PatentDe  


Dokumentenidentifikation EP1337480 21.12.2006
EP-Veröffentlichungsnummer 0001337480
Titel GLASREAKTION VIA FLÜSSIGKEITSVERKAPSELUNG
Anmelder Raytheon Co., Lexington, Mass., US
Erfinder HUDGENS, Jay, James, Albuquerque, New Mexico 87122, US;
TROMBETTA, Michael, John, Plano, TX 75075, US;
AUTERY, David, William, Richardson, TX 75081, US;
TYBER, Stewart, Gregory, Richardson, TX 75081, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60124419
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, TR
Sprache des Dokument EN
EP-Anmeldetag 10.10.2001
EP-Aktenzeichen 019866649
WO-Anmeldetag 10.10.2001
PCT-Aktenzeichen PCT/US01/31702
WO-Veröffentlichungsnummer 2002030837
WO-Veröffentlichungsdatum 18.04.2002
EP-Offenlegungsdatum 27.08.2003
EP date of grant 08.11.2006
Veröffentlichungstag im Patentblatt 21.12.2006
IPC-Hauptklasse C03B 5/02(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse C03C 3/32(2006.01)A, L, I, 20051017, B, H, EP   C03B 5/16(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]
FIELD OF THE INVENTION

The present invention relates to a method of making chalcogenide glasses. More particularly, the invention relates to a method of making selenium based chalcogenide glasses utilizing liquid encapsulation.

DESCRIPTION OF THE RELATED ART

Chalcogenide glasses consists of one or more of the elements sulfur (S), selenium (Se), or tellurium (Te). Chalcohalides are glasses containing one or more of the elements S, Se and Te, and one or more halides anions (F, Cl, Br and I). Chalco-oxides are glasses containing one or more of the elements S, Se and Te and oxygen. Chalcogenide glasses are of interest because of their ability to transmit infrared radiation. Selenium based chalcogenide glasses (for example, As2Se3 and Ge28Sb12Se60) are of particular interest due to their chemical durability, moderate glass transition temperatures, and ability to transmit infrared radiation both in the 3-5µm and 8-12µm regions.

Chalcogenide glasses have been made by a number of techniques. U.S. Patent Nos. 3,338,728, 3,343,972, and 3,360,649 disclose the production of chalcogenide glasses in sealed ampoules similar to that discussed below in relation to the commercial chalcogenide glass known as TI-1173. U.S. Patent No. 3,360,649 relates specifically to a selenium-germanium-antimony chalcogenide glass.

U.S. Patent No. 4,484,945 discloses a process which involves subjecting a mixture of chalcogenide oxides contained in solution to a simultaneous coreduction reaction. The coreduction reaction is achieved by adding reducing agents to the oxide solution such as hydrazine, sulphur dioxide, thioureas, etc.

U.S. Patent No. 4,492,763 discloses germanium-free chalcogenide glasses prepared utilizing sealed ampoules.

German Patent No. DD 296427 describes a method of making glass in which reactions take place between the batch components upon heating and melting. A melting chamber is used in which a covering plate hermetically seals the surface of the melt.

High purity oxide glasses may be prepared by melting the oxides together in an open crucible. For selenium based chalcogenide glasses, high purity metal selenides are generally not commercially available, therefore, selenium metal is melted and reacted to form chalcogenide glass. Selenium melts at 216°C and its vapor pressure reaches 1 atmosphere at 685°C while the melting points of most other chalcogenide glass components are greater than 700°C. Therefore, reaction in an open crucible will result in the almost complete evaporation loss of selenium.

One selenium based chalcogenide glass was formerly made by Texas Instruments, now Raytheon Company, and is known as TI-1173. TI-1173 is a ternary glass composition made according to the formula Ge28Sb12Se60. To prevent the evaporation loss of selenium during the making of TI-1173, the reaction is conducted in a sealed quartz ampoule. The starting materials including selenium metal are placed in a quartz tube and the tube is sealed while under a vacuum. The tube is slowly heated and mixing of the molten metals occurs by rocking and/or rolling the tube during heating. The tube is then quenched to form the chalcogenide glass. The quartz tube is sacrificed to remove the reacted glass. While this method allows for commercial production of TI-1173, there are a number of shortcomings with this method, including: (1) during sealing of the quartz tube, oxygen, an impurity, may be introduced, degrading IR transmission; (2) there is a risk of explosion of the sealed quartz tube during heating if the ampoule is not designed and/or heated properly to prevent sublimation of the selenium melt; (3) the rock and/or roll mixing is not sufficient to produce optical quality glass; the reacted glass must be remelted, stirred, re-cast and annealed to produce optical quality glass; (4) the quartz ampoule is not reusable; (5) temperatures in excess of 900°C must be reached to completely melt the germanium; and (6) glass batch size is limited by the size of commercially available quartz tubing, and by the margin of safety required to reduce the risk of explosion.

SUMMARY OF THE INVENTION

Accordingly, a need has arisen for making chalcogenide glass, and particularly selenium based chalcogenide glass, in a safer and more economical fashion.

In accordance with the present invention, a method of producing chalcogenide glass is provided that significantly improves the safety and economy of making the glass. Therefore, the invention provides a method as defined by Claim 1 of the appended claims. In an embodiment of the invention the method includes the steps of: (1) placing about stoichiometric amounts of glass components into a reactor, (2) substantially covering the glass components in the reactor with a liquid encapsulent to prevent the evaporation loss of low boiling point or high vapor pressure glass components, and (3) heating the glass components to a temperature below the boiling points of the components, and (4) actively mixing the components to cause the liquid glass components to react with the solid glass components to form molten chalcogenide glass.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the invention can be obtained when the detailed description of exemplary embodiments set forth below is considered in conjunction with the attached drawing in which:

  • Figure 1 is a simplified cross-sectional drawing of a reaction chamber for carrying out the present inventive method.
  • Figure 2 is a graph of Transmittance vs. Wavelength for chalcogenide glass made pursuant to the example herein.

DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

With reference to Figure 1, the process of the present invention is preferably carried out in a reactor 10 having an internal reaction chamber 11. The reactor 10 is at least partially surrounded by a heater 13. Within the reactor 10, is a melt crucible 20 having a melt valve 21 (with a melt valve handle 22) and a stir bar 23. The reactor 10 has a snoot 12 for removing the molten chalcogenide glass.

As shown in Figure 1, there are three levels indicating ternary glass components and a fourth level indicating an encapsulent. Preferably, for ternary glass, the three ternary glass components are levels 31, 32, and 33 and the encapsulent is level 34. As discussed in more detail below, before heating begins, preferably, level 31 is selenium, level 32 is antimony, level 33 is germanium, and level 34 is B2O3.

It has been found that if glass crucibles, stir bars and melt valves are used, the B2O3 wets the glass and then breaks the glass upon cooling due to the large differential in thermal expansions. Therefore, it is preferred to utilize vitreous carbon crucibles, stir bars and melt valves such that the B2O3 does not wet these items and that they can be reused. Melting Point (°C) Boiling Point (°C) Selenium (Se) 216 685 Antimony (Sb) 630 1750 Germanium (Ge) 937 2830 Boron Oxide (B2O3) 450 1860

As can be seen from the above table, selenium has a melting point of 216°C. Many chalcogenide glass components have melting points greater than 700°C. Even at antimony's relatively low melting point of 631°C, if antimony were to be melted in the presence of selenium under atmospheric conditions, e.g., an open crucible, a significant loss of selenium would result from evaporation.

While the preferred chalcogenide glass is TI-1173 (Ge28Sb12Se60), the present invention may be used to make any chalcogenide glass, and is particularly adapted for making chalcogenide glasses where one or more components have a low boiling point (high vapor pressure) in relation to one or more other components which have a high melting point.

The present invention applies to chalcogenide glasses in its broadest definition, including chalcohalides, chalco-oxides, as well as the combination of chalcogenide elements (S, Se, Te) with Group VA elements (including phosphorus (P), arsenic (As), antimony (Sb) and bismuth (Bi)), the combination of chalcogenide elements with Group IVA elements (including germanium (Ge), tin (Sn) and lead (Pb)), and the combination of chalcogenide elements with Group IIIA elements (including aluminum (A1), gallium (Ga), indium (In) and thallium (Tl)).

For purposes of the present application, boron oxide (B2O3), is an "encapsulent". An encapsulent is any element or compound which meets the following requirements:

  1. (1) is a liquid (molten) at temperatures suitable to form chalcogenide glasses;
  2. (2) is a liquid (molten) below the boiling point of the lowest boiling point component of the melt being processed;
  3. (3) has a density lower than that of the melt being processed; and
  4. (4) does not contaminate the melt being processed.

The encapsulent, preferable boron oxide (B2O3), covers the melt being processed and prevents the evaporation of low boiling point components. For the particular case of B2O3, it is a solid when placed in the reactor at room temperature and melts (450°C) as the components of the chalcogenide glass melt are being heated. For the case of B2O3, it melts at 450°C, well before the boiling point of selenium (685°C), such that it prevents any significant selenium evaporation.

Other compounds suitable for the encapsulent include multicomponent borate, silicate and phosphate glasses and multicomponent mixed glasses such as borosilicates, borophosphates and phosphosilicates.

In addition to preventing the evaporation of low boiling point components, the encapsulent allows for stirring the melt, allows for easy operation of the melt valve 21 (utilizing melt valve handle 22), and allows thermocouples (not shown) to be inserted to determine temperature at various depths of the melt.

The encapsulent has a lower density than that of the melt being processed. This allows the encapsulent to remain on the top of the melt being processed to prevent evaporation loss, but also provides for reducing contaminants in the glass, and, upon operation of the melt valve 21, allows the molten chalcogenide glass to be removed through the snoot 12 with the encapsulent remaining in the crucible 20.

The following description details the preferred method of making TI-1173 according to the present inventive method:

1. Starting materials

Stoichiometric amounts (as noted below) germanium, antimony, and selenium, each 99.999% pure, are obtained from a suitable source. One such suitable source is Sigma-Aldrich Corp. of St. Louis, MO.

Germanium 28 mol %.

Antimony 12 mol %.

Selenium 60 mol %.

The B2O3 may be purchased as glass pucks containing <200ppm H2O from GFI Advanced Technologies of Teaneck, NJ.

2. Process

Germanium and antimony ingots are broken into pieces, preferably <3cm in diameter. The selenium, antimony and germanium are layered in the crucible 20, with, preferably, selenium as the lower level 31, followed by antimony (level 32), then followed by germanium (level 33). B2O3 sufficient to form an about one inch level (level 34) is added on top of the germanium. Preferably, the selenium is on the lower level 31 as it melts first and has a high vapor pressure (low boiling point); thus, as the selenium melts, the antimony (the second lowest melting point component) falls into the molten selenium, improving the glass formation reaction and heat transfer. Also, with the selenium on the lower level 31, there is less opportunity for the selenium to evaporate before the B2O3 layer (level 34) melts.

A vacuum bake-out is performed on the crucible 20 and its contents to remove residual moisture and oxygen. This is done by heating the reactor 10 and its contents to 200°C under a vacuum of <200 milliTorr for one hour. This vacuum bake-out helps to prevent moisture and oxygen from contaminating the chalcogenide glass (which is very sensitive to impurities). Following this, the reactor 10 is pressured with dry nitrogen to a pressure of about 1 psig while maintaining a purge rate of about 4 scfh. The reactor 10 atmosphere is checked to verify that the O2 and H2O contents are each below 20 ppm. Crucible 20 is then heated to 450°C and held at that temperature for 60 minutes. At 217°C, the selenium melts and begins dissolving the solid antimony and germanium. At 450°C, the B2O3 melts and encapsulates the germanium, antimony and liquid selenium. The crucible 20 and its contents are then heated to 630°C. At 630°C, the antimony melts and starts reacting with the solid germanium. With both the selenium and antimony molten, vigorous mixing is provided to dissolve the solid germanium chunks. The stirring speed is ramped from 1rpm to 60rpm by increasing the speed at 1rpm/min. and the temperature is raised to 670°C. The temperature is held at 670°C. with the contents being mixed at 60rpm for 120 minutes. Under these conditions, the solid germanium will completely dissolve in the selenium/antimony melt and a glass forming melt will be produced. Preferably, the temperature should not be raised above 670°C., because the boiling point of selenium is 680°C. Following these procedures, a glass forming melt has been produced; however, refining of the glass must be completed to produce optical quality glass.

To "fine" (to remove bubbles from) the melt, the stirring is stopped and the melt cooled to 640°C for 60 minutes, and any bubbles in the melt will rise to the top of the melt. After fining, the melt is readied for lens casting by lowering the melt temperature to 560°C and stirring at 35rpm for 60 minutes. This homogenizes the chemical composition of the melt. The stirring is stopped just before the glass is cast into the plate mold. This is accomplished by raising the melt valve 21 such that the melt flows out the snoot 12 into the plate mold.

After the lens casting is complete, any remaining glass melt and B2O3 in the crucible 20 are dumped and the crucible 20, stir bar 23, and melt valve 21 are removed and cleaned.

EXAMPLE

Starting Materials grams Selenium 691 Antimony 213 Germanium 296 B2O3 600
Time (Min.) Procedure and Comments - Vacuum on overnight - pulled to 300 m Torr. 1 Vacuum at 225 m Torr; vacuum off; low purge at 4scfh; set melt set-point controller to 450°C. 78 Melt thermocouple reading 440°C; set melt set-point controller to 535°C. 85 Set melt set-point to 560°C. 110 Increase heating. 161 15 rpm; melt is 652.6°C. 172 20 rpm; melt is 653.5°C. 177 25 rpm; melt is 654.7°C. 183 30 rpm; melt is 658.8°C. 189 35 rpm; melt is 662.4°C. 387 Start to homogenize; lower melt set-point to 490°C; lower stir to 20 rpm for 40 min, then stop. 513 Lower melt set-point to 470°C. 557 Lower melt set-point to 465°C 573 Pour into plate mold.
1193g of raw (unfinished) T-1173 glass was produced in the experiment.

A 0.3955 in. thick glass casting was produced. This glass casting was tested for IR transmittance yielding the results shown in Figure 2 and the following results:

  • At 12.8 m A=0.508 cm-1
  • At 12.5 m A=0.455 cm-1
  • At 12.0 m A=0.226 cm-1
  • At 10.0 m A=0.021 cm-1
  • At 8.3 m A=0.023 cm-1
  • At 8.0 m A=0.026 cm-1
  • At 7.5 m A=0.019 cm-1
Where A is Absorbance.

7.5 to 11.5 m

Avg. Transmittance = 65.0%

11.5 to 13.5 m

Avg. Transmittance = 47.7%

7.5 to 13.5 m

Avg. Transmittance = 61.2%

The present inventive method of making chalcogenide glass is advantageous over known methods of making chalcogenide glass. The present inventive method is easier, more economical and safer than previously known methods. The present inventive method solves the several problems noted above relating to making chalcogenide glass in sealed ampoules, specifically (1) No sealing of a quartz tube is required, and oxygen contamination is minimized; (2) There is no risk of explosion because the selenium temperature may be tightly controlled, and any rapid over-pressure of reaction chamber 11 may be relieved by over-pressure valves (not shown); (3) Because the reaction takes place in crucible 20, the glass components can be stirred sufficiently to produce optical quality glass, and the glass can be poured (snoot 12) directly from crucible 20 to cast desired shapes; (4) The crucible 20 is reusable whereas the quartz tube is not; (5) The reaction takes place several hundred degrees lower than the known sealed ampoule technique, thus requiring less sophisticated equipment; and (6) The batch size can be increased over the known sealed ampoule technique.

Having described the invention above, various modifications of the techniques, procedures, material, and equipment will be apparent to those skilled in the art. It is intended that all such variations be included within the scope of the appended claims.


Anspruch[de]
Ein Verfahren zur Herstellung von Chalcogenidglas, das folgende Schritte umfasst: das Plazieren von stöchiometrischen Mengen von Glasbestandteilen in einen Reaktor; Bedecken der Glasbestandteile in dem Reaktor im Wesentlichen mit einem Verkapselungsmittel; und Erhitzen auf eine Temperatur, die ausreichend ist, um zu verursachen, dass die Glasbestandteile so reagieren, dass sie geschmolzenes Chalcogenidglas bilden; wobei das Verkapselungsmittel eine geschmolzene Flüssigkeit bei solchen Temperaturen ist, die geeignet sind, dass Chalcogenidglas zu bilden, wobei es eine geschmolzene Flüssigkeit unter dem Siedepunkt des Glasbestandteils mit dem niedrigsten Siedepunkt ist, wobei es eine niedrigere Dichte als die Dichte der Glasbestandteile hat, und wobei es nicht das Chalcogenidglas kontaminiert. Das Verfahren nach Anspruch 1, wobei: die Glasbestandteile mindestens einen ersten Glasbestandteil und einen zweiten Glasbestandteil umfassen, wobei der erste Glasbestandteil einen Schmelzpunkt hat, der niedriger ist als der Schmelzpunkt des zweiten Glasbestandteils; und wenn das Erhitzen des Verkapselungsmittels im Wesentlichen den Evaporationsverlust mindestens des ersten Glasbestandteils verhindert. Das Verfahren nach Anspruch 2, wobei das Verkapselungsmittel einen Schmelzpunkt hat, der niedriger als der Siedepunkt des ersten Glasbestandteils ist. Das Verfahren nach Anspruch 1, wobei: die Glasbestandteile mindestens einen ersten Glasbestandteil , einen zweiten Glasbestandteil und einen dritten Glasbestandteil umfassen; bei Erhitzen der erste Glasbestandteil und der zweite Glasbestandteil schmelzen; und das Verkapselungsmittel im Wesentlichen den Evaporationsverlust mindestens von einem des ersten Glasbestandteils und des zweiten Glasbestandteils verhindert. Das Verfahren nach Anspruch 4, wobei beim Erhitzen der dritte Glasbestandteil ein Feststoff ist; und zudem den Schritt der Vermischung des dritten Glasbestandteils mit einer Kombination des ersten Glasbestandteils und des zweiten Glasbestandteils umfasst, um zu verursachen, dass die Glasbestandteile so reagieren, dass sie geschmolzenes Chalcogenidglas bilden. Das Verfahren nach Anspruch 1, wobei: die Glasbestandteile auf eine Temperatur erhitzt werden, die unter dem Siedepunkt des Glasbestandteils mit dem niedrigsten Siedepunkt liegt; und mindestens ein Glasbestandteil eine Flüssigkeit ist und mindestens ein Glasbestandteil ein Feststoff ist; und zudem den Schritt der Vermischung der Glasbestandteile umfasst, um mindestens dem einen flüssigen Glasbestandteil zu veranlassen, mit mindestens dem einen festen Glasbestandteil zu reagieren, um geschmolzenes Chalcogenidglas zu bilden. Das Verfahren nach Anspruch 1, wobei: die Glasbestandteile mindestens einen ersten Glasbestandteil und einen zweiten Glasbestandteil einschließen; und eine Temperatur, die unter dem Siedepunkt des Glasbestandteils mit dem niedrigsten Siedepunkt liegt, während des Erhitzens verwendet wird. Das Verfahren nach Anspruch 7, wobei, wenn erhitzt wird, das Verkapselungsmittel im Wesentlichen den Evaporationsverlust mindestens des ersten Glasbestandteils verhindert. Das Verfahren nach Anspruch 2 oder 7, wobei der erste Glasbestandteil Selen ist. Das Verfahren nach Anspruch 7, wobei das Verkapselungsmittel einen Schmelzpunkt hat, der niedriger liegt als der Siedepunkt des Glasbestandteils mit dem niedrigsten Siedepunkt. Das Verfahren nach Anspruch 7, wobei es zudem einen dritten Glasbestandteil umfasst und, wobei: bei Erhitzen der erste Glasbestandteil und der zweite Glasbestandteil schmelzen; und das Verkapselungsmittel im Wesentlichen den Evaporationsverlust mindestens von einem des ersten Glasbestandteils und des zweiten Glasbestandteils verhindert. Das Verfahren nach Anspruch 11, wobei beim Erhitzen der dritte Glasbestandteil ein Feststoff ist; und

zudem den Schritt der Vermischung des dritten Glasbestandteils mit einer Kombination des ersten Glasbestandteils und des zweiten Glasbestandteils umfasst, um zu verursachen, dass die Glasbestandteile so reagieren, dass sie geschmolzenes Chalcogenidglas bilden.
Das Verfahren nach Anspruch 1 oder Anspruch 7, wobei die Glasbestandteile mindestens Selen, Germanium und Antimon einschließen. Das Verfahren nach Anspruch 1, wobei die Glasbestandteile Selen und mindestens einen zweiten Glasbestandteil einschließen, wobei der zweite Glasbestandteil einen Schmelzpunkt von mindestens etwa 600°C hat. Das Verfahren nach Anspruch 14, das zudem einen dritten Glasbestandteil umfasst und, wobei: bei Erhitzen das Selen und der zweite Glasbestandteil schmelzen; und das Verkapselungsmittel im Wesentlichen den Evaporationsverlust mindestens von einem des Selens und des zweiten Glasbestandteils verhindert. Das Verfahren nach Anspruch 15, wobei bei Erhitzen der dritte Glasbestandteil ein Feststoff ist; und

zudem den Schritt der Vermischung des dritten Glasbestandteils mit einer Kombination des Selens und des zweiten Glasbestandteils umfasst, um zu verursachen, dass die Glasbestandteile so reagieren, dass sie geschmolzenes Chalcogenidglas bilden.
Das Verfahren nach Anspruch 14, wobei die Glasbestandteile aus den Elementen ausgewählt werden, die aus Schwefel, Tellur, Fluor, Chlor, Brom, Iod, Sauerstoff, Phosphor, Arsen, Antimon, Bismuth, Germanium, Zinn, Blei, Aluminium, Gallium, Indium und Thallium bestehen, oder das Verfahren nach Anspruch 1 oder Anspruch 7, wobei die Glasbestandteile aus den Elementen ausgewählt werden, die aus Schwefel, Selen, Tellur, Fluor, Chlor, Brom, Iod, Sauerstoff, Phosphor, Arsen, Antimon, Bismuth, Germanium, Zinn, Blei, Aluminium, Gallium, Indium und Thallium bestehen. Das Verfahren nach Anspruch 14, wobei die Glasbestandteile mindestens Germanium und Antimon einschließen. Das Verfahren nach Anspruch 18, wobei: etwa 50 mol % bis etwa 98 mol % Selen, etwa 1 mol % bis etwa 40 mol % Germanium und etwa 1 mol % bis etwa 30 mol % Antimon in den Reaktor platziert werden; das Selen, Germanium und Antimon im Wesentlichen in dem Reaktor mit einem Verkapselungsmittel bedeckt werden; und der Reaktor mindestens auf etwa 650°C erhitzt wird, um zu verursachen, dass das Selen, Germanium und Antimon so reagieren, dass sie geschmolzenes Chalcogenidglas bilden. Das Verfahren nach einem der Ansprüche 2, 7, 14 oder 19, wobei das Verkapselungsmittel B2O3 ist. Das Verfahren nach Anspruch 14 oder Anspruch 19, wobei das Verkapselungsmittel einen Schmelzpunkt hat, der niedriger ist als der Siedepunkt von Selen. Das Verfahren nach Anspruch 19, wobei das Verkapselungsmittel eine niedrigere Dichte als die aus einer Kombination von Selen, Germanium und Antimon hat. Das Verfahren nach Anspruch 19, wobei das Verkapselungsmittel im Wesentlichen den Evaporationsverlust von Selen verhindert. Das Verfahren nach Anspruch 19, wobei bei Erhitzen das Germanium als ein Feststoff zurückbleibt, und

zudem den Schritt der Vermischung des festen Germaniums mit einer Kombination des Selens und Antimons umfasst, um zu verursachen, dass das Selen, Antimon und Germanium so reagieren, dass sie geschmolzenes Chalcogenidglas bilden.
Anspruch[en]
A method of making chalcogenide glass, comprising the steps of: placing about stoichiometric amounts of glass components into a reactor; substantially covering the glass components in the reactor with an encapsulent; and heating to a temperature sufficient to cause the glass components to react to form molten chalcogenide glass; wherein the encapsulent is a molten liquid at temperatures suitable to form the chalcogenide glass, is a molten liquid below the boiling point of the lowest boiling point glass component, has a density lower than the density of the glass components, and does not contaminate the chalcogenide glass. The method of claim 1, wherein: the glass components comprise at least a first glass component and a second glass component, wherein the first glass component has a melting point which is lower than the melting point of the second glass component; and when heating the encapsulent substantially prevents the evaporation loss of at least the first glass component. The method of claim 2, wherein the encapsulent has a melting point which is lower than the boiling point of the first glass component. The method of claim 1, wherein: the glass components comprise at least a first glass component, a second glass component, and a third glass component; when heating, the first glass component and the second glass component melt; and the encapsulent substantially prevents the evaporation loss of at least one of the first glass component and the second glass component. The method of claim 4, wherein, upon heating, the third glass component is a solid; and

further comprising the step of mixing the third glass component with a combination of the first glass component and the second glass component to cause the glass components to react to form molten chalcogenide glass.
The method of claim 1, wherein: the glass components are heated to a temperature below the boiling point of the lowest boiling point glass component; and at least one glass component is a liquid and at least one glass component is a solid; and further comprising the step of mixing the glass components to cause the at least one liquid glass component to react with the at least one solid glass component to form molten chalcogenide glass. The method of claim 1, wherein: the glass components include at least a first glass component and a second glass component; and a temperature below the boiling point of the lowest boiling point glass component is used during heating. The method of claim 7, wherein, when heating, the encapsulent substantially prevents the evaporation loss of at least the first glass component. The method of claim 2 or claim 7, wherein the first glass component is selenium. The method of claim 7, wherein the encapsulent has a melting point which is lower than the boiling point of the lowest boiling point glass component. The method of claim 7, further comprising a third glass component and, wherein: when heating, the first glass component and the second glass component melt; and the encapsulent substantially prevents the evaporation loss of at least one of the first glass component and the second glass component. The method of claim 11, wherein, upon heating, the third glass component is a solid; and

further comprising the step of mixing the third glass component with a combination of the first glass component and the second glass component to cause the glass components to react to form molten chalcogenide glass.
The method of claim 1 or claim 7, wherein the glass components include at least selenium, germanium and antimony. The method of claim 1, wherein the glass components include selenium and at least a second glass component, wherein the second glass component has a melting point of at least about 600°C. The method of claim 14, further comprising a third glass component and, wherein: when heating, the selenium and the second glass component melt; and the encapsulent substantially prevents the evaporation loss of at least one of the selenium and the second glass component. The method of claim 15, wherein, upon heating, the third glass component is a solid; and

further comprising the step of mixing the third glass component with a combination of the selenium and the second glass component to cause the glass components to react to form molten chalcogenide glass.
The method of claim 14, wherein the glass components are selected from the elements consisting of sulfur, tellurium, fluorine, chlorine, bromine, iodine, oxygen, phosphorus, arsenic, antimony, bismuth, germanium, tin, lead, aluminum, gallium, indium, and thallium, or the method of claim 1 or claim 7, wherein the glass components are selected from the elements consisting of sulfur, selenium, tellurium, fluorine, chlorine, bromine, iodine, oxygen, phosphorus, arsenic, antimony, bismuth, germanium, tin, lead, aluminum, gallium, indium, and thallium. The method of claim 14, wherein the glass components include at least germanium and antimony. The method of claim 18, wherein: about 50 mol % to about 98 mol % selenium, about 1 mol % to about 40 mol % germanium and about 1 mol % to about 30 mol % antimony are placed into the reactor; the selenium, germanium and antimony are substantially covered in the reactor with an encapsulent; and the reactor is heated to at least about 650°C to cause the selenium, germanium and antimony to react to form molten chalcogenide glass. The method of any one of claims 2, 7, 14 or 19, wherein the encapsulent is B2O3. The method of claim 14 or claim 19, wherein the encapsulent has a melting point which is lower than the boiling point of the selenium. The method of claim 19, wherein the encapsulent has a density lower than that of a combination of the selenium, germanium, and antimony. The method of claim 19, wherein the encapsulent substantially prevents the evaporation loss of the selenium. The method of claim 19, wherein, upon heating, the germanium remains a solid, and

further comprising the step of mixing the solid germanium with a combination of the selenium and antimony to cause the selenium, antimony and germanium to react to form molten chalcogenide glass.
Anspruch[fr]
Procédé de fabrication de verre de chalcogénure, comprenant les étapes consistant à : - placer des quantités approximativement stoechiométriques de composants de verre dans un réacteur ; - recouvrir essentiellement les composants de verre avec un encapsulant dans le réacteur ; et - chauffer à une température suffisante pour faire réagir les composants de verre pour former un verre de chalcogénure fondu ; dans lequel l'encapsulant est un liquide fondu à des températures appropriées pour former le verre de chalcogénure, est un liquide fondu en dessous du point d'ébullition du composant de verre à point d'ébullition le plus bas, a une densité inférieure à la densité des composants de verre, et ne contamine pas le verre de chalcogénure. Procédé selon la revendication 1, dans lequel : les composants de verre comprennent au moins un premier composant de verre et un deuxième composant de verre, dans lequel le premier composant de verre a un point de fusion qui est inférieur au point de fusion du deuxième composant de verre ; et pendant le chauffage, l'encapsulant empêche essentiellement la perte par évaporation d'au moins le premier composant de verre. Procédé selon la revendication 2, dans lequel l'encapsulant a un point de fusion qui est inférieur au point d'ébullition du premier composant de verre. Procédé selon la revendication 1, dans lequel : les composants de verre comprennent au moins un premier composant de verre, un deuxième composant de verre et un troisième composant de verre ; pendant le chauffage, le premier composant de verre et le deuxième composant de verre fondent ; et l'encapsulant empêche essentiellement la perte par évaporation d'au moins un du premier composant de verre et du deuxième composant de verre. Procédé selon la revendication 4, dans lequel, pendant le chauffage, le troisième composant de verre est un solide ; et

comprenant en outre l'étape consistant à mélanger le troisième composant de verre avec une combinaison du premier composant de verre et du deuxième composant de verre pour faire réagir les composants de verre pour former un verre de chalcogénure fondu.
Procédé selon la revendication 1, dans lequel : les composants de verre sont chauffés à une température inférieure au point d'ébullition du composant de verre à point d'ébullition le plus bas ; et au moins un composant de verre est un liquide et au moins un composant de verre est un solide ; et comprenant en outre l'étape consistant à mélanger les composants de verre pour faire réagir le au moins un composant de verre liquide avec le au moins un composant de verre solide pour former un verre de chalcogénure fondu. Procédé selon la revendication 1, dans lequel : les composants de verre comprennent au moins un premier composant de verre et un deuxième composant de verre ; et une température inférieure au point d'ébullition du composant de verre à point d'ébullition le plus bas est utilisée pendant le chauffage. Procédé selon la revendication 7, dans lequel, pendant le chauffage, l'encapsulant empêche essentiellement la perte par évaporation d'au moins le premier composant de verre. Procédé selon la revendication 2 ou 7, dans lequel le premier composant de verre est le sélénium. Procédé selon la revendication 7, dans lequel l'encapsulant a un point de fusion qui est inférieur au point d'ébullition du composant de verre à point d'ébullition le plus bas. Procédé selon la revendication 7, comprenant en outre un troisième composant de verre et dans lequel : pendant le chauffage, le premier composant de verre et le deuxième composant de verre fondent ; et l'encapsulant empêche essentiellement la perte par évaporation d'au moins un du premier composant de verre et du deuxième composant de verre. Procédé selon la revendication 11, dans lequel, pendant le chauffage, le troisième composant de verre est un solide ; et

comprenant en outre l'étape consistant à mélanger le troisième composant de verre avec une combinaison du premier composant de verre et du deuxième composant de verre pour faire réagir les composants de verre pour former un verre de chalcogénure fondu.
Procédé selon la revendication 1 ou 7, dans lequel les composants de verre comprennent au moins du sélénium, du germanium et de l'antimoine. Procédé selon la revendication 1, dans lequel les composants de verre comprennent du sélénium et au moins un deuxième composant de verre, dans lequel le deuxième composant de verre a un point de fusion d'au moins environ 600°C. Procédé selon la revendication 14, comprenant en outre un troisième composant de verre et dans lequel : pendant le chauffage, le sélénium et le deuxième composant de verre fondent ; et l'encapsulant empêche essentiellement la perte par évaporation d'au moins un du sélénium et du deuxième composant de verre. Procédé selon la revendication 15, dans lequel, pendant le chauffage, le troisième composant de verre est un solide ; et

comprenant en outre l'étape consistant à mélanger le troisième composant de verre avec une combinaison du sélénium et du deuxième composant de verre pour faire réagir les composants de verre pour former un verre de chalcogénure fondu.
Procédé selon la revendication 14, dans lequel les composants de verre sont choisis parmi les éléments comprenant le soufre, le tellure, le fluor, le chlore, le brome, l'iode, l'oxygène, le phosphore, l'arsenic, l'antimoine, le bismuth, le germanium, l'étain, le plomb, l'aluminium, le gallium, l'indium et le thallium, ou procédé selon la revendication 1 ou 7,

dans lequel les composants de verre sont choisis parmi les éléments comprenant le soufre, le sélénium, le tellure, le fluor, le chlore, le brome, l'iode, l'oxygène, le phosphore, l'arsenic, l'antimoine, le bismuth, le germanium, l'étain, le plomb, l'aluminium, le gallium, l'indium et le thallium.
Procédé selon la revendication 14, dans lequel les composants de verre comprennent au moins le germanium et l'antimoine. Procédé selon la revendication 18, dans lequel : environ 50% en moles à environ 98% en moles de sélénium, environ 1% en moles à environ 40% en moles de germanium et environ 1% en moles à environ 30% en moles d'antimoine sont placés dans le réacteur ; le sélénium, le germanium et l'antimoine sont essentiellement recouverts avec un encapsulant dans le réacteur ; et le réacteur est chauffé à au moins environ 650°C pour faire réagir le sélénium, le germanium et l'antimoine pour former un verre de chalcogénure fondu. Procédé selon l'une quelconque des revendications 2, 7, 14 ou 19, dans lequel l'encapsulant est B2O3. Procédé selon la revendication 14 ou 19, dans lequel l'encapsulant a un point de fusion qui est inférieur au point d'ébullition du sélénium. Procédé selon la revendication 19, dans lequel l'encapsulant a une densité inférieure à celle d'une combinaison du sélénium, du germanium et de l'antimoine. Procédé selon la revendication 19, dans lequel l'encapsulant empêche essentiellement la perte par évaporation du sélénium. Procédé selon la revendication 19, dans lequel, pendant le chauffage, le germanium reste un solide ; et

comprenant en outre l'étape consistant à mélanger le germanium solide avec une combinaison du sélénium et de l'antimoine pour faire réagir le sélénium, l'antimoine et le germanium pour former un verre de chalcogénure fondu.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com