diacetic acid.

Compounds of the formula (II) can be obtained by the reaction of 2-20 moles of allyl glycidyl ether with a compound having 1-4 active hydrogens such as an alcohol, diol, triol, tetraol or a compound of the formula Z(-OH)1-4; a thiol, dithiol or a compound of the formula Z(-SH)1-2; a secondary amine, disecondary amine or a compound of the formula Z(-NR1)1-2, where Z in each case is as defined above, which product is then further reacted with 2-20 moles of a perfluoroalkyl iodide in the presence of a free radical initiator to gave an RFI- adduct which is then dehydroiodinated with a base.

Suitable alcohols for preparing compounds of the formula (II) are those with 1 to 20 carbon atoms such as methanol, isopropanol, allyl alcohol, 11-undecenol, N,N-dimethylaminoethanol and hydroxybenzoic acid, alkoxylated C1-C20alkanols such as C18H37(OCH2CH2)5-50OH and alkoxylated C1-C10alkylphenols such as C9H19C6H4(OCH2CH2)5-OH. Useful diols include alkylene glycols with 2-6 carbon atoms such as ethylene or propylene glycol, 2,2-bishydroxymethylpropionic acid methyl ester hydroxypropionic acid, N-methyl diethanolamine, allyl glycerol and polypropylene oxide- or polybutylene oxide-derived diols with 2-20 repeating units. Useful triols include trimethylolpropane, glycerine and butanetriol. Useful tetraols include pentaerythritol and erythritol. Useful thiols include mercaptopropionic acid, thioglycerol, thiophenol and ethylene dimercaptopropionate. Useful amines include butylamine, N,N-dimethylpropane-1,3-diamine, alanine, glutamic acid, aspartic acid and 1,1-dihydroxymethyl-propylamine.

The addition and/or oligomerization of allyl glycidyl ether can be carried out under anhydrous conditions using a base such as sodium hydroxide or an acidic catalyst such as BF3. Addition reactions of allyl glycidyl ether with amines or thiols can be carried out in an aqueous medium using base catalysis.

The addition of an RF-iodide to an allyl alcohol or acid proceeds readily in the presence of a free radical initiator such as an azo compound or peroxide at conventional initiation temperatures of 35 to 150° C. It was found, however, that only in the presence of small amounts of aqueous solutions of sulfite, bisulfite or dithionate ions does the reaction proceed fast enough and are conversions high enough to make the synthesis commercially practical.

Solvents can be present during the RF-iodide addition reaction; for example ketones such as acetone, methyl ethyl ketone or methyl propyl ketone, esters such as isopropyl acetate, alcohols such as ethanol or butanol, ethers such as dioxane or di(2-hydroxyethyl) ether, hydrocarbons such as toluene or octane, amides such as dimethylformamide and lactams such as N-methylpyrrolidone.

The dehydrohalogenation of the RF-iodide addition product is generally carried out in water at 50 to 100° C by reacting the adduct with a strong inorganic base, such as sodium or potassium hydroxide or a strong organic base such as 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) over a period of several hours. The product is obtained in the non-aqueous phase. The solvent can be stripped off and the product be washed with water and isolated as a solid by filtration, or it can be discharged from the reactor as a melt; alternatively, it can be isolated as a solution by allowing a clean phase separation to occur between the aqueous and organic phases. The mode of isolation will depend on the specific product. The product is analyzed for its hydroxyl value prior to further reaction. Trans-olefins are formed predominately, with the cis-/trans ratio being determined by NMR.

The alcohols of the formulae (I) and (II) can be further reacted with phosphorous pentoxide, POCl3 or polyphosphoric acid to make phosphate ester-acids, or with chlorosulfonic acid or sulfamic acid to make sulfate ester-acids which are useful as paper sizes. By reacting alcohols of the formula (I) or II with chloroacetic acid, bromoacetic acid or the like, carboxylic acids can be prepared for use as paper sizes. The alcohols and diols can also be reacted with dicarboxylic acids, dicarboxylic acid anhydrides, tetracarboxylic acid dianhydrides or with diacid chlorides to prepare carboxylic ester-acids. By reaction with phosgene, dimethylcarbonate or ethylene bischloroformate, carbonates and polycarbonates can be prepared.

Also this invention relates to a method of treating a solid substrate to impart to impart oil and water repellency thereto. The method comprises applying an effective amount of a polyurethane of formula (Ie) or apolyester of formula (Id) thereto.

The novel di- and poly-RF-acids of this invention - for example compounds of the formula (I) wherein X is O-CH2-COOH or COOH; compounds obtainable by reacting alcohols of the formulae (I) and (II) with dicarboxylic acids, dicarboxylic acid anhydrides, tetracarboxylic acid dianhydrides or with diacid chlorides; sulfates, sulfonates and phosphates of alcohols of the formulae (I) and (II) and compounds of the formula (II) wherein Z is substituted by carboxyl, carboxyalkyl or sulfonate and their salts - are useful as paper sizes which impart outstanding oil and water repellency. The excellent oil repellancy obtained with these novel compounds is attributed to their bis-RF-structure. As a notable exception, however, it was found that 11-perfluoroalkyl-10-undecenoic acid, RFCH=CH-(CH2)8-COOH, and 11-perfluoroalkyl-10-undecenyl sulfate, in salt form, perform excellently as an internal paper sizes, perhaps due to their long, linear 2-phase structure. Useful salts are alkali metal, ammonium and amine salts, with ammonium, and mono-, di- and tri-C1-C5alkyl and mono-, di- and tri-C1-C5hydroxyalkyl ammonium salts being preferred. Typical salts are those of diethanolamine.

The use of 11-perfluoroalkyl-10-undecenoic acid and of 11-perfluoroalkyl-10-undecenyl sulfate as internal oil repellent paper sizes is another object of this invention.

Polyurethanes are prepared from the RF-diols of this invention by the known methods of polyurethane chemistry. These polyurethanes may contain other building blocks derived from diols or diamines, especially tertiary amino group-containing diols such as N-methyldiethanolamine, poly(ethylene oxide)diols and 3-aminopropyl-terminated poly(ethylene oxide) (Jeffamine-ED, from TEXACO Corp.), poly(dimethylsiloxane)-dialkanols and poly(dimethylsiloxane)diaminoalkyls. Typical polyurethane compositions incorporating these and other diols and diamines in combination with certain other perfluoroalkyl-substituted diols are described for example in U.S. Patents Nos. 3,968,066, 4,046,944 and 4,098,742. Polyurethanes prepared from the RF-diols of this invention are useful as as oil- and water-repellant coatings on textiles, paper, wood and other substrates.

Preferably a sufficient amount of an organofluorine compound of this invention is employed to provide 0.01 to 1%, especially 0.03 to 0.2% F to a substrate.

Experimental Part

The following examples illustrate various embodiments of the invention, and are not to be interpreted as limiting the scope of the appended claims. In the examples all parts are by weight unless otherwise specified.

Example 1: 1-Butanol, 2,2-bis(((4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro-2-undecenyl)oxy)methyl)-

Into a three neck 250 ml round-bottomed flask are placed 22.7 g (0.042 mol) of 1-iodoperfluorooctane, 4.3 g (0.02 mol) of trimethylolpropane diallyl ether (NEOALLYL T-20; 86% by weight diallyl-, 8% monoallyl-, 8% triallyl-substituted, from DAISO Co., Ltd). and 10 g of deionized water. This mixture is placed under nitrogen and heated to 75° C. To the two phase reaction mixture are added 0.22 g (1.37 m mol) of 2,2-azo-bis-isobutyronitrile (AIBN) and 0.2 g (0.002 mol) of sodium bisulfite. After 8 hours the reaction is complete as determined by gas chromatography and the aqueous phase is separated. The reaction mixture is washed twice with 40 g of deionized water at 75° C. Dehydrohalogenation is performed by the addition of 40 g of deionized water and 7.6 g (0.05 mol) of 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU). This mixture is stirred at 80° C for 5 hours. The aqueous layer is removed and the reaction mixture is washed with 40 g of deionized water, followed by 40 g of 5% HCl and finally with another 40 g of deionized water. The title product is isolated as a tan oil in a yield of 19.4 g(72%). MS, m/z (M+); calculated, 1050.0870; observed, 1050.0842. 1H-NMR (500 MHz, CDCl3) d6.44(dm, 2H, -CF2 CH=CH-, J = 15.3Hz), 5.89(dt, 2H, -CF2CH=CH-, J = 15.3Hz and J = 11.9Hz), 4.14(bs, 4H, -CF2CH=CH 2O-), 3.63(s, 2H, -CH 2OH), 3.52(d, 2H, OCH aHbC-, Ja'b = 9.2Hz), 3.49(d, 2H, -OCHa H bC-, Ja,b = 9.2Hz), 1.42(q, 2H, -CH2CH3, J = 7.7Hz) and 0.88(t, 3H, -CH2CH3, J = 7.7Hz). The product contains 93% of the trans isomer as determined from integration of the 1H-NMR spectrum.

Example 2: 1-Propanol, 3-((4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro-2-undecenyl)oxy)-2,2-bis(((4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro-2-undecenyl)oxy)methyl).

Into a 100 ml three neck round-bottomed flask are placed 0.64 g (2.5 mmol) of the triallyl ether of pentaerythritol (NEOALLYL T-30, containing 15 weight % diallyl, 75 % triallyl and 10 % tetraallyl esters; DAISO Co., Ltd)., 5.0 g (9.2 mmol) of 1-iodoperfluorooctane and 5.0 g of deionized water. The reaction mixture is placed under nitrogen and heated to 80° C. To the stirred reaction mixture are added 0.05 g (0.30 mmol) of AIBN and 0.05 g (0.05 mmol) of sodium bisulfite. After 10 hours the reaction is complete as determined by gas chromatography. The top water layer is removed and the reaction mixture is washed twice with 5.0 g of deionized water. Dehydrohalogenation is performed by adding 2.0 g of deionized water along with 2.1 g (14.0 m mol) of DBU. This mixture is stirred under nitrogen at 80° C for one hour, after which time the reaction is complete. The top aqueous layer is removed and the reaction mixture is washed with 2.0 g of deionized water, followed by 2.0 g of 5% HCl and finally with another 2.0 g of deionized water. The title product is isolated as a light brown oil in a yield of 2.1 g (57%). 1H-NMR (300 MHz, CDCl3) d6.43(d, 3H, -CF2CH=CH-, J = 15.5Hz), 5.88(dt, 3H, -CF2CHa=CH bCH2c-, Ja,b = 15.0Hz and Ja,c = 7.5Hz), 4.13(bs, 6H, -CF2CH=CH 2O-), 3.74 (s, 2H, -CH 2OH) and 3.55 (s, 6H, -OCH 2C-). The product contains 90% of the trans isomer as determined from integration of the 1H-NMR spectrum. MS, m/z (M+); calculated, 1511.0704; found, 1511.1586.

Example 3: 1-Butanol, 2,2-bis(((perfluoroC 6-18 akyl-2-propenyl)oxy)methyl)-

is prepared from a perfluoroalkyl iodide (TEL-AN, from DuPont) having the following homologue distribution: 1.7% C6, 49.8% C8, 33.5% C10, 11.1% C12, 3.1% C14, 0.69% C16 and 0.16% C18 -

Into a 1000 ml round-bottomed flask are placed 277 g (0.46 mol) perfluoroalkyl iodide, 50 g (0.23 mol) trimethylolpropane diallyl ether (NEOALLYL T-20; 86% by weight diallyl-, 8% monoallyl-, 8% triallyl-substituted, from DAISO Co., Ltd.), 157 g deionized water and 55.2 g (0.69 mol) of 50% sodium hydroxide. The reaction mixture is heated to 85° C and 1.3 g (0.007 mol) of azo-bis-isobutyronitrile (AIBN) and 0.02 mol) sodium bisulfite are added. This mixture is stirred vigorously under nitrogen. After 24 hours the reaction is complete. The top aqueous layer is removed and the reaction mixture is washed with 100 g of deionized water followed by 100 g of 5% HCl and finally with another 100 g of deionized water. The product contains 73% of the trans isomer as determined from integration of the 1H-NMR spectrum. The 1H-NMR of the trans isomer is consistent with that obtained from 1-butanol,2,2-bis(((4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro-2-undecenyl)oxy)methyl)-, of example 1. 1H-NMR, cis isomer: (500 MHz, CDCl3) d6.23(dm, 2H, -CF2CH=CH-, J = 13.5Hz), 5.58(dt, 2H, -CF2CH=CH-, J = 15.6Hz and J = 13.5Hz), 4.27(bs, 4H, -CF2CH=CH2O-), 3.60(s, 2H, -CH 2OH), 3.48-3.42 (4H, -OCH aHbC- and -OCHa H bC-), 1.42 (q, 2H, -CH 2CH3, J = 7.0Hz) and 0.85 (t, 3H, -CH2CH 3, J = 7.0Hz).

Example 6: 2-Propanol, 1,3-bis((perfluoro-C 6-18 alkyl-2-propenyl)oxy)-,

is prepared from a perfluoroalkyl iodide (TEL-AN, from DuPont) having the following homologue distribution: 1.7% C6, 49.8% C8, 33.5% C10, 11.1% C12, 3.1% C14, 0.69% C16 and 0.16% C18.

Into a 2000 ml glass reactor are charged 1394 g (2.32 mol) perfluoroalkyl iodide, 200 g (0.78 mol) of triallyl ether of pentaerytrerythritol (NEOALLYL T-30, containing 15 weight % diallyl, 75 % triallyl and 10 % tetraallyl esters; DAISO Co., Ltd.), 2.7 g (0.014 mol) azo-bis-isobutyronitrile (AIBN) and 1.2 g (0.116 mol) sodium bisulfite, 538 g deionized water and 311 g (3.89 mol) 50% NaOH. The temperature of the mixture is increased to 85° C and it is stirred vigorously. After 6 hours a second charge of 1.8 g (0.009 mol) of AIBN is made. After 18 hours the reaction is complete and the top aqueous layer is removed. The reaction mixture is washed with 269 g deionized water at 85° C, followed by a wash with 107.6 g of 5% HCl and a final wash with 269 g deionized water at 85° C. The product is isolated as a waxy yellow to white solid in a yield of 1249 g (95%), m.p. 72-80° C. The product contains 73% of the trans isomer as determined from integration of the 1H-NMR spectrum. The 1H-NMR of the trans isomer is consistent with that obtained from 1-propanol, 3-((4,4,5,5,6,6,7,7,8,8,9,9,10,10, 11,11,11-heptadecafluoro-2-undecenyl)oxy)-2,2-bis(((4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro-2-undecenyl)oxy)methyl)-, of example 2. 1H-NMR, cis isomer (500 MHz, CDCl3) d6.22(bm, 3H, -CF2CH=CH-), 5.62 (dt, 3H, -CF2CHa=CH bCH2c-, Ja,b = 13.7Hz and Ja,c = 15.4Hz), 4.28(bs, 6H, -CF2CH=CH 2O-), 3.72(s, 2H, -CH 2OH) and 3.53 (s, 6H, -OCH 2C-).

Example 5: 1-Propyldihydrogenphosphate, 3-(perfluoro-C 8-18 alkyl-2-propenyl)-oxy)-2,2-bis((perfluoro-C 6-18 -alkyl-2-propenyl)oxy)methyl):

Into a 500 ml three neck round-bottomed flask are placed 100 g (0.061 mol) of 1-propanol, 3-(perfluoro-C6-18alkyl-2-propenyl)oxy)-2,2-bis((perfluoro-C6-18alkyl-2-propenyl)(oxy)-methyl)-, as prepared in Example 4, along with 144 g of glyme. The temperature of this solution is increased to reflux (85° C) and 28 g of glyme is removed by distillation. To this stirred solution is added 35.8 g (0.12 mol) of polyphosphoric acid under nitrogen. This mixture is stirred vigorously for 12 hours. After 12 hours the reaction mixture is poured into 1000 g of deionized water and a tan colored precipitate is formed. The precipitate is isolated on a Buchner funnel to give 103 g (98% yield) of the title compound, m.p. 50-58° C.

A CDCl3 solution of the product is acidified with TFA-d7 and derivatized with BSTFA. The 31P-NMR (500 MHz, CDCl3), complex signals at d-18 ppm are consistent with the bistrimethylsilyl ester of 1-propyldihydrogenphosphate, 3-(perfluoro-C6-18alkyl)oxy)-2,2-bis((perfluoro-C6-19alkyl)oxy)methyl)-, being the major product. Other signals at -26.4 ppm and -32 ppm are consistent with inorganic phosphorous and pyrophosphate type phosphorous respectively. Signals at -22.6 ppm and -31.3 ppm are consistent with a dimer type structure.

Example 6: 2-Propanol, 1,3-bis((perfluoro-C 6-18 alkyl-2-propenyl)oxy)-,

is prepared using the following homologue distribution of perfluoroalkyl iodide: 1.7% C6, 49.8% C8, 33.5% C10, 11.1% C12, 3.1% C14, 0.69% C16 and 0.16% C18 (TEL-AN, from DuPont).

Into a 1000 ml three neck round-bottomed flask are placed 53.0 g (0.31 mol) 1,3-diallyl ether of glycerol, 373 g (0.62 mol) perfluoroalkyl iodide, 21 g deionized water and 74.4 g (0.93 mol) 50% sodium hydroxide. The reaction mixture is placed under nitrogen and the temperature is increased to 85° C with stirring. 1.79 g (0.93 m mol) azo-bis-isobutyronitrile are added. After 12 hours the reaction is complete. The reaction mixture is washed with 300 g deionized water at 85° C, followed by a wash with 150 g of 5% HCl and a final wash with 300 g deionized water at 85° C. The product is isolated as a waxy brown solid in a yield of 283 g (82%), m.p. 37-45° C. The product contains 64% of the trans isomer as determined from integration of the 1H-NMR spectrum. 1H-NMR, trans isomer (500 MHz, CDCl3) d6.45 (dm, 2H, -CF2CH=CH-, J=14.6), 5.93 (dt, 2H, -CF2CHa=CH bCH2c-, Ja,b=14.6Hz and Ja,b=11.0Hz), 4.19(bs, 4H, -CH=CHCH 2O-), 4.02 (quintet, 1H, (-CH2)2CHOH, J=5.2Hz), 3.58 (m, 4H, (-CH 22CHOH). Addition of trichloroacetyl isocyanate resulted in a downfield shift of the methene proton from 4.02 to 5.23ppm. 1H-NMR, cis isomer (500 MHz, CDCl3) d6.27(dm, 2H, -CF2CH=CH-, J=12.8), 5.62 (dt, 2H, -CF2CHa=CH bCH2c-, Ja,b=12.8Hz and Ja,c=14.6Hz), 4.34 (bs, 4H, -CH=CHCH2O-), 3.99 (quintet, 1H, (-CH2)2CHOH, J=5.2Hz), 3.58 (m, 4H, (-CH 2)2CHOH).

Example 7: 2-Propyldihydrogenphosphate, 1,3-bis((perfluoro-C 6-18 alkyl-2-propenyl)oxy)-.

Into a 1000 ml three neck round-bottomed flask are placed 100 g (0.089 mol) of 2-propanol, 1,3-bis((perfluoro-C6-18alkyl-2-propenyl)oxy)-, along with 150 g of glyme. The temperature of this solution is increased to reflux (85° C) and 15 g glyme is removed by distillation. Removal of glyme is used as a drying procedure. To this refluxing solution is added 107.3 g (0.36 mol) of polyphosphoric acid under nitrogen. This mixture is stirred vigorously for 18 hours. After 18 hours the reaction mixture is poured into 1000 g of deionized water with stirring and a brown colored precipitate forms. The precipitate is isolated on a Buchner funnel and dried under vacuum to give 94 g (88% yield), m.p. 60-65° C.

A CDCl3 solution of the product is acidified with TFA-d7 and derivatized with BSTFA. 31P-NMR (500 MHz, CDCl3), shows a set of two doublets at -17.95 with J = 9Hz. These signals are consistent with the bistrimethylsilyl ester of cis/trans 2-propanol, 1,3-bis ((perfluoroC6-18alkyl-2-propenyl)oxy)-.

Example 8: Reaction of 1-Propanol, 3-((perfluoroC 6-18 alkyl-2-propenyl)oxy)-2,2-bis((perfluoroC 6-18 alkyl-2-propenyl)oxy)methyl)-, with hexamethylene diisocyanate.

Into a flame dried 100 ml three neck round-bottomed flask are placed 20.0 g (0.012 mol) of 1-propanol, 3-(perfluoroC6-18alkyl)oxy)-2,2-bis((perfluoroC6-18alkyl)oxy)methyl)-along with 42 g isopropyl acetate. This solution is heated to reflux (85° C) with stirring and 8 g isopropyl acetate is removed by distillation. To this solution is added 20 mg (0.07 m mol) of stannous octoate and 1.0 g (0.006 mol) of hexamethylene diisocyanate (HMDI). The reaction mixture turns white immediately after the addition of HMDI. Progress of the reaction is monitored by following the disappearance of the isocyanate functionality in the infrared spectrum. Isopropyl acetate is removed under vacuum to give a brown solid in a yield of 16.8 g (80%). An IR spectrum of a thin film shows an nmax at 1715.9 cm-1 (-O-C(O)NH-).

Example 9: Poly-(((3-perfluoroalkyl-2-propenyl)oxy)methyl)-oxirane) A) Synthesis of HO-(-CH 2 CH(-CH 2 -O-CH 2 CH=CH 2 ) n -OH:

Into a 1000 ml three neck flask equipped with a condenser, stirring shaft, thermometer and dropping funnel fitted with a gas inlet tube are added 62.1 g (1.0 mol) ethylene glycol and 2.3 g boron trifluaride etherate. 399.6 g (3.5 mol) allyl glycidyl ether is charged to the dropping funnel and dripped into the reaction vessel while stirring and introducing a stream of nitrogen gas over a period of 6 hours. The rate of addition is controlled to maintain the exotherm temperature between 70 and 80° C. After the addition is complete, the reaction mixture is heated at 80° C for 3.5 hours. At that time a small sample is removed and analyzed using a VG Auto Spec Q hybrid mass spectrometer with Liquid SIMS technique.

The analysis shows that the oligomeric product has a chain length distribution as shown (n = number of repeat units): n 1 2 3 4 5 6 7 8 9 10 % by weight 5.0 7.7 18.6 22.6 21.5 14.2 7.2 2.0 0.9 0.2

B) Synthesis of HO-(-CH 2 CH(-CH 2 -O-CH 2 CH=CH 2 -R F )O n )-OH-

To a one-liter 3-neck flask equipped with a condenser, stirring shaft and gas inlet are charged 55.2 g (0.12 mol) of the above allylether-substituted oligooxyethylene mixture, (250.0 g, 0.42 mol) perfluoroalkyl iodide with a homologue distribution of 1.7% C6, 49.8% C8, 33.5% C10, 11.1% C12, 3.1% C14, 0.69% C16 and 0.16% C18 (TEL-AN, from DuPont), 125.0 g water, 2.0 g 2,2'-azo-bis-(2-methylbutyronitrile) and 0.6 g (0.006 mol) sodium bisulfite. The resultant reaction mixture is heated to 80° C and held at this temperature for 6 hours with stirring and introducing a stream of nitrogen gas. At this time, gas chromatography shows that the starting perfluoroalkyl iodide is consumed. The product is washed two times with water (~ 150 g per wash). To the resultant orange semi-solid is added sodium hydroxide (50%, 37.6 g, 0.47 mol) and 120.0 g H2O. This mixture is heated at 80° C with stirring for 16 hours, followed by neutralization with 10% hydrochloric acid and two water washes (~ 120 g per wash). To remove any residual water, the product is azeotroped with toluene. The toluene is vacuum distilled, yielding a tan waxy solid.

By NCO titration, the hydroxy value is found to be 1353 (theoretical, 1060). Fluorine analysis shows the product to be 55% F, 92% of theory.

Example 10: Synthesis of 2-propylsulfate, 1,3-bis((perfluoro-C 6-18 alkyl-2-propenyl)oxy)-, ammonium salt

Into a 50 ml three neck round-bottomed flask is placed 15 g (0.014 mol) of 2-propanol, 1,3-bis((perfluoroC6-18alkyl-2-propenyl)oxy)-, along with 5.3 g (.055 m mol) of sulfamic acid and 1.4 g (0.0166 mol) pyridine. It is then heated at 100° C for 6 hours. The final product is a brown, hard solid containing 44.3% F.

1H-NMR (500 MHz, CDCl3) d3.8 (CHOCH2,4 Hm), 4.2 (OCH 2CH,4Hdd), 4.7 (OCHCH2, quin), 5.9 (CH2CCH=,2H,dd), 6.4 (RFCH,2H,m).

Examples 11-13: Using the methods described in Examples 1-9, the following additional perfluoroalcohols are prepared:

Example Perfluoroalkyl-alcohol 11 (C6F13CH=CHCH2OCH2)n-C(CH2OH)4-n n=2, 3 12 (C6F13CH=CHCH2OCH2)2C(C2H5)CH2OH 13 (C8F17CH=CHCH2OM2)2CHOH.

Example 14: Synthesis of a di-(2-hydroxy-4-oxa-6,7-ene-7-perfluoroalkyl)-thioether

A 150 ml three-necked, round-bottomed flask is charged with 19.2 g (0.08 mol, 98%) sodium sulfide nonahydrate and 60 g deionized water. The solution is heated to 42° C and 18.2 g (0.16 mol) allyl glycidyl ether is added over a one hour period to give a cloudy solution. The reaction mixture is heated at 60° C for one hour. The product mixture is concentrated on a rotary evaporator with reduced pressure at 70° C to give a slightly viscous, clear, brown oil in 88% yield (18.3 g). Analytical data: 1H NMR (500MHz, CDCl3 d: 2.50-2.70 (4H, m, -CH 2S-), 3.71 and 3.72 (8H, M -OCH 2CHOH- and CH2=CHCH2-) 3.87 (2H, m, -CH2CHOHCH2O, 5.00 and 5.14 (4H, dd, CH2=CH-), 5.80 (2H, m,CH2=CHCH2).

8.4 g (0.032 mol) of this thio ether secondary diol, 38.0 g (0.063 mol) perfluoroalkyl iodide with a homologue distribution of 1.7% C6, 49.8% C8, 33.5% C10. 11.1% C12, 3.1% C14, 0.69% C16 and 0.16% C18 (TEL-AN, from Du Pont), 0.3 g (1.90 mmol) AIBN, and 1.2 g (0.006 mol) sodium metabisulfite is stirred under nitrogen gas at 70° C in a three-necked, round-bottomed flask. After 1.5 hours, the reaction is complete based on gas chromatography.

Dehydrohalogenation is performed by the addition of 25.2 g (0.32 mol, 50%) sodium hydroxide. The mixture is stirred at 90° C for 20 minutes to allow for completion. The aqueous layer is removed and the organic layer is taken up in 150 ml 2-pentanone. After 2 successive washes with 100 ml deionized water each, the solvent is stripped off on a rotary evaporator under reduced pressure to give a yellow solid in a yield of 32.0 g(83.4%). 1H NMR (500 MHz, CDCl3) d: 2.7 and 2.8 (4H, m, CH 2S-), 3.5 (4H, m,-OCH 2CHOH-, 3.95 (2H, m, -CH2CHOHCH2-), 4.2 and 4.35 (4H, m, -CH2CH2O-, cis/trans coupling with olefinic hydrogens), 5.6 and 5.9 (2H, m, CF2CH=CH-), 6.3 and 6.45 (2H, m, -CH=CH=CH2-). The product contains 71% trans isomer as determined from integration.

Example 15: Synthesis of a di-(2-hydroxy-4-oxa-6,7-ene-7-perfluoroalkyl)-butylamine

Distilled n-butylamine (10.0 g, 0.137 mol) is dissolved in 30 g deionized water in a three-necked, 250 ml round-bottomed flask. The solution is heated to 40° C and 31.3 g (0.274 mol) allyl glycidyl ether is charged over 30 minutes; the temperature of the mixture spontaneously rises to 60° C and is maintained there for 6 hours. After this time the product is concentrated at reduced pressure on a rotary evaporator to give a clear, yellow liquid in 98% yield (40.4 g). Analytical data: 1H NMR (500 MHz, CDCl3) d: 5.8 (2H, m, CH2=CH-), 5.2 (2H, dd, CH 2=CH-, trans), 5.1 (2H, dd, CH 2=CH-, cis), 3.9 (4H, t, -CHCH 2O-), 3.8 (2H, bs, -CH2CHOHCH2), 3.4 (4H, m, -OCH 2CHOH-), 2.5(4H, m, -CHOHCH 2N- and 2H, m, -NCH 2CH2), 1.4(2H, quintet, -CH2CH 2CH2), 1.2 (2H, sextet, -CH2CH 2CH3), 0.8 (3H, t, -CH2CH 3).

11.7 g (0.039 mol) of the above diallyloxy-butylamine diol, 47.0 g (0.078 mol) perfluoroalkyl iodide with a homologue distribution of 1.7% C6, 49.8% Cg, 33.5% C10, 11.1% C12, 3.1% C14, 0.69% C16 and 0.16% C18, 1.5 g (0.008 mol) sodium metabisulfite, and 14 g deionized water are charged into a 250 ml three-necked, round-bottomed flask. Under nitrogen, the biphasic mixture is heated to 70° C and a charge of 0.63 g (3.92 mmol) azo-bisisobutyronitrile (AIBN) is made. A temperature rise of 11° C is noted. Once cooled back to 70° C, the reaction mixture is allowed to go to completion. This takes 1.5 hours as determined by gas chromatography.

Dehydrohalogenation is carried out by the addition of 12.8 g (0.16 mol, 50%) sodium hydroxide. The mixture is stirred at 90° C for 3 hours. The aqueous layer is removed and the organic layer is washed three times with 200 ml slightly alkaline, deionized, water. The final product is isolated as a brown, thick syrup in 88.6 % yield (43.2 g). Analytical data: 1H NMR (500 MHz, CDCl3) d: 6.5 (2H, d, -CF2CH2=CH-trans coupling), 6.3 (2H, m, -CF2CH=CH-, cis coupling), 5.9 (2H, m, CF2CH=CH-, trans coupling), 5.6 (2H, m, -CF2CH=CH-, cis coupling), 4.1 (4H, bs,-CH=CH-CH 2), 3.9 (2H, m, -CH2CHOHCH2-), 3.5 (4H, m, -OCH 2CHOH-), 2.6 (4H, m, -CHOHCH 2N- and 2H, t, -CH2CH2N-), 1.4 (2H, quintet, -CH2CH 2CH2-), 1.3 (2H, sextuplet, -CH2CH 2CH3), 0.9 (3H,t, -CH2CH 3). The product contains 72% trans isomer as determined from integration.

Example 16: Synthesis of a di-R F -diacid: preparation of R F -allyl glycidyl ether adduct with ethylenediamine diacetic acid

51.45 g (0.0850 moles) RF-iodide with a chain length distribution as in Example 3 (TEL AN, from DuPont), 15.0 g water and 10.00 g (0.0850 moles) allyl glycidyl ether are weighed into a 250 ml 3-neck round-bottomed flask equipped with a mechanical stirrer, nitrogen inlet, thermometer and condenser. The reaction mixture is heated to 80° C while stirring and 0.33 g (0.0017 moles) 2,2'-azo-bis-(2-methylbutyronitrile) (VAZO-67, from WAKO Chem. Co.) are added. An additional 0.16 g (0.00083 moles) VAZO 67 are added after two hours and another 0.48 g (0.0025 moles) of VAZO 67 after four hours. The reaction is continued for five hours at 65° C. A subsequent GC scan shows only a minute amount of RF-iodide remaining. To this mixture are added 55.42 g (0.0425 moles) commercial ethylenediamine diacetic acid sodium salt solution (16.88% actives by amine titration) and 2 g 50% NaOH. The reaction temperature is raised to 90° C and the mixture is stirred for 5 hours. 5 g 50% NaOH and 10 g 1-propanol are added and the reaction mass is kept at 93° C for 10 hours. To effect dehydrohalogenation, 15 ml 50% NaOH are added and the reaction mixture is stirred at 93° C for 14 hours. The mixture is transferred to a 1000 ml Erlenmeyer flask and 500 g water and enough acetic acid are added to reduce the pH to 3; then the mixture is cooled with an ice bath. The precipitate is filtered off and dried under vacuum. Yield is 71% (by weight). Elemental analysis: 29.9% C, 2.0% H and 1.6% N (theoretical: 32.1 C%, 2.21 % H and 2.06% N).

For application testing the acid is neutralized with NaOH and dissolved in water.

Example 17: The following examples describe the synthesis of polyurethanes.

40.17 g (31.4 mmoles) of the diol of example 14 and 86.27 g isopropyl acetate are placed in a 250 ml 3-necked round-bottom flask fitted with a mechanical stirrer, gas inlet, thermometer, Dean-Stark trap and condenser. The system is kept under nitrogen and heated to reflux to remove water as an azeotrope with isopropyl acetate: 18 ml of distillate are collected in the trap. The contents are cooled to 75° C and 5.03 g (23.6 mmoles) of 2,2,4-trimethyl-1,6-diisocyanatohexane (TMDI) are added followed by 0.10 g (.16 mmoles) dibutyltin dilaurate (DBTL). The contents are stirred at 80° C until the TMDI content is 0.5% as determined by IR (6 hrs). 11.57 g (19.5 mmoles) of Dimer Acid Diisocyanate (DDI 1410, (from Henkel Chemie) and 1.45 g (12.2 mmoles) of N-methyl diethanolamine (NMDEA) are added, followed by 16.3 g isopropyl acetate as a rinse. The mixture is stirred for 6 hours at 80° C. After this time no more NCO groups remain present as determined by IR-spectroscopy. The product polyurethane is obtained as a 40% solution in isopropyl acetate and contains the diol of Ex.14, TMDI, DDI, and NMDEA in a mol ratio of 4 : 3 : 2.5 : 1.5. On drying the polyurethane forms a tough clear film.

Examples 18 and 19:

Following the procedure of Example 17, polyurethanes are prepared from the RF-diols of Examples 14 and 15; their compositions and properties are listed in the table below.

Example 20: Synthesis of a polyurethane from the allylether-substituted oligo-ethyleneoxide diol of Example 9.

In a 250 ml 3-necked round-bottomed flask fitted with a mechanical stirrer, gas inlet, thermometer, Dean-Stark trap and condenser are placed 40.29 g (25.5 mmoles) of the oligoether diol of Example 9 and 118.37 g isopropyl acetate. The system is kept under nitrogen and heated to reflux to remove water as an azeotrope with isopropyl acetate: 18.3 ml of distillate are collected in the trap. The contents are cooled to 75° C, and 24.34 g (41.1 mmoles) of Dimer Acid Diisocyanate (DDI 1410, (from Henkel Chemie) are added followed by 0.10 g (.16mmoles) dibutyltin dilaurate (DBTL) and 1.65 g (13.8 mmoles) of N-methyl-diethanolamine (NMDEA). The contents of the flask are heated to 80° C and stirred for 5 hours, after which time no NCO groups are present as determined by IR-spectroscopy. The product polyurethane is obtained as a 40% solution in isopropyl acetate. It contains the diol of Example 2, DDI, and NMDEA in a mol ratio of 1 : 1.5 : 0.5.

Example 21 a - d

The polyurethane solutions were diluted with isopropyl acetate to 1% solids and coated onto glass microscope slides, which were air dried and heated for ten minutes at 60° C before measuring contact angles of water and decane. The results show that the coatings are both water- and oil-repellent. EX. 21- diol of EX. Composition, mol ratio of RF-diol/TMDI/DDI/NMDEA Contact angles water decane a 14 4 : 3 : 2. 5 : 1.5 106 66 b 15 4 : 3 : 2.5 : 1.5 104 49 c 9 4 : 3 : 2.5 : 1.5 108 61 d 15 1 : 0 : 1 . 5 : 0 . 5 110 65

Example 22

This example illustrates the synthesis of a di-perfluoroalkylsulfate ester ammonium salt by reaction with sulfamic acid.

Into a 100 ml round-bottomed flask are placed 1-propanol, 3-(perfluoroC6-18alkyl-2-propenyl)oxy)-2,2-bis-((perfluoroC6-18alkyl-2-propenyl)oxy)methyl)- (from Example 4), (16.46 g, 0.01 mol), sulfamic acid (1.78 g, 0.018 mol) and 3.33 g tetramethylurea. This mixture is stirred under nitrogen for 1.5 hours at 103° C. Progress of the reaction and the final degree of sulfation are monitored by a two-phase titration of the formed bisperfluoroalkylsulfate ammonium salt with benzothonium chloride solution according to the procedure described in, "Analysis of Surfactants", Surfactant Sci. Series, Vol. 40, (Marcel Dekker, Inc., New York, 1992).

The final degree of sulfation, expressed as OH equiv. initial - OH equiv. final, is 0.9.

The product is dissolved in water and used for application tests.

Examples 23-25

Following the procedure of Example 22, the RF-alcohols of Examples 3 and 6, and the RF-diol of Example 9 are reacted with sulfamic acid, with the degrees of sulfation indicated: Example No. RF-compound of Ex. No. Degree of Sulfation 22 4 0.9 23 3 0.95 24 6 0.85 25 9 1.0

Example 26

The following example shows the performance of the novel sulfate acids and carboxylic acid salts, as well as of 11-perfluoroalkyl-10-undecenoic acid salts as internal and external paper sizes.

SAMPLE PREPARATION AND TESTING:

The required amounts of 2% solutions of the test compounds in distilled water are dissolved in enough aqueous ammonia to achieve complete neutralization of the acid groups; the pH of the resulting solutions or dispersions is 9 to 9.5. Samples of the fluorochemicals are then diluted to the test application levels with distilled water.

1. External Size Application:

The neutralized test solutions are added to a 4% aqueous solution of paper maker's starch (Stayco M, oxidized starch, from Staley Corp.) and then applied to unsized paper by padding (paper dipped through starch solution, and passed through single nip rollers). The resulting sheets are dried at ambient conditions for 15 minutes, then 3 minutes at 200° F in an "Emerson Speed Drier" (heated metal plate with canvas cover).

Oil Kit Test:

The oil repellency of the surface is determined by using the TAPPI UM 557 OIL KIT TEST, which consists of determining with which of twelve castor oil-heptane-toluene mixtures having decreasing surface tension penetration occurs within 15 seconds; ratings go from 1, lowest, to 12.

Grease Resistance Test:

Grease resistance is determined with the Ralston-Purina test for pet food materials; RP-2 Test, Ralston-Purina Company, Packaging Reference Manual Volume 06 - Test Methods.

In summary: cross-wise creased test papers are placed over a grid sheet imprinted with 100 squares. Five grams of sand are placed in the center of the crease. A mixture of synthetic oil and a dye for visualization is pipetted onto the sand and the samples are maintained at 60° C for 24 hours. Ratings are determined by the percentage of stained grid segments, using at least two samples.

2. Internal Size Application and Testing:

Six grams of dry recycled pulp consisting of 70% hard-wood and 30% soft-wood are diluted in 289 ml distilled water and thoroughly dispersed in a blender. To this pulp slurry is added the required amount of a 1% solution of the test compound in distilled water and mixed in for 5 minutes. Then 6 ml of a 1% aqueous solution of cooked cationic starch are added and mixed together for an additional 5 minutes. To this mixture 24 ml of a 50% (on solids) dilution of a water-repellent adjuvant (Hercon-76, from Nalco Chem. Corp.) are added and mixed in for another 10 minutes. The resulting slurry is diluted with an additional 500 ml of distilled water and mixed again. This mixture is then poured over a 100 mesh wire screen, with a vacuum applied from below which pulls the water from the pulp mixture to form a sheet on the screen. The wet sheet is removed from the screen and dried between another screen and hard surface at a pressure of approximately 0.4 Ib./in2 at 110° C for 1 1/2 hours.

Hot-Oil Test:

One ml of hot (110° C) corn oil is placed on the paper and the time is recorded for penetration to occur (20 minutes maximum). Paper made in the same manner, including the cationic starch and water-repellent adjuvant, but without a fluorochemical, demonstrates an oil kit number of < 1 and holds the hot corn oil for less than one minute (begins to penetrate as soon as applied). The amount of oil absorbed is determined gravimetrically by weighing the paper before and after the hot-oil test, and after the surface oil has been removed.

The Oil-Kit Test is the same as that for the External Size.

Hot-Water Test:

One ml of a hot (83° C) 5% lactic acid solution is placed on the paper plate, and hold-out time and absorption are measured the same way as in the hot-oil test.

The test results are shown in the following table. External Size Internal Size RF-salt of Ex. No. % F OIL KIT RP-2 OIL KIT HOLD OUT TIME (MIN) % OIL ABSORBED 24 0.05 0 2 x 100 2 <1 94 0.07 0 2 x 100 2 <1 93 0.1 4 5,5 3 >20 30 23 0.05 3 2 x 0 2 >20 7 0.07 5 2 x 0 4 >20 5 0.1 7 2 x 0 5 >20 2 22 0.05 4 2 x 0 2 >20 7 0.07 5 2 x 0 4 >20 0 0.1 6-7 2 x 0 5 >20 0 25 0.05 5 2,40 6 >20 3 0.07 7 2 x 0 8 >20 6 0.1 10 2 x 0 10 >20 5 16 16 0.05 2 1 100 0.07 4 20 2 0.1 5 >20 3

Example 27: Synthesis of N,N-(2-hydroxy-4-oxa-7-perfluoroalkyl-6,7-heptenyl)-aspartic acid a) Synthesis of a diallyl-diacid from aspartic acid and allyl glycidyl ether.

A mixture of 29.3g (022 mol) aspartic acid, 35.2g (0.44 mol, 50%) sodium hydroxide, 35 g deionized water, and 30 g n-propanol is stirred at 50-55° C in a three-necked, round-bottomed flask equipped with condenser, dropping funnel and stirrer, 50.2g (0.44 mol) allyl glycidyl ether are added over 50 minutes to give a cloudy, biphasic system which after an additional hour at 50° C becomes clear and homogeneous. The reaction mixture is then stirred for an additional 4 hours at 50-55° C. Complete consumption of the epoxide is ascertained by gas chromatography.

b) Addition of R F -iodide:

At 30° C, 265g (0.44 mol) perfluoroalkyl iodide with a homologue distribution of 1.7% C6, 49.8% C8, 33.5% C10, 11.1% C12, 3.1% C14, 0.69% C16 and 0.16% C18 (TEL-AN, from DuPont), 1.7g (0.0088 mol) VAZO-67, and 4.2 (0.022 mol) sodium metabisulfite are charged to the above mixture under a nitrogen purge. The slightly yellow, milky mixture is then heated to 75° C; the temperature rises to 88° C. After cooling back to 75° C, the white, pasty mixture is stirred for an additional 260 minutes. At this time the RFI is completely consumed. A charge of 36.5g (0.46 mol, 50%) sodium hydroxide is slowly added to the mixture to eliminate HI. After 40 minutes the product mixture is cooled to room temperature and poured into 3000 ml cold, deionized water. The mixture is neutralized with dilute HCl to pH 2-2.5, filtered and washed. Drying is carried out using 25 mm Hg vacuum at 50° C for 2 days to yield 270g (94% yield) of off white powder.

Example 28: 1). Synthesis of NN-(2-hydroxy-4-oxa-7-perfluoroalkyl-6,7-heptenyl)-1,1-dihydroxymethylaminopropane. a) Allyl glycidyl ether addition to amine:

A solution of 42.0g (0.35 mol) 2-amino-2-ethylpropanediol and 39.7g distilled water is stirred at 25° C in a three-necked, round-bottomed flask equipped with a condenser, dropping funnel and stirrer. 83.2g (.73 mol) allyl glycidyl ether are added over 60 minutes to give a clear solution. An additional 1.4g (.01 mol) 2-amino-2-ethylpropanediol are added and the clear solution is stirred 4 hours at 25° C, followed by one hour at 80° C. Complete consumption of the epoxide is ascertained by gas chromatography.

b) RF-I addition:

At 25° C, 101.4g (0.17 mol) perfluoroalkyl iodide with a homologue distribution of 1.7% C6, 49.8% C8, 33.5% C10, 11.1% C12, 3.1% C14, 0.69% C16 and 0.16% C18 (TEL-AN, from DuPont), 3.2g (0.02 mol) sodium metabisulfite and 39.5g distilled water are charged to a three-necked, round bottomed flask equipped with a condenser and stirrer under a nitrogen purge. The slightly yellow mixture is then heated to 85° C and 49.1g (0.9 mol) of the above solution together with 0.715g (0.004mol) Vazo 67 are added. The mixture is stirred at 85° C for 4 hours. At this time RFI is completely consumed. A charge of 4.35g (.11 mol) sodium hydroxide dissolved in 9.1g distilled water is slowly made over 15 minutes to eliminate HI. After 6.5 hours at 85° C, 30.5g distilled water and 5.5g isopropanol are added. The contents form two layers when agitation is stopped. The bottom organic layer is washed twice with 25 ml hot water, then dried under 25 inches Hg vacuum at 70° C for 7 hours to yield 51.0g (45.5%) of a brown solid.

2). Phosphation:

At 25° C, 12.04g (.001 mol) of the amine tetrol of part 2.), 5.99g polyphosphoric acid and 4.17g glyme are charged to a three-necked, round bottomed flask equipped with a condenser and stirrer and using a nitrogen purge. The mixture is then heated to 90° C for 3.5 hours to give a brown viscous mixture. Then 20 g methyl propyl ketone, 20 g distilled water and 13g conc. HCl are added and the mixture is stirred until it is homogeneous at room temperature. Then the stirrer is stopped and the contents are allowed to settle out into three layers. The major component is contained in the middle layer, which is separated and filtered. A brown paste is obtained, which is dried under 25 inches Hg vacuum at 100° C for 7 hours to yield a brown solid in 95% yield.

Example 29

45.74g (0.0756 moles) RF-iodide with a RF-chain length distribution of 1.7% C6, 49.8% C8,33.5% C10, 11.1% C12, 3.1% C14, 0.69% C16 and 0.16% C18, (TEL-AN, from DuPont), 23.23g distilled water, 0.75g (0.004 moles) sodium metabisulfite and 15.27g (0.083 moles) 10-undecylenic acid (C11-A) are placed in a 100 mol 3-necked round bottom flask equipped with stirrer, condenser, gas inlet tube and thermometer. The mol ratio of RF-I/ C11-acid is 1/1.09. The mixture is stirred and sparged with nitrogen and 1 g dry ice, then heated to 80° C. Next 0.0239g (0.13 mmoles) 2,2'-azobis-(2-methylbutyronitrile) (VAZO 67) are added, followed by 0.026g VAZO-67 after 3 hours and 0.033g VAZO 67 after 7 hours. The progress of the reaction is monitored by observing the disappearance of RFI by gas chromatography.

After 9 hours reaction time, 20.0g of a 50% NaOH solution are added. The mixture is stirred at 70°C for 3 hours; then is cooled to room temperature. The mixture is slowly poured into 1 liter of ice water acidified with 100g of a 10% hydrochloric acid solution. The precipitate is filtered, washed several times with cold water and dried in vacuo to a tan, waxy solid with a melting point of 43-54°C. The yield is 48g (93% of theory).

Example 30:

The products of examples 27-30 are dispersed in water and the pH of the dispersions are adjusted to 9; the resulting solutions and dispersions are used as internal and external paper sizes and the samples are tested as previously described. The following table shows the test results. External Size OIL TEST Internal Size OIL TEST WATER TEST Product of Ex. No. % F OIL KIT RP-2 OIL KIT OIL HOLD OUT (MIN) % OIL ABSORB. WATER HOLD OUT (MIN) % WATER ABSORB. 27 0.05 6 4 x 0 3 >20 4 >20 4 0.07 8 4 x 0 3 >20 3 >20 3 0.1 10 4 x 0 4 >20 4 >20 4 28 0.05 5 4 x 0 3 < 1 96 >20 2 0.07 6 4 x 0 3 >20 13 >20 4 0.1 8 4 x 0 4 >20 2 >20 3 29 0.05 4 2 x 100 3 >20 0 >20 7 0.07 6 2 x 100 4 >20 8 >20 7 0.1 7 2 x 100 4 >20 10 >20 5

Example 31: Synthesis of a di-R F amino-diacid

A mixture of 13.2 g (89.7 mmol) glutamic acid, 16.0 g (200 mmol, 50%) sodium hydroxide, 16 g deionized water, and 12 g n-propanol is stirred at 50-55° C in a three-necked, round-bottomed flask equipped with condenser, dropping funnel, and stirrer. Then 20.0 g (175 mmol) allyl glycidyl ether are added over 20 minutes to give a cloudy, biphasic system which, after and additional hour at this temperature, becomes clear and homogeneous. The reaction mixture is stirred for an additional 5 hours at 50-55° C; then taken to reflux (90° C) for 30 minutes. Complete consumption of the epoxide is ascertained by gas chromatography.

RFI Addition:

At 30° C, 105.3 g (175 mmol) RFI with a RF-chain length distribution of 1.7% C6, 49.8% C8,33.5% C10, 11.1% C12, 3.1% C14, 0.69% C16 and 0.16% C18, (TEL-AN, from DuPont), 0.7 g (3.6 mmol) VAZO-67, and 1.7 g (9 mmol) sodium metabisulfite are charged to the above mixture under a nitrogen purge. The slightly yellow, milky mixture is then heated to 77° C and the temperature rises to 90° C. After cooling back to 80° C, the white, pasty mixture is stirred for an additional 180 minutes. At this time the RFI is completely consumed. Then 16 g (190 mmol, 50%) sodium hydroxide is slowly added to the mixture to eliminate HI. After 60 minutes, the product mixture is cooled to room temperature, poured into 3000 ml cold, deionized water and neutralized with dilute HCl to pH 2-2.5. A precipitate is formed, which is filtered and washed. After drying at 25 mm Hg at 55° C for one day, 113 g of the product are obtained as a brown solid in 97% yield.

Example 32: Synthesis of a di-R F -amino-monoacid.

In a three-necked, 300 ml round-bottomed flask equipped with condenser, thermometer and mechanical stirrer are placed 12.0 g (0.0105 mmol) allyl glycidyl ether, 4.7 g (0.0526 mmol &bgr;-alanine, 4.2 g (0.0526 mmol, 50%) sodium hydroxide, 4.5 g deionized water and 3.6 g n-propanol. The two-phase mixture is stirred while the temperature is raised to 85° C. After 15 minutes at this temperature, a clear yellow, homogeneous system is formed. After 2 hours, total consumption of epoxide is determined by gas chromatography and the solution is cooled to 30°C.

To the above solution are charged 63.2 g (0.105 mmol) RFI with a RF-chain length distribution of 1.7% C6, 49.8% Cg, 33.5% C10, 11.1% C12, 3.1% C14, 0.69% C16 and 0.16% C18, (TEL-AN, from DuPont), 1.0 g (5.26 mmol) sodium metabisulfite, and 0.4 g (2.10 mmol) VAZO-67. The mixture is heated under nitrogen to 75° C and continues to rise to 90° C. The flask contents are cooled down to 85° C and stirred at this temperature for 4 hours. All the RFI is used up as determined by GC. 12 g (0.105 mmol, 50%) sodium hydroxide is added to eliminate HI and the mixture is stirred for an additional hour. The product mixture is then poured into one liter of cold water and acidified with 10% hydrogen chloride. A precipitate is formed which is filtered and dried, first in air at room temperature and then under vacuum to give 63.9 g (96% yield) of a light tan solid.

Example 33:

The procedure of example 32 is repeated, but using instead of beta-alanine an equivalent amount of taurine (2-aminoethylenesulfonic acid). The resulting di-RFaminosulfonic acid is obtained in 91% yield as a light tan solid, which is soluble in aqueous ammonia.


Anspruch[de]
Oligo-Perfluoralkylalkohol oder -säure der Formeln



        (I) (QFCH2O)b-Y-(X)a



oder



        (III) Ze(-L-(U-OH)d)e



worin QF QF2 ist, QF2 RFCH=CH- ist, und RF ein einwertiger, perfluorierter, geradkettiger, verzweigter oder zyklischer organischer Alkyl- oder Alkenyl-Rest mit drei bis zwanzig vollständig fluorierten Kohlenstoffatomen ist, wobei der Rest durch zweiwertige Sauerstoff- oder Schwefelatome unterbrochen sein kann, wobei jeder RF-Rest entweder identisch zu oder unterschiedlich von den anderen RF-Resten ist, Y eine dreiwertige oder tetravalente organische Bindungsgruppe mit 1 bis 20 Kohlenstoffatomen ist, die durch eine oder mehrere polyvalente Gruppen oder Heteroatome unterbrochen sein kann, ausgewählt aus -O-, -S-, -N<, NR1-, -CO-, -CONR1-, NHCOO-, -CON<, -CO2, -O2C-, -O2CO- und -SO2- in denen R1 Wasserstoff, C1-C20-Alkyl, Di-C1-C2-alkylamino-C2-C6-alkylen, Hydroxy-C1-C5-alkylen oder C1-C5-Alkyl oder Hydroxy-C1-C5-alkylen ist, das durch Pyridyl, Piperidyl oder Cyclohexyl substituiert ist, X OH, O-CH2-COOH oder COOH ist, a 1 oder 2 ist, b 2 oder 3 ist, L O, S oder NR' ist, worin R' C1-C20-Hydrocarbyl, Hydroxy-C2-C5-alkylen, Carboxymethylen oder U-OH ist, ist, Z H oder eine ein-, zwei-, drei- oder vierwertige Gruppe mit 1-40 Kohlenstoffatomen ist, die durch eine oder mehrere polyvalente Gruppen oder Heteroatome unterbrochen sein kann, ausgewählt aus -O-, -S-, -N<, NR1-, -CO-, -CONR1-, NHCOO-, -CON<, -CO2, -O2C-, -O2CO- und -SO2-, und ebenso durch Hydroxyl, Carboxyl, Carboxyalkyl oder Sulfonat substituiert sein kann, wenn L S oder NR' ist, r und q jeweils unabhängig voneinander 0 bis 10 sind, c 1 bis 4 ist, d 1 bis 3 ist, mit der Bedingung, dass, wenn c und d beide 1 sind, Z einwertig und r>0 ist, und e 0 oder 1 ist, mit der Bedingung, dass, wenn e 0 ist, d 2 und L S oder NR' ist.
Verbindung der Formel (I) oder (II) gemäß Anspruch 1, worin QF QF2 ist, und RF gesättigt ist, 6-18 Kohlenstoffatome enthält, vollständig fluoriert ist und mindestens eine Perfluormethyl-Endgruppe enthält. Verbindung der Formel (I) oder (II) gemäß Anspruch 1 oder 2, worin

RF eine vollständig fluorierte, lineare Kohlenstoffkette mit 6 bis 14 Kohlenstoffatomen ist.
Verbindung der Formel (I) gemäß einem der Ansprüche 1 bis 3, worin

Y eine dreiwertige oder vierwertige Hydrocarbyl-Verbindungsgruppe mit 1 bis 10 Kohlenstoffatomen ist.
Alkohol der Formel (I) gemäß Anspruch 2, der ausgewählt ist aus der Gruppe bestehend aus

(QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2, (QF2CH2OCH2)3C-CH2OH und

(QF2CH2OCH2)2C(C2H5)CH2OH.
Säure der Formel (I) gemäß Anspruch 1, die ausgewählt ist aus der Gruppe bestehend aus und



        H3C-C(COOH)(CH2OCH2QF)2.



Säure der Formel worin QF QF2 ist, QF2 RFCH=CH- ist, und RF ein einwertiger, perfluorierter geradkettiger, verzweigter oder zyklischer organischer Alkyl- oder Alkenyl-Rest mit drei bis zwanzig vollständig fluorierten Kohlenstoffatomen ist, wobei der Rest durch zweiwertige Sauerstoff- oder Schwefelatome unterbrochen sein kann, wobei jeder RF-Rest entweder identisch zu oder unterschiedlich von den anderen RF-Resten ist. Verbindung der Formel (II) gemäß Anspruch 2, worin QF QF2 ist, RF gesättigt ist, 6-18 Kohlenstoffatome enthält, vollständig fluoriert ist und mindestens eine Perfluormethyl-Endgruppe enthält. Verbindung nach Anspruch 8, worin r gleich oder größer als q und 0 bis 5 ist, und q 0 bis 3 ist. Verbindung der Formel (II) gemäß Anspruch 2, worin L O ist, und a) c und d 1 sind und Z Phenyl, Carboxyphenyl, p-n-C1-C10-Alkylphenyl, ein einwertiger Alkyl- oder Alkenylrest mit 1-20 Kohlenstoffatomen ist, der durch -O-, -S- oder -NR1-Gruppen unterbrochen sein kann, und durch eine oder zwei Carboxylgruppen substituiert sein kann, oder Hydroxy-C2-C5-alkylen ist, oder b) c 2 ist, d 1 ist und Z 1,4-Phenylen oder ein zweiwertiger Alkenylrest ist, der durch -O-, -S- oder -NR1-Gruppen unterbrochen sein kann, und durch eine oder zwei Carboxylgruppen substituiert sein kann, oder c) c 3 ist, d 1 ist und Z ein dreiwertiger Alkylenrest ist, der durch -O-, -S- oder -NR1-Gruppen unterbrochen sein kann, oder d) c 4 ist, d 1 ist und Z ein vierwertiger Rest eines Polyols ist. Verbindung der Formel (II) gemäß Anspruch 2, worin L S ist und a) d 2 ist und Z entweder eine direkte Bindung ist, wenn e 1 ist oder e 0 ist, oder b) d und c 1 sind und Z ein einwertiger linearer oder verzweigter Alkylrest mit 1-20 Kohlenstoffatomen, Hydroxy-C2-C5-alkylen, Carboxy-C2-C4-alkylen oder -CH(COOH)CH2COOH ist, oder c) d 1 ist, c 2 ist und Z ein zweiwertiger C2-C20-Alkylenrest ist, der durch -O- oder -NR1- unterbrochen sein kann. Verbindung der Formel (II) gemäß Anspruch 2, worin L NR' ist, R' U-OH, C1-C5-Alkyl oder Carboxymethylen ist, c, d und e jeweils 1 sind, und Z einwertig ist. Verbindung der Foemel (II) gemäß Anspruch 12, worin R' U-OH ist, und Z ein einwertiger Alkylrest mit 1-20 Kohlenstoffatomen ist, der durch -O-, -S- oder -NR1-Gruppen unterbrochen sein kann, oder ein Phenylrest, wobei die Reste durch Hydroxy-, Carboxy- oder Sulfonatgruppen substituiert sein können. Verbindung der Formel (II) gemäß Anspruch 13, worin Z der Rest minus 1 NH2-Rest von Butylamin, Aminoethanol, 1,1-Dihydroxymethylaminopropan, Tris(hydroxymethyl)aminomethan, Glucamin, p-Aminobenzoesäure, beta-Alanin oder HOOC-CH(NH2)-A ist, A der radikalische Rest einer &agr;-Aminosäure ist, ausgewählt aus Glycin, Alanin, Asparaginsäure, Glutaminsäure und Taurin. Verbindung der Formel (II) gemäß Anspruch 13, worin Z HOOC-CH2CH2-, HOOC-CH2-, HOOC-CH(CH3)-, -CH2CH2SO3H, -CH(COOH)-(CH2)1-2COOH, -C(C2H5)(CH2OH)2 oder (CH3)2N(CH2)3- ist. Verbindung der Formel (II) gemäß Anspruch 12, worin c 2 bis 4 ist, d 2 ist, und R' U-OH ist, oder d 1 ist, R' Alkyl mit 1-5 Kohlenstoffatomen oder eine Carboxymethylengruppe ist, und Z ein zweiwertiger Alkylenrest mit 2 bis 12 Kohlenstoffatomen ist, der durch -O- -S- oder -NR1-Gruppen unterbrochen und durch Hydroxy-, Carboxy- oder Sulfonatgruppen substituiert ist. Verbindung der Formel (II) gemäß Anspruch 16, worin Z der diradikalische Rest (minus 2 NH2- oder HNR1-Gruppen) von 1,3-Diaminopropan, 1,3-Diamino-2-hydroxypropan, 2-(2-Aminoethylamino)-ethanol, N,N'-Bis-(2-hydroxyethyl)-ethylendiamin, Ethylendiamindiessigsäure oder Lysin ist. Alkohol der Formel (II) gemäß Anspruch 2, der ausgewählt ist aus der Gruppe bestehend aus

(QF2CH2OCH2CH(OH)CH2)2N-C(CH2OH)2C2H5, (QF2CH2OCH2CH(OH)CH2)2S, (QF2CH2OCH2CH(OCH2CH2OH2CH2)2S und QF2CH2OCH2CH(OH)CH(OH)CH2OCH2QF2.
Ester der Formel



        (Ia)     (QF2CH2O)b-Y-(O2C-R3)a



oder



        (IIa)     Z(-L-(U-O2C-R3)d)c



worin QF QF2 ist, QF2 RFCH=CH- ist, und RF ein einwertiger, perfluorierter, geradkettiger, verzweigter oder zyklischer organischer Alkyl- oder Alkenyl-Rest mit drei bis zwanzig vollständig fluorierten Kohlenstoffatomen ist, wobei der Rest durch zweiwertige Sauerstoff- oder Schwefelatome unterbrochen sein kann, wobei jeder RF-Rest entweder identisch zu oder unterschiedlich von den anderen RF-Resten ist, Y eine dreiwertige oder tetravalente organische Bindungsgruppe mit 1 bis 20 Kohlenstoffatomen ist, die durch eine oder mehrere polyvalente Gruppen oder Heteroatome unterbrochen sein kann, ausgewählt aus -O-, -S-, -N<, NR1-, -CO-, -CONR1-, NHCOO-, -CON<, -CO2, -O2C-, -O2CO- und -SO2-, in denen R1 Wasserstoff, C1-C20-Alkyl, Di-C1-C2-alkylamino-C2-C6-alkylen, Hydroxy-C1-C5-alkylen oder C1-C5-Alkyl oder Hydroxy-C1-C5-alkylen ist, das durch Pyridyl, Piperidyl oder Cyclohexyl substituiert ist, a 1 oder 2 ist, b 2 oder 3 ist, L O, S oder NR' ist, worin R' C1-C20-Hydrocarbyl, Hydroxy-C2-C5-alkyl, Carboxymethylen oder U-OH ist, U ist, Z eine ein-, zwei-, drei- oder vierwertige Gruppe mit 1-40 Kohlenstoffatomen ist, die durch eine oder mehrere polyvalente Gruppen oder Heteroatome unterbrochen sein kann, ausgewählt aus -O-, -S-, -N<, NR1-, -CO-, -CONR1-, NHCOO-, -CON<, -CO2, -O2C-, -O2CO- und -SO2-, und ebenso durch Hydroxyl, Carboxyl, Carboxyalkyl oder Sulfonat substituiert sein kann, wenn L S oder NR' ist, r und q jeweils unabhängig voneinander 0 bis 10 sind, c 1 bis 4 ist, d 1 bis 3 ist, mit der Bedingung, dass, wenn c und d beide 1 sind, Z einwertig und r>0 ist, und e 0 oder 1 ist, mit der Bedingung, dass, wenn e 0 ist, d 2 und L S oder NR' ist, und R3 H oder C1-C20-Hydrocarbyl ist, das durch eine oder mehrere Hydroxyl-, Thiol- oder Carboxylgruppen substituiert sein kann.
Ester der Formel (Ia) oder (IIa) gemäß Anspruch 19, worin R3 der Rest von Essig-, Benzoe-, Hydroxybenzoe-, Terephthal-, Phthal-, Acryl-, Methacryl-, Zitronen-, Malein-, Fumar-, Itacon-, Malon-, Succin-, Thioessig-, Thiopropion- oder Thiosuccinsäure ist. Ester der Formel (Ia) gemäß Anspruch 19□, der ein Acrylat, Methacrylat, Maleat, Fumarat, Succinat oder ortho- oder Terephthalat eines Alkohols der Formel

(QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2, (QF2CH2OCH2)3C-CH2OH oder (QF2CH2OCH2)2C(C2H5)CH2OH ist, in denen

QF2 wie in Anspruch 1 definiert ist.
Ester der Formel (IIa) gemäß Anspruch 20, der ein Acrylat, Methacrylat, Maleat, Fumarat, Succinat oder ortho- oder Terephthalat eines Diols der Formel



        (IIb)     Ze-N-(U-OH)2 oder (IIc) Ze (O-U-OH)2 ist,



worin, in der Definition von U, r gleich oder größer als q und 0 bis 5 ist, q 0 bis 3 ist, und, wenn e 1 ist, Z ein einwertiger Hydrocarbylrest mit 1-20 Kohlenstoffatomen ist, der durch -O-, -S- oder -NR1-Gruppen unterbrochen und durch Hydroxy- oder Carboxygruppen substituiert sein kann, oder, wenn e 2 ist, Z 1,4-Phenylen oder ein zweiwertiger Alkylenrest ist, der durch -O-, -S- oder -NR1-Gruppen unterbrochen sein kann, worin R1 wie in Anspruch 1 definiert ist.
Polyester der Formeln oder



        (IId)     -(U-L-Z-L-U-O2C-R4-CO2)n-



worin Y eine vierwertige organische Bindungsgruppe mit 1 bis 20 Kohlenstoffatomen ist, Z ein zweiwertiger Alkylenrest mit 2 bis 12 Kohlenstoffatomen ist, der durch -O- -S- oder 1,4-Phenylen unterbrochen und durch 1 oder 2 Carboxylgruppen substituiert sein kann, n eine ganze Zahl von 2 bis 100 ist, QF2 RFCH=CH- ist, worin RF ein einwertiger, perfluorierter, geradkettiger, verzweigter oder zyklischer organischer Alkyl- oder Alkenyl-Rest mit drei bis zwanzig vollständig fluorierten Kohlenstoffatomen ist, wobei der Rest durch zweiwertige Sauerstoff- oder Schwefelatome unterbrochen sein kann, und wobei jeder RF-Rest entweder identisch zu oder unterschiedlich von den anderen RF-Resten ist, L O, S oder NR' ist, in dem R' C1-C20-Hydrocarbyl, Hydroxy-C2-C5-alkyl, Carboxymethyl oder U-OH ist, U ist, und R4 der zweiwertige radikalische Rest einer Dicarbonsäure der Formel HOOC-R4-COOH ist.
Polyester der Formel (Id) oder (IId) gemäß Anspruch 23, worin R4 eine direkte Bindung, ein Alkylen mit 1-16 Kohlenstoffatomen, ein Arylen mit 6 bis 14 Kohlenstoffatomen oder ein Alkarylen mit 7 bis 18 Kohlenstoffatomen ist. Polyester der Formel (Id) oder (IId) gemäß Anspruch 23, worin R4 der zweiwertige radikalische Rest einer Dicarbonsäure der Formel HOOC-R4-COOH ist, ausgewählt aus der Gruppe bestehend aus Oxal-, Malon-, Succin-, Glutar-, Adipin-, Pimelin-, Suberin-, Azalein-, Sebacin-, Brassyl-, Octadecandion-, Dimer-, 1,4-Cyclohexandicarboxyl-, 4,4'-Dicyclohexyl-1,1'-dicarbon-, Phthal-, Isophthal-, Terephthal-, Methylphthal-, Diphenyl-2,2'-dicarbon-, Diphenyl-4,4'-dicarbon-, 1,4-Naphthalendicarbon-, Diphenylmethan-2,2'-dicarbon-, Diphenylmethan-3,3'-dicarbon-, Diphenylmethan-4,4'-dicarbonsäure, oder der zweiwertige Radikalrest abgeleitet von Pyromellithanhydrid oder Benzoltetracarbonsäure-Dianhydrid. Polyester der Formel (Id) gemäß Anspruch 23, worin Y -CH2(CH-)CH2-S-CH2(CH-)CH2- oder -CH2(CH-)CH2-NR'-CH2(CH-)CH2- ist und R4 -CH=CH-, -(CH2)2-8- oder1,3- oder 1,4-Phenylen ist oder der Formel (IId) gemäß Anspruch 23, worin L O ist, R4 -CH=CH-, -(CH2)2-8- oder Phenylen ist, Z ein zweiwertiger Alkylenrest ist, der durch -O-, -S- oder -NR1-Gruppen unterbrochen sein kann, und, in der Definition von U, r gleich oder größer als q und 0 bis 5 ist, und q 0 bis 3 ist. Mono- oder Diphosphat oder Bis-monophosphat eines Alkohols oder Polyols der Formel (I) oder (II) gemäß Anspruch 2. Verbindung gemäß Anspruch 27, die ausgewählt ist aus der Gruppe bestehend aus Monophosphaten von Alkoholen und Polyolen der Formeln

(QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2, (QF2CH2OCH2)3C-CH2OH und (QF2CH2OCH2)2C(C2H5)CH2OH.
Phosphat gemäß Anspruch 27, worin Y -CH2(CH-)CH2-S-CH2(CH-)CH2- oder -CH2(CH-)CH2-NR'-CH2(CH-)CH2- ist, oder der Formel worin QF2 wie in Anspruch 1 definiert ist. Monophosphat eines Diols der Formel (II) gemäß Anspruch 2, worin, in der Definition von U, r gleich oder größer als q und 0 bis 5 ist, und q 0 bis 3 ist, L O ist und Z a) Phenyl, p-n-C1-C10-Alkylphenyl, ein einwertiger Alkylrest mit 1-20 Kohlenstoffatomen, der durch -O-, -S- oder -NR1-Gruppen unterbrochen sein kann, oder Hydroxy-C2-C5-alkylen ist, oder b) 1,4-Phenylen oder ein zweiwertiger Alkylenrest ist, der durch -O-, -S- oder -NR1-Gruppen unterbrochen sein kann, oder c) ein dreiwertiger Alkylenrest ist, der durch -O-, -S- oder NR1 unterbrochen sein kann. Monophosphat eines Diols der Formel (II) gemäß Anspruch 2, worin, in der Definition von U, r gleich oder größer als q und 0 bis 5 ist, und q 0 bis 3 ist, und a) L S ist und Z eine direkte Bindung oder ein zweiwertiger C2-C20-Alkylenrest ist, der durch -O- oder -NR1-Gruppen unterbrochen sein kann, oder b) L NR' ist, worin R' U-OH ist und Z ein zweiwertiger Alkylenrest mit 2 bis 12 Kohlenstoffatomen ist, der durch -O-, -S- oder -NR1-Gruppen unterbrochen und durch Hydroxy- oder Carboxygruppen substituiert sein kann. Monophosphat eines Diols der Formel (II) gemäß Anspruch 2, worin, in der Definition von U, r gleich oder größer als q und 0 bis 5 ist, und q 0 bis 3 ist, L O ist, und Z -CH2CH2- oder CH3CH2C(CH2-)3 ist oder ein Phosphat der Formel ist Mono- oder Disulfat eines Alkohols oder Poyols der Formel (I) oder (II) gemäß Anspruch 2. Verbindung der Formel (I) gemäß Anspruch 33, die ausgewählt ist aus der Gruppe bestehend aus Mono- und Disulfaten von Alkoholen und Polyolen der Formeln

(QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2, (QF2CH2OCH2)3C-CH2OH und (QF2CH2OCH2)2C(C2H5)CH2OH.
Monosulfat eines Diols der Formel (II) gemäß Anspruch 2, worin, in der Definition von U, r gleich oder größer als q und 0 bis 5 ist, und q 0 bis 3 ist, L O ist und Z a) Phenyl, p-n-C1-C10-Alkylphenyl, ein einwertiger Alkylrest mit 1-20 Kohlenstoffatomen, der durch -O-, -S- oder -NR1-Gruppen unterbrochen sein kann, oder Hydroxy-C2-C5-alkylen ist, oder b) 1,4-Phenylen oder ein zweiwertiger Alkylenrest ist, der durch -O-, -S- oder -NR1-Gruppen unterbrochen sein kann, oder c) ein dreiwertiger Alkylenrest ist, der durch -O-, -S- oder NR1-Gruppen unterbrochen sein kann. Monosulfat eines Diols oder Polyols der Formel (II) gemäß Anspruch 2, worin, in der Definition von U, r gleich oder größer als q und 0 bis 5 ist, und q 0 bis 3 ist, und a) L S ist und Z eine direkte Bindung oder ein zweiwertiger C2-C20-Alkylenrest ist, der durch -O- oder -NR1- unterbrochen sein kann, oder b) L NR' ist, R' U-OH ist und Z ein zweiwertiger Alkylenrest mit 2 bis 12 Kohlenstoffatomen ist, der durch -O-, -S- oder -NR1-Gruppen unterbrochen und durch Hydroxy- oder Carboxylgruppen substituiert ist. Monosulfat eines Diols oder Polyols der Formel (II) gemäß Anspruch 2, worin, in der Definition von U, r gleich oder größer als q und 0 bis 5 ist, und q 0 bis 3 ist, L O ist, und Z -CH2CH2- ist, oder ein Monosulfat eines Polyols der Formel

CH3CH2-C-(CH2OCH2CH(OH)CH2OCH2QF2)3 oder (HOCH2)2(C2H5)-C-N(CH2OCH2CH(OH)CH2OCH2QF2)2.
Polyurethan, bestehend aus oder enthaltend sich wiederholende Einheiten der Formeln und



        (IIe)-(U-L-Z-L-U-O2CHN-R5-NHCO2)



worin Y eine vierwertige organische Bindungsgruppe mit 2 bis 20 Kohlenstoffatomen ist, Z ein zweiwertiger Alkylenrest mit 2 bis 12 Kohlenstoffatomen ist, der durch -O- -S- oder 1,4-Phenylen unterbrochen und durch 1 oder 2 Carboxylgruppen substituiert sein kann, n eine ganze Zahl von 2 bis 100 ist, QF2 RFCH=CH- ist, RF ein einwertiger, perfluorierter, geradkettiger, verzweigter oder zyklischer organischer Alkyl- oder Alkenyl-Rest mit drei bis zwanzig vollständig fluorierten Kohlenstoffatomen ist, wobei der Rest durch zweiwertige Sauerstoff- oder Schwefelatome unterbrochen sein kann, und wobei jeder RF-Rest entweder identisch zu oder unterschiedlich von den anderen RF-Resten ist, L O, S oder NR' ist, R' C1-C20-Hydrocarbyl, Hydroxy-C2-C5-alkyl, Carboxymethyl oder U-OH ist, ist, und R5 der diradikalische Rest eines Diisocyanats der Formel OCN-R5-NCO ist.
Polyurethan gemäß Anspruch 38, worin R5 der diradikalische Rest eines Diisocyanats der Formel OCN-R5-NCO ist, ausgewählt aus der Gruppe bestehend aus

Toluoldiisocyanat (alle Isomeren), 4,4'-Diphenylmethandiisocyanat, Toluidindiisocyanat, Dianisidindiisocyanat, m-Xylyldiisocyanat, p-Phenylendiisocyanat, m-Phenylendiisocyanat, 1-Chlor-2,4-phenylendiisocyanat, 3,3'-Dimethyl-4,4'-bisphenylendiisocyanat, 4,4'-bis(2-Methylisocyanatophenyl)methan, 4,4' -Bisphenylendiisocyanat, 4,4'-bis(2-Metoxyisocyanatophenyl)methan, 1-Nitropheny-3,5-diisocyanat, 4,4'-Diisocyanatodiphenyether, 3,3'-Dichlor-4,4'-diisocynatodiphenylether, 3,3'-Dichlor-4,4'-diisocynatodiphenylmethan, 4,4'-Diisocyanatodibenzyl, 3,3'-Dimethoxy-4,4'-diisocyanatodiphenyl-2,2'-dimethyl-4,4'-diisocyanatophenyl, 2,2'-Dichlor-5,5'-dimethoxy-4,4'-diioscyanatodiphenyl-3,3'-dichlor-4,4'-diisocyanatodiphenyl, 1,2-Naphthalendiisocyanat, 4-Chlor-1,2-naphthalendiisocyanat, 4-Methy-1,2-naphthalendiisocyanat, 1,5-Naphthalendiisocyanat, 1,6-Naphthalendiiosocyanat, 1,7-Naphthalendiisocyanat, 1,8-Naphthalendiisocyanat, 4-Chlor-1,8-naphthalendiisocyanat, 2,3-Naphthalendiisocyanat, 2,7-Naphthalendiisocyanat, 1,8-Dinitro-2,7-naphthalendiisocyanat, 1-Methyl-2,4-naphthalendiiosocyanat, 1-Methyl-5,7-naphthalendiisocyanat, 6-Methyl-1,3-naphthalendiisocyanat, 7-Methyl-naphthalendiisocyanat, 1,2-Ethandiisocyanat, 1,3-Propandiisocyanat, 1,4-Btuandiisocyanat, 2-Chlorpropan-1,3-diisocyanat, Pentamethylendiisocyanat, Propylen-1,2-diisocyanat, 1,8-Oktandiisocyanat, 1,10-Decandiisocyanat, 1,12-Dodecandiisocyanat, 1,16-Hexadecandiisocyanat, 1,6-Hexamethylendiisocyanat, 2,2,4- und 2,4,4-Trimethylhexamethylendiisocyanat, aus dimerer Säure abgeleitetes Diisocyanat, erhalten aus dimerisierter Linolensäure, 4,4'-Dicyclohexylmethandiisocyanat, Isophorondiisocyanat, 3-Isocyanatomethyl-3,5,5-trimethylcyclohexyldiisocyanat, Lysinmethylesterdiisocyanat, Bis(2-isocyanatoethyl)fumarat, Bis(2-isocyanatomethyl)carbonat und m-Tetramethylxylylendiisocyanat.
Polyurethan mit einem Molekulargewicht von 3000 bis 30000 der Formel (Ie) gemäß Anspruch 38, das sich wiederholende Einheiten der Formeln und/oder enthält, worin R1 C1-C5-Alkyl ist, R5 der diradikalische Rest von Isophorondiisocyanat, 2,2,4-(2,4,4)-Trimethylhexamethylendiisocyanat oder 1,6-Hexamethylendiisocyanat ist, und QF2 wie in Anspruch 1definiert ist. Polyurethan mit einem Molekulargewicht von 3000 bis 30000 der Formel (IIe) gemäß Anspruch 38, worin, in der Definition von U, r gleich oder größer als q und 0 bis 5 ist, und q 0 bis 3 ist, und a) L S ist, und Z eine direkte Bindung ist, oder b) L NR' ist, worin R' C1-C5-Alkyl ist, und Z ein zweiwertiger C2-C12-Alkylenrest ist, oder c) L NR' ist, worin R' U-OH ist und Z ein einwertiger Rest mit 1 bis 20 Kohlenstoffatomen ist, der durch -O-, -S- oder -NR1-Gruppen unterbrochen sein kann. Verbindung der Formel



        (If) (QF2CH2O)b-Y-(O-CH2CH(OH)R6)a



worin R6 Wasserstoff, ein Kohlenwasserstoffrest mit 2 bis 20 Kohlenstoffatomen, oder ein Polyethylenoxidrest -(OCH2CH2)u-R7 ist, R7 -OH oder (QF2CH2)b-Y-O-CH2CH(OH)- ist, u eine ganze Zahl von 2 bis 50 ist, und QF2, Y, a und b wie in Anspruch 1 definiert sind.
Verfahren zum Leimen von Papier, um diesem Öl und Wasser abweisende Eigenschaften zu verleihen, umfassend das Behandeln von nicht geleimtem Papier oder Papierfaserbrei mit einer wirksamen Menge eines Alkalimetall-, Ammonium- oder Aminsalzes einer Verbindung, ausgewählt aus der Gruppe, bestehend aus a) Verbindungen der Formel (I) gemäß Anspruch 1, worin X O-CH2-COOH oder COOH ist; b) Verbindungen, die erhältlich sind durch die Umsetzung von Alkoholen der Formeln (I) und (II) gemäß Anspruch 1 mit Dicarbonsäuren, Dicarbonsäureanhydriden, Tetracarbonsäuredianhydriden oder mit Disäurechloriden; c) Sulfaten, Sulfonaten und Phosphaten von Alkoholen der Formeln (I) und (II) gemäß Anspruch 1; d) Verbindungen der Formel (II) gemäß Anspruch 1, worin Z durch Carboxyl, Carboxyalkyl oder Sulfonat substituiert ist, und e) 11-Perfluoralkyl-10-undecensäure und 11-Perfluoralkyl-10-undecenylsulfat. Verfahren zur Behandlung eines festen Substrats, um diesem Öl und Wasser abweisende Eigenschaften zu verleihen, umfassend das Aufbringen einer wirksamen Menge eines Polyurethans gemäß Anspruch 38 darauf. Verfahren zur Behandlung eines festen Substrats, um diesem Öl und Wasser abweisende Eigenschaften zu verleihen, umfassend das Aufbringen einer wirksamen Menge eines Polyesters gemäß Anspruch 23 darauf.
Anspruch[en]
An oligo-perfluoroalkyl alcohol or acid of the formulae



        (I) (QF-CH2O)b-Y-(X)a



or



        (II) Ze(-L-(U-OH)d)c



wherein QF is QF2, in which QF2 is RFCH=CH-, and RF is a monovalent, perfluorinated, alkyl or alkenyl, straight, branched or cyclic organic radical having three to twenty fully fluorinated carbon atoms, which radical can be interrupted by divalent oxygen or sulfur atoms, with each RF radical being identical or different from the other RF radicals, Y is a trivalent or tetravalent organic linking group with from 1 to 20 carbon atoms, which can be interrupted by one or more polyvalent groups or hetero atoms selected from -O-, -S-, -N<, -NR1-, -CO-, -CONR1-, -NHCOO-, -CON<, -CO2-, -O2C-, -O2CO- and -SO2-, in which R1 is hydrogen, C1-C20alkyl, di-C1-C2alkylamino-C2-C6alkylene, hydroxy-C1-C5alkylene, or C1-C5alkyl or hydroxy-C1-C5alkylene, which is substituted by pyridyl, piperidyl or cyclohexyl, X is OH, O-CH2-COOH or COOH, a is 1 or 2, b is 2 or 3, L is O S or NR', in which R' is C1-C20hydrocarbyl, hydroxy-C2-C5alkylene, carboxymethylene or U-OH, U is Z is H or a mono-, di-, tri- or tetravalent organic group of 1-40 carbon atoms which can be interrupted by one or more polyvalent groups or hetero atoms selected from -O-, -S-, -N<, -NR1-, -CO-, -CONR1-, -NHCOO-, -CON<, -CO2-, -O2C-, -O2CO- and -SO2-, and can also be substituted by hydroxyl, carboxyl, carboxyalkyl or sulfonate when L is S or NR', r and q are each, independently, 0 to 10, c is 1 to 4, d is 1 to 3, with the proviso that when c and d are both 1, Z is monovalent and r is > 0, and e is 0 or 1, with the proviso that when e is 0, d is 2 and L is S or NR'.
A compound of the formula (I) or (II) according to claim 1, wherein QF is QF2 and RF is saturated, contains 6-18 carbon atoms, is fully fluorinated and contains at least one terminal perfluoromethyl group. A compound of the formula (I) or (II) according to claim 1 or 2, wherein RF is a fully fluorinated, linear carbon chain with 6 to 14 carbon atoms. A compound of the formula (I) according to anyone of claims 1 to 3, wherein Y is a trivalent or tetravalent hydrocarbyl linking group with from 1 to 10 carbon atoms. An alcohol of the formula (I) according to claim 2, which is selected from the group consisting of

(QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2- (QF2CH2OCH2)3C-CH2OH and (QF2CH2OCH2)2C(C2H5)CH2OH.
An acid of the formula (I) according to claim 1, which is selected from the group consisting of and



        H3C-C(COOH)(CH2OCH2QF)2



An acid of the formula where QF is QF2, QF2 is RFCH=CH-, and RF is a monovalent, perfluorinated, alkyl or alkenyl, straight, branched or cyclic organic radical having three to twenty fully fluorinated carbon atoms, which radical can be interrupted by divalent oxygen or sulfur atoms, with each RF radical being identical or different from the other RF radicals. A compound of the formula (II) according to claim 2, wherein QF is QF2, RF is saturated, contains 6-18 carbon atoms, is fully fluorinated and contains at least one terminal perfluoromethyl group, r is equal to or greater than q and the sum of r plus q is 0 to 10. A compound according to claim 8, wherein r is equal to or greater than q and is 0 to 5 and q is 0 to 3. A compound of the formula (II) according to claim 2, wherein

L is O and a) c and d are 1 and Z is phenyl, carboxyphenyl, p-n-C1-C10alkylphenyl, a monovalent alkyl or alkenyl radical with 1-20 carbon atoms which may be interrupted by -O-, -S- or -NR1- groups, and may be substituted by one or two carboxyl groups, or is hydroxy-C2-C5alkylene, or b) c is 2, d is 1 and Z is 1,4-phenylene or a divalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups and substituted by one or two carboxyl groups, or c) c is 3, d is 1 and Z is a trivalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups, or d) c is 4, d is 1 and Z is a tetravalent residue of a polyol.
A compound of the formula (II) according to claim 2, wherein L is S and a) d is 2 and Z is either a direct bond if e is 1 or e is 0, or b) d and c are 1 and Z is a monovalent linear or branched alkyl radical with 1-20 carbon atoms, hydroxy-C2-C5alkylene, carboxy-C2-C4alkylene or -CH(COOH)CH2COOH, or c) d is 1, c is 2 and Z is a divalent C2-C20alkylene radical which may be interrupted by -O- or -NR1-. A compound of the formula (II) according to claim 2, wherein L is NR', R' is U-OH, C1-C5alkyl or carboxymethylene, c, d and e are each 1 and Z is monovalent. A compound of the formula (II) according to claim 12, wherein R' is U-OH and Z is a monovalent alkyl radical with 1-20 carbon atoms which may be interrupted by -O-, -S- or -NR1- groups or a phenyl radical, which radicals may be substituted by hydroxy, carboxy or sulfonate groups. A compound of the formula (II) according to claim 13, wherein Z is the residue minus 1 NH2 radical of butylamine, aminoethanol, 1,1-dihydroxymethylaminopropane, tris(hydroxymethyl)aminomethane, glucamine, p-aminobenzoic acid, beta-alanine or HOOC-CH(NH2)-A, A is the radical residue of an &agr;-amino acid selected from glycine, alanine, aspartic acid, glutamic acid and taurine. A compound of the formula (II) according to claim 13, wherein Z is HOOC-CH2CH2-, HOOC-CH2-, HOOC-CH(CH3)-, -CH2CH2SO3H, -CH(COOH)-(CH2)1-2COOH, -C(C2H5)(CH2OH)2 or (CH3)2N(CH2)3-. A compound of the formula (II) according to claim 12, wherein c is 2 to 4, d is 2 and R' is U-OH, or d is 1, R' is alkyl with 1-5 carbon atoms or a carboxymethylene group and Z is a divalent alkylene radical with 2 to 12 carbon atoms which be interrupted by -O-, -S- or -NR1- groups and substituted by hydroxy, carboxy or sulfonate groups. A compound of the formula (II) according to claim 16, wherein Z is the diradical residue (minus 2 NH2 or NHR1 groups) of 1,3-diaminopropane, 1,3-diamino-2-hydroxypropane, 2-(2-aminoethylamino)-ethanol, N,N'-bis-(2-hydroxyethyl)-ethylenediamine, ethylenediamine diacetic acid or lysine. An alcohol of the formula (II) according to claim 2, which is selected from the group consisting of

(QF2CH2OCH2CH(OH)CH2)2N-C(CH2OH)2C2H5, (QF2CH2OCH2CH(OH)CH2)2S ,

(QF2CH2OCH2CH(OCH2CH2OH)CH2)2S and

QF2CH2OCH2CH(OH)CH(OH)CH2OCH2QF2.
An ester of the formula



        (Ia) (QF2CH2O)b-Y-(O2C-R3)a



or



        (IIa) Z(-L-(U-O2C-R3)d)c



wherein QF is QF2, QF2 is RFCH=CH-, and RF is a monovalent, perfluorinated, alkyl or alkenyl, straight, branched or cyclic organic radical having three to twenty fully fluorinated carbon atoms, which radical can be interrupted by divalent oxygen or sulfur atoms, with each RF radical being identical or different from the other RF radicals, Y is a trivalent or tetravalent organic linking group with from 1 to 20 carbon atoms, which can be interrupted by one or more polyvalent groups or hetero atoms selected from -O-, -S-, -N<, -NR1-, -CO-, -CONR1-, -NHCOO-, -CON<, -CO2-, -O2C-, -O2CO- and -SO2-, in which R1 is hydrogen, C1-C20alkyl, di-C1-C2alkylamino-C2-C6alkylene, hydroxy-C1-C5alkylene, or C1-C5alkyl or hydroxy-C1-C5alkylene which is substituted by pyridyl, piperidyl or cyclohexyl, a is 1 or 2, b is 2 or 3, L is O, S or NR', in which R' is C1-C20hydrocarbyl, hydroxy-C2-C5alkyl, carboxymethyl or U-OH, U CH2-CH-(O-CH2-CH)r-(O-CH2-CH)q is CH2OCH2QF , CH2OCH=CH2, CH2OCH2QF Z is a mono-, di-, tri- or tetravalent organic group of 1-40 carbon atoms which can be interrupted by one or more polyvalent groups or hetero atoms selected from -O-, -S-, -N<, -NR1-, -CO-, -CONR1-, -NHCOO-, -CON<, -CO2-, -O2C-, -O2CO- and -SO2-, and can also be substituted by hydroxyl, carboxyl or carboxyalkyl when L is S or NR', r and q are each, independently, 0 to 10, c is 1 to 4, d is 1 to 3, with the proviso that when c and d are both 1, Z is monovalent and r is > 0, and e is 0 or 1, with the proviso that when e is 0, d is 2 and L is S or NR' and R3 is H or C1-C20hydrocarbyl, which may be substituted by one or more hydroxyl, thiol or carboxyl groups.
An ester of the formula (Ia) or (IIa) according to claim 19, wherein R3 is the radical of acetic, benzoic, hydroxybenzoic, terephthalic, phthalic, acrylic, methacrylic, citric, maleic, fumaric, itaconic, malonic, succinic, thioacetic, thiopropionic or thiosuccinic acid. An ester of the formula (Ia) according to claim 19, which is an acrylate, methacrylate, maleate, fumarate, succinate or ortho- or terephthalate of an alcohol of the formula

(QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2, (QF2CH2OCH2)3C-CH2OH or

(QF2CH2OCH2)2C(C2H5)CH2OH, wherein

QF2 is defindes as in claim 1.
An ester of the formula (IIa) according to claim 20, which is an acrylate, methacrylate, maleate, fumarate, succinate or ortho- or terephthalate of a diol of the formula



        (IIb) Ze-N-(U-OH)2



or



        (IIc) Ze-(O-U-OH)2



wherein, in the definition of U, r is equal to or greater than q and is 0 to 5, q is 0 to 3 and, when e is 1, Z is a monovalent hydrocarbyl radical with 1-20 carbon atoms which may be interrupted by -O-, -S- or -NR1- and may be substituted by hydroxy or carboxy groups, or, when e is 2, Z is 1,4-phenylene or a divalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups, wherein R1 is definded as in claim 1
A polyester of the formulae or



        (IId),     -(U-L-Z-L-U-O2C-R4-CO2)n-



wherein Y is a tetravalent organic linking group with from 1 to 20 carbon atoms, Z is a divalent alkylene radical with 2 to 12 carbon atoms which can be interrupted by -O-, -S- or 1,4-phenylene and substituted by 1 or 2 carboxyl groups, n is an integer from 2 to 100, QF2 is RFCH=CH-, wherein RF is a monovalent, perfluorinated, alkyl or alkenyl, straight, branched or cyclic organic radical having three to twenty fully fluorinated carbon atoms, which radical can be interrupted by divalent oxygen or sulfur atoms, with each RF radical being identical or different from the other RF radicals, L is O, S or NR', in which R' is C1-C20hydrocarbyl, hydroxy-C2-C5alkyl, carboxymethyl or U-OH, U is and R4 is the divalent radical residue of a dicarboxylic acid of the formula HOOC-R4-COOH.
A polyester of the formula (Id) or (IId) according to claim 23, wherein R4 is a direct bond, an alkylene of 1-16 carbon atoms, an arylene of 6 to 14 carbon atoms or an alkarylene of 7 to 18 carbon atoms. A polyester of the formula (Id) or (IId) according to claim 23, wherein R4 is the divalent radical residue of a dicarboxylic acid of the formula HOOC-R4-COOH selected from the group consisting of oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, sebacic, brassylic, octadecanedioic, dimer acid, 1,4-cyclohexanedicarboxylic, 4,4'-dicyclohexyl-1,1'-dicarboxylic, phthalic, isophthalic, terephthalic, methylphthalic, diphenyl-2,2'-dicarboxylic, diphenyl-4,4'-dicarboxylic, 1,4-naphthalene dicarboxylic, diphenylmethane-2,2'-dicarboxylic, diphenylmethane-3,3'-dicarboxylic, diphenylmethane-4,4'-dicarboxylic acid, or is the divalent radical residue derived from pyromellitic anhydride or benzene tetracarboxylic acid dianhydride. A polyester of the formula (Id) according to claim 23, wherein Y is -CH2(CH-)CH2-S-CH2(CH-)CH2- or -CH2(CH-)CH2-NR'-CH2(CH-)CH2- and R4 is -CH=CH-, -(CH2)2-8- or 1,3- or 1,4-phenylene, or of the formula (IId) according to claim 23, wherein L is O, R4 is -CH=CH-, -(CH2)2-8- or phenylene, Z is a divalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups and, in the definition of U, r is equal to or greater than q and is 0 to 5 and q is 0 to 3. A mono- or diphosphate or bis-monophosphate of an alcohol or polyol of the formula (I) or (II) according to claim 2. A compound according to claim 27, which is selected from the group consisting of monophosphates of alcohols and polyols of the formulae (QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2, (QF2CH2OCH2)3C-CH2OH and (QF2CH2OCH2)2C(C2H5)CH2OH. A phosphate according to claim 27, wherein Y is -CH2(CH-)CH2-S-CH2(CH-)CH2- or -CH2(CH-)CH2-NR'-CH2(CH-)CH2-, or which is of the formula wherein

QF2 is definded as in claim 1.
A monophosphate of a diol of the formula (II) according to claim 2 wherein, in the definition of U, r is equal to or greater than q and is 0 to 5 and q is 0 to 3, L is O and Z is a) phenyl, p-n-C1-C10alkylphenyl, a monovalent alkyl radical with 1-20 carbon atoms which may be interrupted by -0-, -S- or -NR1- groups, or is hydroxy-C2-C5alkylene, or b) 1,4-phenylene or a divalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups, or c) a trivalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups. A monophosphate of a diol of the formula (II) according to claim 2 wherein, in the definition of U, r is equal to or greater than q and is 0 to 5 and q is 0 to 3, and a) L is S and Z is a direct bond or a divalent C2-C20alkylene radical which may be interrupted by -O- or -NR1-, or b) L is NR', wherein R' is U-OH and Z is a divalent alkylene radical with 2 to 12 carbon atoms which can be interrupted by -O-, -S- or -NR1- groups and substituted by hydroxy or carboxy groups. A monophosphate of a diol of the formula (II) according to claim 2 wherein, in the definition of U, r is equal to or greater than q and is 0 to 5 and q is 0 to 3, L is O and Z is -CH2CH2- or CH3CH2C(CH2-)3, or is a phosphate of the formula A mono- or disulfate of an alcohol or polyol of the formula (I) or (II) according to claim 2. A compound of the formula (I) according to claim 33, which is selected from the group consisting of mono- and disulfates of alcohols and polyols of the formulae

(QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2, (QF2CH2OCH2)3C-CH2OH and (QF2CH2OCH2)2C(C2H5)CH2OH.
A monosulfate of a diol of the formula (II) according to claim 2 wherein, in the definition of U, r is equal to or greater than q and is 0 to 5 and q is 0 to 3, L is O and Z is a) phenyl, p-n-C1-C10alkylphenyl, a monovalent alkyl radical with 1-20 carbon atoms which may be interrupted by -O-, -S- or -NR1- groups, or is hydroxy-C2-C5alkylene, or b) 1,4-phenylene or a divalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups, or c) a trivalent alkylene radical which may be interrupted by -O-, -S- or -NR1- groups. A monosulfate of a diol or polyol of the formula (II) according to claim 2 wherein, in the definition of U, r is equal to or greater than q and is 0 to 5 and q is 0 to 3, and a) L is S and Z is a direct bond or a divalent C2-C20alkylene radical which may be interrupted by -O- or -NR1-, or b) L is NR', R' is U-OH and Z is a divalent alkylene radical with 2 to 12 carbon atoms which be interrupted by -O-, -S- or -NR1- groups and substituted by hydroxy or carboxy groups. A monosulfate of a diol or polyol of the formula (II) according to claim 2 wherein, in the definition of U, r is equal to or greater than q and is 0 to 5 and q is 0 to 3, L is O and Z is -CH2CH2-, or a monosulfate of a polyol of the formula

CH3CH2-C-(CH2OCH2CH(OH)CH2OCH2QF2)3 or

(HOCH2)2(C-2H5)-C-N(CH2OCH2CH(OH)CH2OCH2QF2)2.
A polyurethane which consists of or contains repeating units of the formulae and



        (IIe)     -(U-L-Z-L-U-O2CHN-R5-NHCO2)-



wherein Y is a tetravalent organic linking group with from 2 to 20 carbon atoms, Z is a divalent alkylene radical with 2 to 12 carbon atoms which can be interrupted by -O-, -S- or 1,4-phenylene and substituted by 1 or 2 carboxyl groups, n is an integer from 2 to 100, QF2 is RFCH=CH-, RF is a monovalent, perfluorinated, alkyl or alkenyl, straight, branched or cyclic organic radical having three to twenty fully fluorinated carbon atoms, which radical can be interrupted by divalent oxygen or sulfur atoms, with each RF radical being identical or different from the other RF radicals, L is O, S or NR', R' is C1-C20hydrocarbyl, hydroxy-C2-C5alkyl, carboxymethyl or U-OH, U is and R5 is the diradical residue of a diisocyanate of the formula OCN-R5-NCO.
A polyurethane according to claim 38, wherein R5 is the diradical residue of a diisocyanate of the formula OCN-R5-NCO selected from the group consisting of toluene diisocyanate (all isomers), 4,4'-diphenylmethane diisocyanate, tolidine diisocyanate, dianisidine diisocyanate, m-xylylene diisocyanate, p-phenylene diisocyanate, m-phenylene diisocyanate, 1-chloro-2,4-phenylene diisocyanate, 3,3'-dimethyl-4,4'-bisphenylene diisocyanate, 4,4'-bis(2-methylisocyanatophenyl)methane, 4,4'-bisphenylene diisocyanate, 4,4'-bis(2-methoxyisocyanatophenyl)methane, 1-nitrophenyl-3,5-diisocyanate, 4,4'-diisocyanatodiphenyl ether, 3,3'-dichloro-4,4'-diisocyanatodiphenyl ether, 3,3'-dichloro-4,4'-diisocyanatodiphenyl methane, 4,4'-diisocyanatodibenzyl, 3,3'-dimethoxy-4,4'-diisocyanatodiphenyl, 2,2'-dimethyl-4,4'-diisocyanatodiphenyl, 2,2'-dichloro-5,5'-dimethoxy-4,4'-diisocyanatodiphenyl, 3,3'-dichloro-4,4'-diisocyanatodiphenyl, 1,2-naphthalene diisocyanate, 4-chloro-1,2-naphthalene diisocyanate, 4-methyl-1,2-naphthalene diisocyanate, 1,5-naphthalene diisocyanate, 1,6-naphthalene diisocyanate, 1,7-naphthalene diisocyanate, 1,8-naphthalene diisocyanate, 4-chloro-1,8-naphthalene diisocyanate, 2,3-naphthalene diisocyanate, 2,7-naphthalene diisocyanate, 1,8-dinitro-2,7-naphthalene diisocyanate, 1-methyl-2,4-naphthalene diisocyanate, 1-methyl-5,7-naphthalene diisocyanate, 6-methyl-1,3-naphthalene diisocyanate, 7-methyl-1,3-naphthalene diisocyanate, 1,2-ethane diisocyanate, 1,3-propane diisocyanate, 1,4-butane diisocyanate, 2-chloropropane-1,3-diisocyanate, pentamethylene diisocyanate, propylene-1,2-diisocyanate, 1,8-octane diisocyanate, 1,10-decane diisocyanate, 1,12-dodecane diisocyanate, 1,16-hexadecane diisocyanate 1,3- and 1,4-cyclohexane diisocyanate, 1,6-hexamethylene diisocyanate, 2,2,4- and 2,4,4-trimethylhexamethylene diisocyanate, dimer acid derived diisocyanate obtained from dimerized linoleic acid, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl diisocyanate, lysine methyl ester diisocyanate, bis(2-isocyanatoethyl) fumarate bis(2-isocyanatoethyl) carbonate and m-tetramethylxylylene diisocyanate. A polyurethane having a molecular weight of 3,000 to 30,000 of the formula (Ie) according to claim 38, which contains repeating units of the formulae and/or wherein R1 is C1-C5 alkyl and R5 is is the diradical residue of isophorone diisocyanate, 2,2,4-(2,4,4)-trimethylhexamethylene diisocyanate or 1,6-hexamethylene diisocyanate. wherein QF2 is definded as in claim 1. A polyurethane having a molecular weight of 3,000 to 30,000 of the formula (IIe) according to claim 38, wherein, in the definition of U, r is equal to or greater than q and is 0 to 5 and q is 0 to 3, and a) L is S and Z is a direct bond, or b) L is NR', wherein R' is C1-C5alkyl and Z is a divalent C2-C12alkylene radical, or c) L is NR', wherein R' is U-OH and Z is a monovalent radical with 1 to 20 carbon atoms which can be interrupted by -O-, -S- or -NR1- groups. A compound of the formula



        (If)     (QF2CH2O)b-Y-(O-CH2CH(OH)R6)a



wherein R6 is hydrogen, a hydrocarbon radical with 2 to 20 carbon atoms, or a polyethylene oxide radical -(OCH2CH2)u-R7. R7 is -OH or (QF2CH2)b-Y-O-CH2CH(OH)-, u is an integer from 2 to 50 and QF2, Y, a and b are as defined in claim 1.
A method of sizing paper to impart oil and water repellency thereto, which comprises treating unsized paper or paper pulp with an effective amount of an alkali metal, ammonium or amine salt of a compound selected from the group consisting of a) compounds of the formula (I) according to claim 1 wherein X is O-CH2-COOH or COOH; b) compounds obtainable by reacting alcohols of the formulae (I) and (II) according to claim 1 with dicarboxylic acids, dicarboxylic acid anhydrides, tetracarboxylic acid dianhydrides or with diacid chlorides; c) sulfates, sulfonates and phosphates of alcohols of the formulae (I) and (II) according to claim 1; d) compounds of the formula (II) according to claim 1 wherein Z is substituted by carboxyl, carboxyalkyl or sulfonate, and e) 11-perfluoroalkyl-10-undecenoic acid and 11-perfluoroalkyl-10-undecenyl sulfate. A method of treating a solid substrate to impart oil and water repellency thereto, which comprises applying an effective amount of a polyurethane according to claim 38 thereto. A method of treating a solid substrate to impart oil and water repellency thereto, which comprises applying an effective amount of a polyester according to claim 23 thereto.
Anspruch[fr]
Alcool ou acide oligoperfluoroalkylique de formules (I) (QF-CH2O)b-Y-(X)a ou (II) Ze(-L-(U-OH)d)c

dans lesquelles

QF représente QF2-, où QF2 représente RFCH=CH-, et

RF représente un radical organique monovalent, perfluoré, alkyle ou alcényle, à chaîne droite, ramifiée ou cyclique comprenant trois à vingt atomes de carbone complètement fluorés, radical qui peut être interrompu par des atomes bivalents d'oxygène ou de soufre, chaque radical RF étant identique ou différent des autres radicaux RF,

Y représente un groupe de liaison organique trivalent ou tétravalent comprenant 1 à 20 atomes de carbone, qui peut être interrompu par un ou plusieurs groupes polyvalents ou hétéroatomes choisis parmi -O-, -S-, -N<, -NR1-, -CO-, -CONR1-, -NHCOO-, -CON<, -CO2- -O2C-, -O2CO- et -SO2-, où

R1 représente un atome d'hydrogène, un groupe alkyle en C1 à C20, di(alkylamino en C1 à C2)-(alkylène en C2 à C6), hydroxyalkylène en C1 à C5, ou un groupe alkyle en C1 à C5 ou hydroxyalkylène en C1 à C5 qui est substitué par un groupe pyridyle, pipéridyle ou cyclohexyle,

X représente OH, O-CH2-COOH ou COOH,

a vaut 1 ou 2,

b vaut 2 ou 3,

L représente O, S ou NR', où

R' représente un groupe hydrocarbyle en C1 à C20, hydroxyalkylène en C2 à C5, carboxyméthylène ou U-OH,

U représente Z représente un atome d'hydrogène ou un groupe organique mono-, di-, tri- ou tétra-valent de 1 à 40 atomes de carbone qui peut être interrompu par un ou plusieurs groupes polyvalents ou hétéroatomes choisis parmi -O-, -S-, -N<, -NR1-, -CO-, -CONR1-, -NHCOO-, -CON<, -CO2-, -O2C-, -O2CO- et -SO2-, et peut également être substitué par un groupe hydroxyle, carboxyle, carboxyalkyle ou sulfonate lorsque L représente S ou NR',

r et q valent chacun, indépendamment, 0 à 10,

c vaut 1 à 4,

d vaut 1 à 3, à condition que lorsque c et d valent tous deux 1, Z est monovalent et r est > 0, et

e vaut 0 ou 1, à condition que lorsque e vaut 0, d vaut 2 et L représente S ou NR'.
Composé de formule (I) ou (II) selon la revendication 1, dans lequel

QF représente QF2 et

RF est saturé, contient 6 à 18 atomes de carbone, est complètement fluoré et contient au moins un groupe perfluorométhyle final.
Composé de formule (I) ou (II) selon la revendication 1 ou 2, dans lequel RF représente une chaîne carbonée linéaire complètement fluorée comprenant 6 à 14 atomes de carbone. Composé de formule (I) selon l'une quelconque des revendications 1 à 3, dans lequel

Y représente un groupe de liaison hydrocarbyle trivalent ou tétravalent avec 1 à 10 atomes de carbone.
Alcool de formule (I) selon la revendication 2, qui est choisi dans le groupe constitué par

(QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2,

(QF2CH2OCH2)3C-CH2OH et (QF2CH2OCH2)2C(C2H5)CH2OH.
Acide de formule (I) selon la revendication 1, qui est choisi dans le groupe constitué par



        H3C-C(COOH)(CH2OCH2QF)2-



Acide de formule dans laquelle

QF représente QF2,

QF2 représente RFCH=CH-, et

RF représente un radical organique monovalent, perfluoré, alkyle ou alcényle, à chaîne droite, ramifiée ou cyclique comprenant trois à vingt atomes de carbone complètement fluorés, radical qui peut être interrompu par des atomes bivalents d'oxygène ou de soufre, chaque radical RF étant identique ou différent des autres radicaux RF.
Composé de formule (II) selon la revendication 2, dans lequel

QF représente QF2-,

RF est saturé, contient 6 à 18 atomes de carbone, est complètement fluoré et contient au moins un groupe perfluorométhyle final,

r est supérieur ou égal à q et

la somme de r plus q vaut 0 à 10.
Composé selon la revendication 8, dans lequel

r est supérieur ou égal à q et vaut 0 à 5 et

q vaut 0 à 3.
Composé de formule (II) selon la revendication 2, dans lequel

L représente un atome d'oxygène et a) c et d valent 1 et Z représente un groupe phényle, carboxyphényle, p-n-(alkylphényle en C1 à C10), un radical alkyle ou alcényle monovalent de 1 à 20 atomes de carbone qui peut être interrompu par des groupes -O-, -S- ou -NR1- et peut être substitué par un ou deux groupes carboxyle, ou représente un groupe hydroxyalkylène en C2 à C5, ou b) c vaut 2, d vaut 1 et Z représente un groupe 1,4-phénylène ou un radical alkylène bivalent qui peut être interrompu par des groupes -O-, -S- ou -NR1- et substitué par un ou deux groupes carboxyle, ou c) c vaut 3, d vaut 1 et Z représente un radical alkylène trivalent qui peut être interrompu par des groupes -O-, -S- ou -NR1-, ou d) c vaut 4, d vaut 1 et Z représente un résidu tétravalent d'un polyol.
Composé de formule (II) selon la revendication 2, dans laquelle L représente S et a) d vaut 2 et Z représente une liaison directe si e vaut 1 ou e vaut 0, ou b) d et c valent 1 et Z représente un radical alkyle linéaire ou ramifié monovalent comprenant 1 à 20 atomes de carbone, un groupe hydroxyalkylène en C2 à C5, carboxyalkylène en C2 à C4 ou -CH(COOH)CH2COOH, ou c) d vaut 1, c vaut 2 et Z représente un radical alkylène bivalent en C2 à C20 qui peut être interrompu par -0- ou -NR1-. Composé de formule (II) selon la revendication 2, dans lequel

L représente NR',

R' représente U-OH, un groupe alkyle en C1 à C5 ou carboxyméthylène,

c, d et e valent chacun 1 et

Z est monovalent.
Composé de formule (II) selon la revendication 12, dans lequel

R' représente U-OH et

Z représente un radical alkyle monovalent de 1 à 20 atomes de carbone qui peut être interrompu par des groupes -O-, -S- ou -NR1- ou un radical phényle, radicaux qui peuvent être substitués par des groupes hydroxyle, carboxyle ou sulfonate.
Composé de formule (II) selon la revendication 13, dans lequel

Z représente le résidu moins 1 radical NH2 de la butylamine, de l'aminoéthanol, du 1,1-dihydroxyméthyl-aminopropane, du tris (hydroxyméthyl)aminométhane, de la glucamine, de l'acide p-aminobenzoïque, de la bêta-alanine ou de HOOC-CH(NH2)-A,

A représente le résidu à radical d'un acide &agr;-aminé choisi parmi la glycine, l'alanine, l'acide aspartique, l'acide glutamique et la taurine.
Composé de formule (II) selon la revendication 13, dans lequel

Z représente HOOC-CH2CH2-, HOOC-CH2-, HOOC-CH(CH3)-, -CH2CH2SO3H, -CH(COOH)-(CH2)1-2COOH, -C(C2H5)(CH2OH)2 ou (CH3)2N(CH2)3-.
Composé de formule (II) selon la revendication 12, dans lequel

c vaut 2 à 4,

d vaut 2 et

R' représente U-OH, ou

d vaut 1,

R' représente un groupe alkyle de 1 à 5 atomes de carbone ou un groupe carboxyméthylène, et

Z représente un radical alkylène bivalent de 2 à 12 atomes de carbone qui peut être interrompu par des groupes -O-, -S- ou -NR1- et substitué par des groupes hydroxyle, carboxyle ou sulfonate.
Composé de formule (II) selon la revendication 16, dans lequel

Z représente le résidu à deux radicaux (moins 2 groupes NH2 ou NHR1) du 1,3-diaminopropane, du 1,3-diamino-2-hydroxypropane, du 2-(2-aminoéthylamino)éthanol, de la N,N'-bis-(2-hydroxyéthyl)éthylènediamine, de l'acide diacétique-d'éthylènediamine ou de la lysine.
Alcool de formule (II) selon la revendication 2, qui est choisi dans le groupe constitué par

(QF2CH2OCH2CH(OH)CH2)2N-C(CH2OH)2C2H5,

(QF2CH2OCH2CH(OH)CH2)2S, (QF2CH2OCH2CH(OCH2CH2OH)CH2)2S

et QF2CH2OCH2CH(OH)CH(OH)CH2OCH2QF2-
Ester de formule



        (Ia) (QF2CH2O)b-Y-(O2C-R3)a ou (IIa) Z(-L-(U-O2C-R3)d)c



dans laquelle

QF représente QF2,

QF2 représente RFCH=CH-, et

RF représente un radical organique monovalent, perfluoré, alkyle ou alcényle, à chaîne droite, ramifiée ou cyclique comprenant trois à vingt atomes de carbone complètement fluorés, radical qui peut être interrompu par des atomes bivalents d'oxygène ou de soufre, chaque radical RF étant identique ou différent des autres radicaux RF,

Y représente un groupe de liaison organique trivalent ou tétravalent comprenant 1 à 20 atomes de carbone, qui peut être interrompu par un ou plusieurs groupes polyvalents ou hétéroatomes choisis parmi -O-, -S-, -N<, -NR1-, -CO-, -CONR1-, -NHCOO-, -CON<, -CO2-, -O2C-, -O2CO- et -SO2-, où

R1 représente un atome d'hydrogène, un groupe alkyle en C1 à C20, di(alkylamino en C1 à C2)-(alkylène en C2 à C6), hydroxyalkylène en C1 à C5, ou un groupe alkyle en C1 à C5 ou hydroxyalkylène en C1 à C5 qui est substitué par un groupe pyridyle, pipéridyle ou cyclohexyle,

a vaut 1 ou 2,

b vaut 2 ou 3,

L représente O, S ou NR', où

R' représente un groupe hydrocarbyle en C1 à C20, hydroxyalkyle en C2 à C5, carboxyméthyle ou U-OH,

U représente Z représente un groupe organique mono-, di-, tri- ou tétra-valent de 1 à 40 atomes de carbone qui peut être interrompu par un ou plusieurs groupes polyvalents ou hétéroatomes choisis parmi -O-, -S-, -N<, -NR1-, -CO-, -CONR1-, -NHCOO-, -CON<, -CO2-, -O2C-, -O2CO- et -SO2-, et peut également être substitué par un groupe hydroxyle, carboxyle ou carboxyalkyle lorsque L représente S ou NR',

r et q valent chacun, indépendamment, 0 à 10,

c vaut 1 à 4,

d vaut 1 à 3, à condition que lorsque c et d valent tous deux 1, Z est monovalent et r est > 0, et

e vaut 0 ou 1, à condition que lorsque e vaut 0, d vaut 2 et L représente S ou NR' et

R3 représente un atome d'hydrogène ou un groupe hydrocarbyle en C1 à C20, qui peut être substitué par un

ou plusieurs groupes hydroxyle, thiol ou carboxyle.
Ester de formule (Ia) ou (IIa) selon la revendication 19, dans lequel

R3 représente le radical de l'acide acétique, benzoïque, hydroxybenzoïque, téréphtalique, phtalique, acrylique, méthacrylique, citrique, maléique, fumarique, itaconique, malonique, succinique, thioacétique, thiopropionique ou thiosuccinique.
Ester de formule (Ia) selon la revendication 19, qui est un acrylate, un méthacrylate, un maléate, un fumarate, un succinate ou un ortho- ou téréphtalate d'un alcool de formule

(QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2,

(QF2CH2OCH2)3C-CH2OH ou (QF2CH2OCH2)2C(C2H5)CH2OH, où

QF2 est tel que défini dans la revendication 1.
Ester de formule (IIa) selon la revendication 20, qui est un acrylate, un méthacrylate, un maléate, un fumarate, un succinate ou un ortho- ou téréphtalate d'un diol de formule



        (IIb) Ze-N-(U-OH)2 ou (IIc) Ze-(O-U-OH)2



dans laquelle, dans la définition de U,

r est supérieur ou égal à q et vaut 0 à 5,

q vaut 0 à 3 et, lorsque e vaut 1,

Z représente un radical hydrocarbyle monovalent de 1 à 20 atomes de carbone qui peut être interrompu par -O-, -S-

ou -NR1- et peut être substitué par des groupes hydroxyle

ou carboxyle, ou,

lorsque e vaut 2,

Z représente le 1,4-phénylène ou un radical alkylène bivalent qui peut être interrompu par des groupes -O-, -S- ou -NR1-, où

R1 est tel que défini dans la revendication 1.
Polyester de formules ou



        (IId)-(U-L-Z-L-U-O2C-R4-CO2)n-



dans lesquelles

Y représente un groupe de liaison organique tétravalent de 1 à 20 atomes de carbone,

Z représente un radical alkylène bivalent de 2 à 12 atomes de carbone qui peut être interrompu par -O-, -S-

ou le 1,4-phénylène et substitué par 1 ou 2 groupes carboxyle,

n représente un nombre entier valant 2 à 100,

QF2 représente RFCH=CH-, où RF représente un radical organique monovalent, perfluoré, alkyle ou alcényle, à chaîne droite, ramifiée ou cyclique comprenant trois à vingt atomes de carbone complètement fluorés, radical qui peut être interrompu par des atomes bivalents d'oxygène

ou de soufre, chaque radical RF étant identique ou différent des autres radicaux RF,

L représente O, S ou NR', dans lequel R' représente un groupe hydrocarbyle en C1 à C20, hydroxyalkyle en C2 à C5, carboxyméthyle ou U-OH,

U représente R4 représente le résidu à radical bivalent d'un acide dicarboxylique de formule HOOC-R4-COOH.
Polyester de formule (Id) ou (IId) selon la revendication 23, dans lequel

R4 représente une liaison directe, un groupe alkylène de 1 à 16 atomes de carbone, un groupe arylène de 6 à 14 atomes de carbone ou un groupe alkarylène de 7 à 18 atomes de carbone.
Polyester de formule (Id) ou (IId) selon la revendication 23, dans lequel

R4 représente le résidu à radical bivalent d'un acide dicarboxylique de formule HOOC-R4-COOH choisi dans le groupe constitué par l'acide oxalique, malonique, succinique, glutarique, adipique, pimélique, subérique, azélaïque, sébacique, brassylique, octadécanedioïque, dimère, 1,4-cyclohexanedicarboxylique, 4,4'-dicyclohexyl-1,1'-dicarboxylique, phtalique, isophtalique, téréphtalique, méthylphtalique, biphényl-2,2'-dicarboxylique, biphényl-4,4'-dicarboxylique, 1,4-naphtalènedicarboxylique, diphénylméthane-2,2'-dicarboxylique, diphénylméthane-3,3'-dicarboxylique, diphénylméthane-4,4'-dicarboxylique, ou représente le résidu à radical bivalent dérivé de l'anhydride pyromellitique ou du dianhydride benzène-tétracarboxylique.
Polyester de formule (Id) selon la revendication 23, dans lequel

Y représente -CH2(CH-)CH2-S-CH2(CH-)CH2- ou -CH2(CH-)CH2-NR'-CH2(CH-)CH2- et

R4 représente -CH=CH-, -(CH2)2 à 8- ou le 1,3- ou 1,4-phénylène, où polyester de formule (IId) selon la revendication 23, dans lequel

L représente un atome d'oxygène,

R4 représente -CH=CH-, -(CH2)2 à 8- ou un groupe phénylène,

Z représente un radical alkylène bivalent qui peut être interrompu par des groupes -O-, -S- ou -NR1 et, dans la définition de U,

r est supérieur ou égal à q et vaut 0 à 5 et q vaut 0 à 3.
Mono- ou di-phosphate ou bis-monophosphate d'un alcool ou d'un polyol de formule (I) ou (II) selon la revendication 2. Composé selon la revendication 27, qui est choisi dans le groupe constitué par les monophosphates d'alcools et de polyols de formules

(QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2,

(QF2CH2OCH2)3C-CH2OH et (QF2CH2OCH2)2C(C2H5)CH2OH.
Phosphate selon la revendication 27, dans lequel Y représente -CH2(CH-)CH2-S-CH2(CH-)CH2- ou -CH2(CH-)CH2-NR'-CH2(CH-)CH2-, ou qui est de formule dans laquelle

QF2 est tel que défini dans la revendication 1.
Monophosphate d'un diol de formule (II) selon la revendication 2 dans laquelle, dans la définition de U,

r est supérieur ou égal à q et vaut 0 à 5 et

q vaut de 0 à 3,

L représente un atome d'oxygène et

Z représente a) un groupe phényle, p-n-(alkylphényle en C1 à C10), un radical alkyle monovalent de 1 à 20 atomes de carbone qui peut être interrompu par des groupes -O-, -S- ou -NR1-, ou représente un groupe hydroxyalkylène en C2 à C5, ou b) le 1,4-phénylène ou un radical alkylène bivalent qui peut être interrompu par des groupes -O-, -S- ou -NR1-, ou c) un radical alkylène trivalent qui peut être interrompu par des groupes -O-, -S- ou -NR1.
Monophosphate d'un diol de formule (II) selon la revendication 2 dans laquelle, dans la définition de U,

r est supérieur ou égal à q et vaut 0 à 5 et q vaut 0 à 3, et a) L représente S et Z représente une liaison directe ou un radical bivalent alkylène en C2 à C20 qui peut être interrompu par -0- ou -NR1-, ou b) L- représente NR', où- R' représente U-OH et Z représente un radical alkylène bivalent de 2 à 12 atomes de carbone qui peut être interrompu par des groupes -O-, -S- ou -NR1- et substitué par des groupes hydroxyle ou carboxyle.
Monophosphate d'un diol de formule (II) selon la revendication 2 dans laquelle, dans la définition de U,

r est supérieur ou égal à q et vaut 0 à 5 et

q vaut 0 à 3,

L vaut 0 et

Z représente -CH2CH2- ou CH3CH2C(CH2-)3, ou représente un phosphate de formule
Mono- ou di-sulfate d'un alcool ou d'un polyol de formule (I) ou (II) selon la revendication 2. Composé de formule (I) selon la revendication 33, qui est choisi dans le groupe constitué par les mono- et di-sulfates d'alcools et de polyols de formules

(QF2CH2OCH2)2CHOH, (QF2CH2OCH2)2C(CH2OH)2,

(QF2CH2OCH2)3C-CH2OH et (QF2CH2OCH2)2C(C2H5)CH2OH.
Monosulfate d'un diol de formule (II) selon la revendication 2 dans laquelle, dans la définition de U,

r est supérieur ou égal à q et vaut 0 à 5 et

q vaut de 0 à 3,

L représente un atome d'oxygène et

Z représente a) un groupe phényle, p-n-(alkylphényle en C1 à C10), un radical alkyle monovalent de 1 à 20 atomes de carbone qui peut être interrompu par des groupes -O-, -S- ou -NR1-, ou représente un groupe hydroxyalkylène en C2 à C5, ou b) le 1,4-phénylène ou un radical alkylène bivalent qui peut être interrompu par des groupes -O-, -S- ou -NR1-, ou c) un radical alkylène trivalent qui peut être interrompu par des groupes -O-, -S- ou -NR1.
Monosulfate d'un diol ou d'un polyol de formule (II) selon la revendication 2 dans laquelle, dans la définition de U,

r est supérieur ou égal à q et vaut 0 à 5 et

q vaut de 0 à 3, et a) L représente S et Z représente une liaison directe ou un radical bivalent alkylène en C2 à C20 qui peut être interrompu par -O- ou -NR1-, ou b) L représente NR', R' représente U-OH et Z représente un radical alkylène bivalent de 2 à 12 atomes de carbone qui peut être interrompu par des groupes -O-, -S- ou -NR1- et substitué par des groupes hydroxyle ou carboxyle.
Monosulfate d'un diol ou d'un polyol de formule (II) selon la revendication 2 dans laquelle, dans la définition de U,

r est supérieur ou égal à q et vaut 0 à 5 et

q vaut de 0 à 3,

L représente un atome d'oxygène et

Z représente -CH2CH2-, ou un monosulfate d'un polyol de formule

CH3CH2-C-(CH2OCH2CH (OH)CH2OCH2QF2) 3 ou

(HOCH2)2(C2H5)-C-N(CH2OCH2CH(OH)CH2OCH2QF2)2-
Polyuréthanne qui se compose de ou contient des motifs récurrents de formules et



        (IIe) -(U-L-Z-L-U-O2CHN-R5-NHCO2



dans lesquelles

Y représente un groupe de liaison organique tétravalent de 2 à 20 atomes de carbone,

Z représente un radical alkylène bivalent de 2 à 12 atomes de carbone qui peut être interrompu par -O-, -S-

ou le 1,4-phénylène et substitué par 1 ou 2 groupes carboxyle,

n représente un nombre entier valant 2 à 100,

QF2 représente RFCH=CH-,

RF représente un radical organique monovalent, perfluoré, alkyle ou alcényle, à chaîne droite, ramifiée ou cyclique comprenant trois à vingt atomes de carbone complètement fluorés, radical qui peut être interrompu par des atomes bivalents d'oxygène ou de soufre, chaque radical RF étant identique ou différent des autres radicaux RF,

L représente O, S ou NR',

R' représente un groupe hydrocarbyle en C1 à C20, hydroxyalkyle en C2 à C5, carboxyméthyle ou U-OH,

U représente et

R5 représente le résidu à radical d'un diisocyanate de formule OCN-R5-NCO.
Polyuréthanne selon la revendication 38, dans lequel

R5 représente le résidu à deux radicaux d'un diisocyanate de formule OCN-R5-NCO choisi dans le groupe constitué par le diisocyanate de toluène (tous les isomères), le diisocyanate de 4,4'-diphénylméthane, le diisocyanate de tolidine, le diisocyanate de dianisidine, le diisocyanate de m-xylylène, le diisocyanate de p-phénylène, le diisocyanate de m-phénylène, le diisocyanate de 1-chloro-2,4-phénylène, le diisocyanate de 3,3'-diméthyl-4,4'-bisphénylène, le 4,4'-bis(2-méthylisocyanatophényl)-méthane, le diisocyanate de 4,4'-bisphénylène, le 4,4'-bis(2-méthoxyisocyanatophényl)méthane, le 1-nitrophényl-3,5-diisocyanate, l'éther 4,4'-diisocyanatodiphénylique, l'éther 3,3'-dichloro-4,4'-diisocyanatodiphénylique, le 3,3'-dichloro-4,4'-diisocyanatodiphénylméthane, le 4,4'-diisocyanatodibenzyle, le 3,3'-diméthoxy-4,4'-diisocyanatodiphényle, le 2,2'-diméthyl-4,4'-diisocyanatodiphényle, le 2,2'-dichloro-5,5'-diméthoxy-4,4'-diisocyanatodiphényle, le 3,3'-dichloro-4,4'-diisocyanatodiphényle, le diisocyanate de 1,2-naphtalène, le diisocyanate de 4-chloro-1,2-naphtalène, le diisocyanate de 4-méthyl-1,2-naphtalène, le diisocyanate de 1,5-naphtalène, le diisocyanate de 1,6-naphtalène, le diisocyanate de 1,7-naphtalène, le diisocyanate de 1,8-naphtalène, le diisocyanate de 4-chloro-1,8-naphtalène, le diisocyanate de 2,3-naphtalène, le diisocyanate de 2,7-naphtalène, le diisocyanate de 1,8-dinitro-2,7-naphtalène, le diisocyanate de 1-méthyl-2,4-naphtalène, le diisocyanate de 1-méthyl-5,7-naphtalène, le diisocyanate de 6-méthyl-1,3-naphtalène, le diisocyanate de 7-méthyl-1,3-naphtalène, le diisocyanate de 1,2-éthane, le diisocyanate de 1,3-propane, le diisocyanate de 1,4-butane, le 2-chloropropane-1,3-diisocyanate, le diisocyanate de pentaméthylène, le propylène-1,2-diisocyanate, le diisocyanate de 1,8-octane, le diisocyanate de 1,10-décane, le diisocyanate de 1,12-dodécane, le diisocyanate de 1,16-hexadécane, le diisocyanate de 1,3- et 1,4-cyclohexane, le diisocyanate de 1,6-hexaméthylène, le diisocyanate de 2,2,4- et 2,4,4-triméthylhexaméthylène, le diisocyanate dérivé d'acide dimère obtenu à partir d'acide linoléique dimérisé, le diisocyanate de 4,4'-dicyclohexylméthane, le diisocyanate d'isophorone, le diisocyanate de 3-isocyanatométhyl-3,5,5-triméthylcyclohexyle, le diisocyanate d'ester méthylique de lysine, le fumarate de bis(2-isocyanatoéthyle), le carbonate de bis(2-isocyanatoéthyle) et le diisocyanate de m-tétraméthylxylylène.
Polyuréthanne de formule (Ie) selon la revendication 38 ayant une masse moléculaire de 3 000 à 30 000, qui contient des motifs récurrents de formules et/ou dans lesquelles

R1 représente un groupe alkyle en C1 à C5, et

R5 représente le résidu à deux radicaux du diisocyanate d'isophorone, du diisocyanate de 2,2,4-(2,4,4)-triméthylhexaméthylène ou du diisocyanate de 1,6-hexaméthylène, dans lequel

QF2 est tel que défini dans la revendication 1.
Polyuréthanne de formule (IIe) selon la revendication 38 ayant une masse moléculaire de 3 000 à 30 000, dans lequel, dans la définition de U,

r est supérieur ou égal à q et vaut 0 à 5 et

q vaut de 0 à 3, et a) L représente S et Z représente une liaison directe, ou b) L représente NR', où R' représente un groupe alkyle en C1 à C5 et Z représente un radical alkylène bivalent en C2 à C12, ou c) L représente NR', où R' représente U-OH et Z représente un radical monovalent de 1 à 20 atomes de carbone qui peut être interrompu par des groupes -O-, -S- ou -NR1-.
Composé de formule



        (If) (QF2CH2O)b-Y-(O-CH2CH(OH)R6)a



dans laquelle

R6 représente un atome d'hydrogène, un radical hydrocarboné de 2 à 20 atomes de carbone, ou un radical poly(oxyde d'éthylène) -(OCH2CH2)u-R7,

R7 représente -OH ou (QF2CH2)b-Y-O-CH2CH(OH)-,

u représente un nombre entier valant 2 à 50 et

QF2, Y, a et b sont tels que définis dans la revendication 1.
Procédé d'encollage de papier permettant de lui conférer une oléophobie et une hydrophobie, qui consiste à traiter un papier ou une pâte à papier non encollé avec une quantité efficace d'un sel de métal alcalin, d'ammonium ou d'amine d'un composé choisi dans le groupe constitué par a) les composés de formule (I) selon la revendication 1, dans laquelle X représente O-CH2-COOH ou COOH ; b) les composés pouvant être obtenus en faisant réagir des alcools de formules (I) et (II) selon la revendication 1 avec des acides dicarboxyliques, des anhydrides dicarboxyliques, des dianhydrides tétracarboxyliques ou avec des chlorures de diacide ; c) les sulfates, les sulfonates et les phosphates d'alcools de formules (I) et (II) selon la revendication 1 ; d) les composés de formule (II) selon la revendication 1 dans laquelle Z est substitué par un groupe carboxyle, carboxyalkyle ou sulfonate, et e) l'acide 11-perfluoroalkyl-10-undecénoïque et le sulfate 11-perfluoroalkyl-10-undécényle. Procédé de traitement d'un substrat solide pour lui conférer une oléophobie et une hydrophobie, qui comprend l'application sur celui-ci d'une quantité efficace d'un polyuréthanne selon la revendication 38. Procédé de traitement d'un substrat solide permettant de lui conférer une oléophobie et une hydrophobie, qui consiste à lui appliquer une quantité efficace d'un polyester selon la revendication 23.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com